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the bottom of the vessel will have different influences. (3)
The amplitudes of vibration decrease rapidly during the
timing so that the extent of the motion of the liquid
varies considerably. (4) The periods, though deter-
mined to 0.01 sec, have to be squared and differenced to
get the moments of inertia I's. Sometimes these differences
are small; and this leads to errors in the moments of inertia.
The graphs are drawn to average the experimental results;
there was a fair amount of scatter so that to avoid con-
fusion the individual readings are not shown for water,
mercury, and ether.

1 D, R, Inglis, Am. J. Phys. 26, 82-89 (1958), esp. p. 85.

2 See reference 1, p. 84.

3 J. Satterly, Am. J. Phys. 24, 527 (1956). See also 25, 72 (1957).

4 A, L. Romanoff and A. J, Romanoff, The Avian Egg (John Wiley &
Sons, Inc., New York, 1949), p. 403.

Phase Velocity and Group Velocity

N. F. BARBER
Dominion Physical Laboratory, Lower Hutt, New Zealand

T is well known that a group of water waves travels
forward at a speed which is only half the speed of the
individual waves in the group. The distinction between
phase velocity and group velocity is apt to puzzle students
at first, and the following apparatus can help.

A sheet of metal about 8 by 18 in. has its two long sides
bent over to form flanges about 1 in. deep (see Fig. 1). An
oval hole is then cut in the face of the sheet. Two wooden
rollers of about 1 in. diam are held between the flanges by
screws, one roller near each end, so that the apparatus will
roll on a blackboard. A strip of paper 5% in. wide is passed
round both rollers and joined to form an endless belt. On
this paper is painted a wavy profile carrying about twelve
waves in the total length of the belt. Finally the face of the
metal sheet is painted half black and half white to disguise
the presence of the hole in the sheet. When this apparatus
is rolled across the blackboard the visible waves travel at
twice the speed of the apparatus, appearing at the rear
and disappearing at the front in the manner of real waves
in a group.

One may begin by describing on the blackboard the case
where a short group of water waves is set up by a wave
maker at one end of a long tank such as is used for testing

NOTES AND DISCUSSION

models of ships. An observer might see at a glance that
there are perhaps four waves in the group. Nevertheless, if
he counts the waves as they pass him he will count eight,
twice as many as can be seen in the group at any one time.
Turning to the apparatus, four waves can probably be
seen on it, but when it is placed on the drawing of the tank
and rolled slowly past some fixed mark, the waves travel
faster than the apparatus itself, and eight waves in all pass
the fixed mark. The demonstration is quite striking and
usually needs to be repeated more slowly so that it can be
seen how new waves continually appear at the rear and
disappear at the front as they do in a real wave group on
water.

e/m by the Hoag Method

BERNARD L. MILLER
Saint Joseph’s College, Philadelphia, Pennsylvania

N the “Note on the measurement of ¢/m by the Hoag
method,”” the authors point out that the distance / in
the expression for e/m should be measured from the center
of the deflection plates to the screen. This fact was also
reported in my talk, “Modified helical method for deter-
mining e/m,”’ delivered at the annual AAPT meeting in
New York City on February 1, 1958 but not yet published
in detail. The authors of reference 1, also consider the
effect of the fringing electric fields of the deflection plates,
and using a two-step approximation to the field distribution,
find that measuring from the center of the plates is still
correct. It is then surmised that this conclusion is valid for
any symmetrical (the same at entrance as at exit) fringing
fields. This conjecture is correct and its proof is the subject
of this letter.

Consider an electron traveling along the Z axis (also the
axis of the uniform magnetic field B) and subjected to an
X component of electric field E(¢), which begins as it passes
the origin of coordinates, increases until time, #;/2, when it
passes the center of the plates and then decreases sym-
metrically to zero at time f;; the electron then continues
to the screen under the action of the magnetic field alone.
We are concerned with the projection of the motion on
the X-Y plane and the time it takes for this projection to
return as nearly as possible to the origin (focus condition).
The equations for this projected motion are

mi, = Bev, (63}
my, = Ee— Bevy, 2)
subject to,
at (=0 v, =v,=x=y=0, 3)
Defining
I =B;e and f() =—}:?1£;—), 4)

Eqgs. (1) and (2) become
¥y =Wy (5}
V. =w(f{) —v,). (6)
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Combining Egs. (5) and (6) gives
By +aln, =w?f(2). )
The solution of Eq. (7) is
vy=0 [* f(a) sine(t—a)da. (8)
Integrating Eq. (5) and using Eq. (8) gives
x =”:" = [ (@) sinw(t— a)da. ©)
For £ >4, since f{£) =0,
x= fo " f(a) sinw(t—a)da (10)

or

x{t>H) =sinwt f; . f(@) coswada — coswt j; '1 f(a) sinwada.
Finally
x(t>4H) =4 sinwt+B coswt (11)

= C cos(wi+¢), (12)

in which 4, B, and therefore C are constants. Since we
know that for £>¢;, the total motion (projected) must be
circular, Eq. (12) establishes that the center of the circle
must lie on the ¥ axis. This means that the closest ap-
proach of the electron to the origin, (which corresponds to
the focus condition from which the ¢/m formula is derived)
must occur when the Y coordinate is a minimum, the
condition for which is »,=0. Substituting in Eq. (8), we
wish to solve for ¢, for times greater than ¢, the equation

! £(@) sine(t~a)da =0. (13)

Since we need solutions for ¢ >#;, and f(¢) =0 for ¢ >4, the
upper limit may be replaced by #, so

S 5@ sinw(t—a)da=0, (14)
and is solved by
=247, (15)
w

as may be seen by substituting Eq. (15) in Eq. (14), and
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noting that with respect to 3£, as a reference, the integral
is that of an even function multiplied by an odd function
over a symmetrical range and is consequently zero.

Now if the magnetic field has been adjusted for the best
focus of electrons on the screen, then the electrons move
from the origin to the screen in one of the times given by
Eq. (15); for the first focus =2, Multiplying Eq. (15) by
v,, the axial speed of the electrons to the screen gives

tl 21r
Vb =0+,
2 w

(16)
Since v, =the distance from the origin to the screen, and
$v.ti =the distance from the origin to the center of the
deflection plates, we may write Eq. (16) as

27

le=—u,,
w

a7

in which /, is the distance from the center of the plates to
the screen. Combining Eq. (17) with the relation

dmp,t=TVe (18)
yields the desired formula
e 8xtV

m Big
As a by-product of the early discussion above, it may
perhaps be worthwhile to explicitly mention the following
“theorem” about charged particle motion. In crossed
electric and magnetic fields (right angles), with B, constant
and E, any time function (but spatially uniform) which
acts for a finite interval, a charged particle initially at
rest at the origin of coordinates will end up going around a
circle whose center lies on the ¥ axis; as a corollary, if the
particle is to end up at rest, it will have to repose on the ¥
axis. This is still true if initially the electron has an X
component of velocity ; if it also has an initial ¥ component
of velocity, the X coordinate of the center of the final
circle will be the same as if no electric field had acted.

(for first focus).

1So)emitro. Prawirowardojo, and Dickinson, Am. J. Phys. 26, 316

(1958
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Leaning Tower of The Physical Reviews

HE note by Paul B. Johnson, “Leaning Tower of
Lire,"! reminded me of an incident that occurred

some years ago, when I first solved a problem similar to the
one he proposed. My line of argument, I feel, was simpler
to see physically than the mathematical manipulation used
by Johnson to sotve his Eqs. (3;). By choosing the center
of gravity of a leaning array of » coins as my origin, and
placing the (r+1 st) coin with its rim directly under this
origin so that its center has unit abscissa, it was evident

—

that the center of gravity of the (r-+1) coins would be dis-
placed by a distance 1/(r+1) from the origin. Since the
rim of each added coin is placed under the center of gravity
of the stack above it, the sum Z 1/(r41) also gives the
displacement between the top and bottom coins, and hence
may be made arbitrarily large. To prove this result
“physically,” a fellow graduate student and 1 stacked
bound volumes of The Physical Review one evening, until
an astonishingly large offset was obtained, and left them
to be discovered the next morning by a startled physics
librarian. Because of the books’ compressibility, a safety



