

Departamento de Engenharia Elétrica e de Computação SEL 384 – Lab. de Sistemas Digitais I Profa. Luiza Maria Romeiro Codá

PRÁTICA Nº1

"INTRODUÇAO AOS CIRCUITOS LOGICOS BÁSICOS"

1. Objetivos:

- Aprender a interpretar as especificações contidas nos manuais dos fabricantes de circuitos lógicos.
- Identificar a representação analógica referente a cada estado binário.

2. Lista de Material

CI: 74LS00 ou 74LS02, 74LS32,

Painel lógico, cabos de ligações, voltímetro

Observação: informações sobre os Cls estão na pasta Componentes.

3. Procedimento Experimental:

3.1 Reconhecimento do CI:

Escolher um dos CIs da família TTL 74LS00 ou 74LS02, e responder as questões a seguir em relação a ele:

Nome do CI:

Explicar o significado de cada campo do nome:

Constituição interna do CI (em relação ao número de portas lógicas, tipo e número de entradas de cada porta):

Função lógica do CI (expressão lógica da saída em função das entradas, uma das seguintes: S=A-B, S=A+B, S=

Símbolo:

$$A \longrightarrow S$$
 $A \longrightarrow S$ $A \longrightarrow S$ $A \longrightarrow S$

3.2 Levantamento das características elétricas do CI:

- **3.2.1** Preencher a Tabela I obtendo os valores teóricos das especificações do fabricante contidas na pasta "COMPONENTES" na sub pasta "TTL".
- **3.2.2** Para uma das portas do CI escolhido no item 3.1, ligar as chaves do painel de montagem às entradas dessa porta do CI e saída ao LED do painel. Medir com voltímetro as tensões dessa saída, como mostram as Figuras 1 e 2 (como exemplo de medidas para uma porta OU de 2 entradas).
- **3.2.3** Refaça, na folha de resposta, os desenhos do circuito montado de acordo com o CI utilizado. Nas Figuras onde são apresentadas duas configurações de circuitos para a mesma medida, no caso do exemplo Figura 2, observem qual a configuração que fornece a medida mais crítica (medida que se aproxima mais do limite indicado pelo fabricante) anotem esse valor na Tabela I, e procurem discutir sobre a razão pela qual esses valores serem diferentes.
- **3.2.4** Comparar esses valores com os valores medidos verificando se estão dentro da faixa especificada pelo fabricante para níveis altos e baixos, e discutir sobre esses resultados.

nível baixo
"O"
VoL

Figura 1 Medida de V_{oL} em uma porta OR.

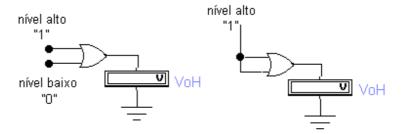


Figura 2 Dois circuitos para a medida de V_{oH} em uma porta OR.

3.3 Tabela Verdade do CI:

Medir os valores de tensões aplicados nas entradas da porta e utilizando os valores obtidos na Tabela I, monte a tabela verdade do CI com medidas em Volts e anote na Tabela II.

Obter nas especificações do fabricante a faixa de valores para V_{iL} e V_{iH} e anotar na Tabela III. Verificar a quais níveis lógicos os valores da Tabela II correspondem e anotar na Tabela IV. Discutir sobre esses resultados.

3.4 Análise do nível lógico correspondente à uma entrada flutuante de uma porta lógica

3.4.1. Montar o circuito da Figura 3 e medir os valores das tensões de saída em volts para os dois valores lógicos da entrada A e anotar na Tabela V na Folha de Respostas.

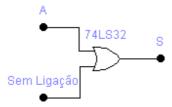


Figura 3 – Circuito OU de 2 entradas com uma entrada flutuante.

3.4.2. Verifique nas especificações do fabricante a quais níveis lógicos essas tensões (da Tabela V) correspondem e anote na Tabela VI. Compare os valores obtidos para a Tabela V com a Tabela verdade de uma porta OU de duas entradas, qual é a conclusão a respeito de qual nível lógico a entrada flutuante corresponde para a porta TTL? Porque? (anote o valor na tabela VII)

Observação: Na prática, para montagens definitivas não é conveniente deixar pinos de entrada sem conexão, pois os mesmos poderão operar como "antenas" recebendo ruídos alterando assim a operação do circuito.

4 Bibliografia:

- Tocci, J. R., "Sistemas Digitais- Princípios e Aplicações" Ed. Prentice Hall do Brasil
- Roteiro de Teoria e Prática do Módulo Digital Avançado 8810 DATAPOOL.

Departamento de Engenharia Elétrica e de Computação SEL 384 — Lab. Sistemas Digitais I Profa. Luiza Maria Romeiro Codá

FOLHA DE RESPOSTAS: PRÁTICA №1

"IN	TRODUÇAO AOS CIRC	CUITOS LOGICOS BASI	COS" NOTA
TURMA:	DATA:		
NOMES:		Nº	USP
3.1	Reconhecimento do Cl	:	
Nome do CI:			
Explicar cada o	campo do nome:		
Constituição in	terna do CI :		
Função lógica	do CI(expressão lógica d	da saída em função das e	entradas):
Símbolo:			

3.2 Levantamento das características elétricas do CI:

3.2.1 e 3.2.2

Tabela I

Características	Teórica	Teóricas	
	Mínimo Típico	Máximo	
V _{cc} (V)			
V _{oH} (V)			
V _{oL} (V)			

3.	.2.3	Circ	uitos	monta	idos:
•		U 11 U	uitos	1110116	1403.

Circuitos de Medida de VoH

Circuitos de Medida de Vol

- 3.2.4 Discussão dos resultados Comparar valores medidos com o da especificação do fabricante
- 3.3 Tabela Verdade do CI em Volts:

Tabela II - Tensão medida em volts

A(volts)	B(volts)	S(volts)

Tabela III - Medidas obtidas das especificações do fabricante

	Mínimo(V)	Máximo(V)
V_{iL}		
V_{iH}		

Tabela IV – Estado lógico correspondente à tabela II

Α	В	S

Discussão dos resultados:

3.4.1 e 3.4.2 Saída em Volts do circuito da Figura 3 :

Tabela V

Entradas	Saidas(V)
Α	TTL
0	
1	

3.4.3. Quais níveis lógicos correspondem as tensões da Tabela V? Complete a Tabela VI a seguir:

Tabela VI

Entradas	Níveis Lógicos
	das Saídas
Α	TTL
0	
1	

Qual nível Lógico corresponde a entrada flutuante pela análise do resultado da Tabela VI? Complete a Tabela VII:

Tabela VII

Nível lógico da entrada
flutuante B
TTL