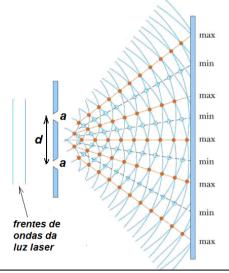


INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO

Laboratório de Eletromagnetismo (4300373)

Grupo:		
·		
	completos)	
,	,	
Prof(a).:	Diurno ()	Noturno ()
Data: / /		


Experiência 9

<u>DIFRAÇÃO E INTERFERÊNCIA</u>

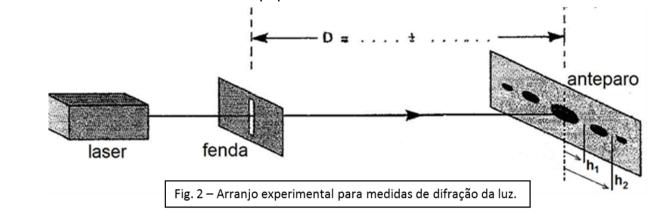
1. Introdução

Os fenômenos de difração e interferência são observados em ondas que abrangem todo o espectro eletromagnético. Quando uma onda eletromagnética passa por duas fendas, ou uma fenda simples, a onda é difratada, formando pontos de máxima e mínima intensidades, devido à interferência no espaço além das aberturas (figura1).

A intensidade da onda no anteparo varia dependendo do ângulo de detecção. Para <u>duas fendas</u> estreitas (largura **a**) separadas de uma distância **d>>a**, os <u>máximos</u> serão vistos nos ângulos em que <u>d sen $\theta = m \lambda$ </u> (onde θ é o ângulo de detecção, λ é o comprimento de onda da radiação incidente e $m = 0, \pm 1, \pm 2, \ldots$). No caso de <u>uma fenda simples</u>, os pontos de <u>mínimo</u> são dados por: <u>a sen $\theta = m \lambda$; sendo **a** a largura da fenda.</u>

Fig. 1 – frentes de onda da luz ao atravessar uma fenda dupla

2. Material Utilizado


- Laser
- Slide com fendas simples e duplas
- Anteparo com papel milimetrado
- Régua e trena
- Suporte para fio de cabelo

3. Difração com Fenda Simples

Anote o <i>comprimento de onda</i> da luz laser:	
Anote o número do <i>slide</i> utilizado:	

Atenção: nunca direcione o feixe do laser para os seus olhos!!

3.1 - Realize a montagem da Fig. 2. Antes de anotar os parâmetros solicitados na própria figura, escolha uma das <u>fendas simples</u> que ofereça uma boa leitura para **h**₁, **h**₂, ..., e **h**₇ (que, no caso, são as <u>distâncias entre cada **mínimo**</u> de interferência em relação ao máximo principal). Posicione o anteparo a uma distância razoavelmente grande de forma que onde você obtenha os padrões de máximos e mínimos bem visíveis no papel milimetrado fornecido.

3.2 – Meça, <u>a partir da região central</u>, <u>para ambos os lados</u> (use valores negativos para *m* para um dos lados e positivos para o outro), as distâncias até os mínimos, preenchendo a Tabela 1.

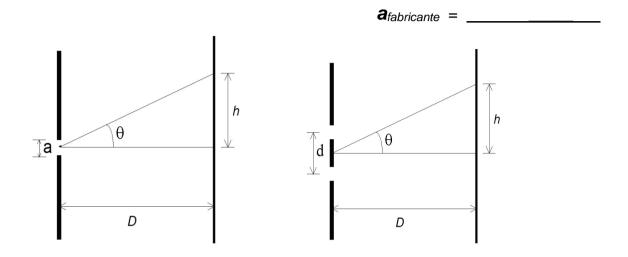

Ordem do Valor da distância Ordem do Valor da distância mínimo (*m*) mínimo (*m*) *h*_m (.....) h_m (.....) 1 -1 2 -2 3 -3 4 -4 5 -5 6 -6

Tabela 1. Distâncias do centro da figura de difração até cada mínimo

Construa o gráfico de h_m em função de m. Lembrando que para um ângulo θ pequeno, $sen\theta \sim tg$ θ (veja Fig. 3), e calcule a <u>largura</u> a da fenda a partir do coeficiente angular do gráfico, do comprimento e onda λ e do conhecimento de D, medido anteriormente. Determine também a incerteza associada.

a	=	±	Ŀ		

Comente abaixo a maneira que você escolheu para chegar aos valores de **h** medidos. Compare o valor obtido de **a** experimental com o valor do fabricante.

Fig. 3 detalhe da formação do mínimo de interferência na difração por fenda simples (esquerda) e fenda dupla (direita).

4. Difração e Interferência com Fenda Dupla

4.1 A montagem e as medidas são semelhantes às já realizadas. A novidade é o efeito da interferência da <u>fenda dupla</u> que se sobrepõe aos efeitos da difração de <u>fenda única</u>. Observe na figura 4 a sobreposição.

Fig. 4 Sobreposição dos efeitos de *interferência* e *difração* para a fenda dupla.

4.2 Veja na Fig. 5 o esquema da montagem experimental. Para encontrar as distâncias entre os máximos de interferência, vamos medir primeiramente as posições dos mínimos de difração (*h*) e dividir as distâncias pelo número de máximos de interferência nesse intervalo.

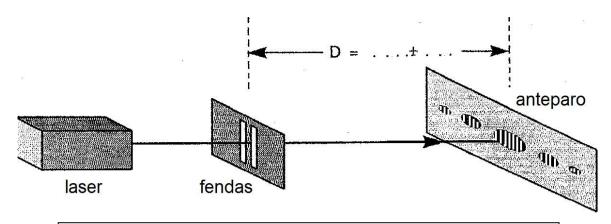


Fig. 5 – Arranjo experimental para medidas de difração da luz por fenda dupla.

4.3. Para completar a tabela 2, meça a distância *h* entre o máximo principal e o primeiro <u>mínimo de difração</u> e conte o número de <u>máximos de interferência</u> existentes neste intervalo (lembrando que existe um máximo de interferência exatamente onde ocorre um mínimo de difração). Divida o valor de *h* encontrado pelo número de máximos de interferência no intervalo (para encontrar a distância **s** entre o máximo principal e o primeiro máximo de interferência). Repita este procedimento também para o segundo mínimo de difração e preencha a tabela 2.

Tabela 2. Valores obtidos para a fenda dupla.

$$h_1 = \dots \pm \dots \pm \dots = r_1 = ; \quad h_2 = \dots \pm \dots \pm \dots = r_2 = s = \dots \pm \dots \pm \dots = r_3$$

4.4 Determine a distância **d** entre as duas fendas a partir das medidas obtidas, explicando, no espaço abaixo, como você fez isto.

d = ±

4.5 Determine a largura a das fendas, explicando como você fez isto:		
	a =	±
4.6 Compare e comente os valores obtidos acima com os do fabrican	te (<i>consult</i> e	tabela):
5. Medida da espessura de um fio de cabelo		
5.1 Você irá agora verificar, experimentalmente, que <u>obstáculos</u> tamb de interferência e difração. Extraia um fio de cabelo e posicione-o no observar a franja de difração criada no anteparo. Encontre a esperelações utilizadas para uma <u>fenda simples</u> . Descreva abaixo o procedisto.	caminho ótic ssura deste	co do <i>Laser</i> , para fio, através das
6. Difração em fenda circular		
6 1 Nos modidos enteriores e padrão de difração foi obtido usando a		

6.1 Nas medidas anteriores o padrão de difração foi obtido usando somente fendas retangulares, nas quais o fenômeno está relacionado a dimensão menor do retângulo, muitas ordens de grandeza menor que a outra dimensão. Lembre que a difração é mais fácil de ser vista quando essa largura é próxima do valor do comprimento da onda incidente na fenda. Além disso, é possível verificar que a figura de difração aparece na mesma direção definida pelo lado menor da fenda. Como a figura de difração se modificaria se o lado maior do retângulo fosse reduzido para as mesmas dimensões do lado menor?

ra de difraçã	ıaçao, posicion o foi obtida? A		•	

6.2 Supondo que a fórmula para os mínimos de difração para a fenda circular seja descrita pela equação abaixo:

$$d sen \theta = C m \lambda$$

Deduza o valor da constante de proporcionalidade C usando a medida do primeiro mínimo de difração e o valor nominal (fabricante) do diâmetro da fenda circular utilizada.

7. Relatório

O relatório deve conter os resultados experimentais obtidos, acompanhados dos fundamentos teóricos utilizados para as medidas e discussões relativos aos experimentos efetuados. Inclua no relatório as questões formuladas abaixo:

- 1) Deduza as expressões para o padrão normal de difração de fenda dupla e simples.
- 2) Compare com os resultados experimentais que você obteve. Você consegue explicar qualquer discrepância observada? (Que hipóteses foram feitas na dedução das fórmulas e até que ponto elas são verificadas neste experimento?)
- 3) Você pode explicar a queda relativa da intensidade para os máximos de ordem superior? Considere o padrão de difração de fenda única criado por cada fenda. Como estes padrões de fenda única afetam o padrão geral da interferência?