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1. INTRODUCTION 

1.1 Flavivirus classification 

The genus Flavivirus is named after the yellow fever virus (from the 
Latin, flavus = yellow), which is also the prototype of the family Flaviviridae 
(Strode, 1951; Theiler and Downs, 1973; Markoff and Falgout, 1995). The 
genus Flavivirus contains approximately 70 antigenically related viruses which 
infect both vertebrate and invertebrate species (Karabatsus, 1985; Calisher et 
al., 1989). Almost half of the identified flaviviruses do cause disease in 
humans. Most of the representatives of this genus make use of arthropod hosts, 
hence their generic name: Arboviruses (i.e., arthropod borne viruses). 
Moreover, albeit having a similar overall genomic organization and making use 
of similar replication strategies and virion morphology, they are divergent from 
other members of the Flaviviridae family, such as hepatitis C, hepatitis G and 
pestiviruses. The level of sequence similarity among the polymerase genes of 
the members of the Flaviviridae does not depart from what would be expected 
by chance, even at the protein level (Zanotto et al., 1996b). 

Detailed information on the place of isolation of flaviviruses and on 
other important biological data (e.g., antigenic relationships among viruses and 
with their vertebrate and invertebrate hosts) was systematically collected 
(Theiler and Downs, 1973; Karabatsos et al., 1985). From the wealth of data 
amassed so far, it can be said that members of the genus Flavivirus are found 
all around the World. However, some members of the genus have distinctive 
biogeographic characteristics and distributions. Other than by vicariance, the 
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distinct geographic distribution of the flaviviruses has to be determined, to a 
great extent, by the vertebrate hosts and invertebrate vectors that they infect. 
Hosts and vectors are ultimately distributed according to a multitude of 
constraints at all ecological levels, from niche to habitat. There are probably far 
more flaviviruses than are currently recognized, nevertheless, the dispersal 
strategies employed by the major groups of viruses within the genus Flavivirus 
are remarkably characteristic for each group and reflect very closely the 
ecological associations of the viruses. Despite the clear evidence that many of 
the flaviviruses are transmitted between vertebrate hosts by arthropods, it is 
known that they can also be transmitted orally (Gresikova et al., 1975) and 
transplacentally (Mathur et aI., 1982). The methods by which some of the 
flaviviruses are transmitted, such as the viruses with unknown vectors, have 
never been adequately defined, but in addition to those proposed above, other 
possible routes include urine, feces, aerosols and blood. This wide range of 
possibilities may help to explain the success with which flaviviruses were able 
to establish in so many different host species and presumably refine their 
specific transmission mechanisms to suit the particular environment in which 
they had become established. 

The recognized members of the genus have been classified into twelve 
distinct groups by the International Committee for the Taxonomy of Viruses 
(lCTV) (Heinz et al., 2000). This classification was based on their overall 
biological properties, including the association with vertebrate and invertebrate 
hosts and disease. In table 1, the flaviviruses are shown according to their 
vector associations (Gould et aI., 2001). Alternatively, the pathogenic 
flaviviruses can be subdivided according to the clinical syndromes that they 
cause (Markoff and Falgout, 1995). This last classification does not necessarily 
consider the evolutionary relationships among viruses, but may be useful from 
a health care perspective. Notwithstanding, any classificatory proposition based 
on ancestral relationships (i.e., phylogeny-based) is preferable since it may 
stand as a sound basis for subsequent comparative studies, which may unveil 
important biological, ecological and epidemiological correlations. Viruses do 
not have a sufficient number of distinctive morphologic features that would 
allow detailed or comprehensive taxonomic propositions. On the other hand, 
they may be grouped by molecular phylogenies based on their genes and 
genomic organization. However, most RNA viruses do have high rates of error 
and undergo drastic fluctuations in their population size, which may cause 
significant loss of phylogenetic signal in time (Zanotto et aI., 1996b). 
Therefore, viral molecular phylogenies may work only within certain levels of 
sequence similarity, such as within genus and family. While any current 
taxonomic proposition for the Flavivirus will be possibly revised as more 
sequence data become available, there has been some agreement between 
molecular phylogenies (based on viral genes and complete genomes) and 
serological classificatory schemes (Calisher et al., 1989; Porterfield, 1980). 
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Tab. 1. Subdivision of the flaviviruses based primarily on sequence data 

Virus Vector Grou!! ViruslSub!l:!!e Abreviation 

l. Tick-borne viruses Mammalian tick- Louping ill virus (U) 
borne virus group Irish subtype (lSE) 

British subtype (BSE) 
Spanish subtype (SSE) 
Turkish subtype (TSE) 
Tick-borne encephalitis virus (TBE) 
European subtype (WTBE) 
S iberian subtype (STBE) 
Far Eastern subtype (FETBE) 
Omsk haemorrhagic fever (OHF) 
Langat virus (LGT) 
Kyasanur Forest disease virus (KFD) 
Alkhurrna virus (ALKV) 
Karshi virus (KSI) 
Royal Farm virus (RF) 
Powassan virus (POW) 
Gadgets Gully virus (GGY) 

Seabird tick-borne Tyuleniy virus (TYU) 
virus group Meaban virus (MEA) 

Saumaraez Reef virus (SRE) 
Kadam virust (KAD) 

2a. Mosquito-borne viruses Yellow fever virus Banzi virus (BAN) 
(Aedes spp. associated) group Uganda S virus (UGS) 

Jugra virus (JUG) 
Potiskum virus (POT) 
Saboya virus· (SAB) 
Bouboui virus (BOU) 
Edge Hill virus (EH) 
Yellow fever virus (YF) 
Wesselsbron virus (WSL) 
Sepik virus (SEP) 

Kedougou virus Kedougou virust (KED) 
group 

Dengue virus group Dengue virus I (DEN-I) 
Dengue virus 2 (DEN-2) 
Dengue virus 3 (DEN-3) 
Dengue virus 4 (DEN-4) 

Spondweni virus Spondweni virus (SPO) 
group Zika virus (ZIK) 

• no direct evidence oftransmission in mosquitoes 
t tentative assignment 
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Tab.I. (cont.) Subdivision of the flaviviruses based primarily on sequence data 

Virus Vector Grou~ Virus/Sub9:~e Abreviation 

2b. Mosquito-borne viruses Aroa virus group Aroa virus (AROA) 
(Culex spp. associated) Iguape virus (IGU) 

Naranjal virus (NJL) 
Bussuquara virus (BUS) 

Ntaya virus group Bagaza virus (BAG) 
Israel turkey (IT) 
meningoencephalitis virus 
Ntaya virus (NTA) 
Tembusu virus (TMU) 
IIheus virus (ILH) 
Rocio virus (ROC) 
St Louis encephalitis virus (SLE) 

Japanese Alfuy virus (ALF) 
encephalitis virus Murray Valley encephalitis (MVE) 
group virus 

Japanese encephalitis virus (JE) 
Usutu virus (USU) 
Koutango virus (KOU) 
Kunjin virus (KUN) 
West Nile virus (WN) 
Yaounde virus (YAO) 
Cacipacore virus (CPC) 

Kokobera virus Kokobera virus (KOK) 
group Stratford virus (STR) 

3. No-known vector viruses Rio Bravo group Batu Cave virus (BC) 
Phnom Penh bat virus (PPB) 
Carey Island virus (Cl) 
BukaIasa bat virus (BB) 
Dakar bat virus (DB) 
Rio Bravo virus (RB) 
Montana myotis (MML) 
leucoencephalitis virus 

Modoc virus group Cow bone Ridge virus (CR) 
Modoc virus (MOD) 
Sal Vieja virus (SV) 
Jutiapa virus (JUT) 
San Perlita virus (SP) 

Apoi virus groupt Apoi virus (APOI) 

Y okose virus group Entebbe bat virus (EB) 
Y okose virus (YOK) 
Sokoluk virus (SOK) 

Tentative Species in the genus Tamana bat virus (TAB) 
Cell fusing agent (CFA) 

* no direct evidence of transmission in mosquitoes 
t tentative assignment 
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For quite some time it has been understood that the evolution of 
arboviruses could be under a constraint imposed by their need to alternate 
replication in both vertebrate and invertebrate hosts. The biology of the genus 
Flavivirus constitutes a nice testing ground for this notion since the genus has 
members that make obligatory use of arthropod vectors and others, which do 
not appear to be vectored. Herein, by using molecular phylogenies, we will 
address the significance of several life history parameters, such as the biology 
of reservoirs, vectors, mode and tempo of evolution and dispersal of the 
flavivirus. 

1.2 Structure and replication 

Members of the Flaviviridae have enveloped Vlflons, which are 
spherical with approximately 60 nm in diameter (Rice, 1996). They contain a 
single-stranded positive sense RNA genome that is about 11 kb in length and 
enclosed by a single capsid (C) protein (Rice, 1996; Lindebach and Rice, 
2001). After viral entry Ph-mediated fusion takes place in the cytoplasm and 
replication ensues. The positive-sense RNA serves as the messenger for 
negative strands which are then used as templates for additional genome-length 
positive-sense RNA molecules by a semi-conservative mechanism of RNA 
synthesis. Direct translation of the uncoated genomic RNA yields a single 
polyprotein, which is immediately processed by cellular and viral proteases to 
produce the structural (S) and non-structural (NS) viral proteins (Rice, 1996; 
Lindebach and Rice, 2001). In the members of the genus flavivirus the 
envelope of mature virions contains two virus-encoded proteins, the membrane 
(M) protein which is post-translationally cleaved from the pre-membrane 
protein (immature virions) and the main glycoprotein E, which binds the 
virions to cell receptors binding. The E glycoprotein is also the main target for 
antibody neutralization by the vertebrate host (Monath et aI., 1996). During the 
course of infection, seven non-structural proteins; NS 1, NS2A, NS2B, NS3, 
NS4A, NS4B and NS5 are present in the cellular environment. Although the 
function and precise role of several of the NS gene products have not yet been 
defined, it is known that the NS 1 protein may play a role in virion assembly 
and/or release (Lee et al., 1989). The NS 1 may also play some role in virus 
replication (Grits un et al., 1988; 1989; 1990), signal transduction and 
membrane anchoring (Jacobs et aI., 2000). The NS3 protein is the virus­
encoded serine protease. The protease becomes active when its N-terminal one­
third becomes complexed with the NS2B. The NS3 has the key function of 
processing of the viral polyprotein. The C-terminal portion has an RNA 
helicase domain and RNA triphosphatase activity that is probably involved in 
the formation of the 5' -terminal cap structure of the viral RNA (Rice, 1996). 
The RNA-dependent-RNA polymerase function is provided by the NS5 protein 
(Tan et al., 1996). After replication and accumulation of structural proteins, 
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virus assembly probably takes place in the rough endoplasmic reticulum. 
Immature virions are then transported through the membrane systems of the 
host cell to the surface. The last maturation step involves the cleavage of the 
PrM protein by a furin-like protease. After that, infectious viral particles are 
released by exocytosis (Rice, 1996; Lindebach and Rice, 2001). Many 
flaviviruses can replicate in vertebrate and invertebrate cells and in whole 
animals, which makes them amenable for growth under laboratory conditions. 

2. MOLECULAR PHYLOGENIES OF THE FLA VIVIRUS 

2.1 Phylogenies of the Flavivirus: Mosquito- and tick-borne virus trees 

Initial phylogenetic comparisons of tick- and mosquito-borne 
flaviviruses did show some level of congruence between flavivirus 
relationships based on serological and molecular data (Mandl et al., 1989). 
Subsequently, trees based on C, M and E genes showed that the tick-and 
mosquito-borne viruses were phylogenetically distinct lineages (Shiu et ai., 
1991; Venugopal et ai., 1994). It was also noted that the degree of relative 
similarity among adjacent lineages of TBE complex viruses is higher than that 
with the mosquito-borne viruses. This suggested that the tick- and mosquito­
borne flaviviruses had possibly been subjected to different evolutionary 
processes during their radiation. Moreover, trees based on the E-NSI junction 
of a large number of DEN-2 viruses led to the conclusion that sylvatic West 
African dengue viruses could be distinguished from epidemic strains and also 
that some dengue epidemics in the New World had arisen as the result of the 
introduction of DEN-2 viruses f!"om Asia (Rico Hesse, 1990). Subsequently, 
phylogenetic trees constructed from each individual gene of 11 different 
flaviviruses revealed similar topologies (Blok et ai., 1992). These data were 
interpreted as implying that the flaviviruses had diverged along their radiation 
with minimal or no genetic recombination between the main lineages. The 
authors also estimated both rates of transitions and transversions of a portion of 
the genomes of 40 DEN-2 virus isolates (Blok et ai., 1992). The results showed 
that sylvatic DEN-2 strains from West Africa had less sequence diversity 
compared with the epidemic strains of DEN virus (Blok et aI., 1992). Although 
the authors suggested that this could imply greater constraints for sylvatic 
viruses, the result could also be interpreted under the light of population 
genetics. Namely, that the sylvatic viruses had less sequence diversity because 
they do not undergo the same amount of population growth (and hence increase 
in sequence diversity) as the cosmopolitan strains that infect millions of 
individuals. These observations may also be relevant for yellow fever virus, 
which has distinct sylvatic and urban cycles. Early studies on tick-borne virus 
E gene sequences helped to elucidate the movement of Louping ill (LI) viruses 
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from Scotland to Norway, since the viruses appeared to de dispersed along a 
genetic continuum, (i.e., a progressive genetic variation across eastern Europe) 
(Gao et al., 1993b). 
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Fig 1. Maximum likelihood phylogenetic tree illustrating the evolutionary relationships of viruses in the 
genus Flavivirus (from Zanotto et al., 1996a). The tree was constructed using the 1st and 2nd codon positions 
for 123 complete E genes. All horizontal branch lengths are drawn to scale (i.e. proportional to the number of 
accumulated nucleotide substitutions). The root for the genus separating tick- and mosquito-borne groups 
was determined based on the use ofCFA virus as an outgroup. 

Phylogenetic analyses of dengue (Rico Hesse, 1990; 1997; Wang et aI., 
2000), West Nile (Berthet et al., 1997) and yellow fever virus (Lepiniec et al., 
1994), showed the extent of genetic variation within the envelope gene of 
individual virus species and enabled conclusions regarding the origin, 
persistence and geographic dispersal of these viruses. For example, 
phylogenetic analysis of DEN-2 virus (Rico Hesse, 1990) showed that lineages 
clustered according to their geographic origin and that strains of DEN-2 virus 
responsible for dengue hemorrhagic fever in the Americas originated in Asia. 
A detailed phylogenetic analysis of the genus Flavivirus showed that of the 
mosquito-borne viruses analysed at that time, YF virus diverged first followed 
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sequentially by DEN-4, DEN-2, DEN-3 and DEN-l virus in the Aedes spp. 
group (Fig. 1). Amongst the Culex spp. viruses, SLE had the most divergent 
lineage, followed more recently by WNIKUN and MVE/JE virus (Marin et al., 
1995b ). 

Comparisons of the phylogenetic patterns and on the genetic variation 
of DEN-2 viruses from Southeast Asia and South America suggested that this 
serotype dispersed throughout the tropics recently, possibly reflecting 
commercial activities and the movement of large numbers of military personnel 
across the major oceans, since the Second World War (Leitmeyer et al., 1999). 
Phylogentic trees also grouped YF lineages into East African, Central/West 
African, West African and South American subtypes (Chang et al., 1995; 
Liepiniec et al., 1994; Wang et al., 1997). The degree of sequence similarity 
between South American and African YF viruses also confirmed that YF virus 
was introduced from Africa to the New World. Moreover, within these YF 
groups, the amount of genetic variation is lesser than that of the dengue viruses. 
It is interesting that these observations, based on molecular data have good 
historical and biological explanations. Since YF virus in recent times has not 
caused massive urban epidemics, but has been maintained mainly in sylvatic 
cycles in nature, lesser genetic diversity should be expected when compared to 
the pandemic DEN viruses. 

2.2 Three main groups in the Flavivirus 

When molecular data on a comprehensive and representative set of 
members of the genus was obtained, a better picture of the impact of vectors on 
the evolution of the Flavivirus was revealed. Based on partial NS5 sequences, a 
dendrogram of the Flavivirus was done based on a distance matrix from 
sequences of members of all three main groups of the genus (i.e., the tick­
borne, the mosquito-borne and, the no-known vector viruses) (Kuno et al. 
1998). That important dataset was revisited and a maximum likelihood tree was 
reconstructed with an increased number of viruses, excluding the third codon 
position and the hypervariable loop (Fig. 2) (Jenkins et al., 2001). This tree 
places the KAD virus in the seabird-tick associated virus group, with POW 
virus as a member of the earliest lineage in the TBE complex viruses group. 
Gadgets Gully (GGY), Royal Farm (RF) and Karshi (KSI) virus were also 
shown to be lineages within the TBE complex (Kuno et al. 1998). The same 
conclusions on the overall phylogenetic relationships among members of the 
genus were derived from phylogenetic trees constructed using sequences 
representing either the entire flavivirus genome or individual genes (Billoir et 
al., 2000; Kuno et al. 1998). Therefore, the Flavivirus are divided into three 
groups: (i) the tick-borne group, (ii) the mosquito-borne group and, (iii) the no­
known vector group, shown in table 1, has a phylogenetic basis (Fig. 2) and 
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will be used to refer to the viruses in the genus throughout the remaining of this 
chapter. 
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Fig. 2. Maximum likelihood tree of most flaviviruses (from Jenkins et ai., 2001 and Gould et ai., 2001). 
This tree is based on partial NS5 sequence data from Kuno et al. (1998). 
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3. TICK-BORNE VIRUSES 

The tick-borne encephalitis (TBE) viruses cause endemic zoonotic 
infections of the central nervous system, which have been reported since the 
19th century (Gaidamovich, 1995). They can be divided into two main groups: 
(i) the tick-borne encephalitis (TBE) complex viruses and (ii) the TBE group 
associated with seabird-birds and their ticks. 

The tick-borne encephalitis (TBE) complex viruses are human 
pathogens and are usually found in infected ticks surviving in vegetation that 
provides a micro-climate with relative humidity close to saturation throughout 
the year. The forest undergrowth in many parts of Asia, Europe and North 
America, as well as the upland sheep-grazing pastures of the UK and parts of 
southern Europe provide such conditions. Most of the TBE complex viruses 
infect rodents, other forest animals, humans and are more closely associated 
with Ixodes spp. With the exception of Powassan (POW) virus and a closely 
related strain designated Three Arch virus, all recognised TBE complex viruses 
are found only in the Old World. As a general rule, the TBE complex viruses 
do not share overlapping habitats with other tlaviviruses, i. e., they exhibit 
niche-like characteristics, in the forests of Malaysia, India, Asia, and Europe. 
This heterogeneity and dispesal pattern of the TBE complex viruses can be 
explained by a lack of significant overlap of the two main tick species in 
Eurasia: the Ixodes ricinus to the East and the Ixodes persculcatus to the West 
(Gaidamovich, 1995). There are reports that TBE complex viruses were 
isolated from the brains of ducks that have migratory tlight paths between 
Russia and Slovakia (Ernek, 1960). However the sequences of these bird­
associated TBE complex viruses have not been determined so far. However, it 
will be interesting to see whether the bird-associated viruses are closely related 
to the Slovakian or Russian strains of the TBE. A sub-group of the TBE 
complex viruses causes encephalomyelitis in sheep. These viruses are found on 
the sheep-rearing hillsides in southern Europe (Marin et al., 1995a), Turkey 
(Gao et al., 1993a), Greece (Marin et aI., 1995a) and on the moorlands of the 
British Isles (McGuire et al., 1998; Reid, 1984) and Norway (Gao et al., 
1993b). The British virus, louping ill, is the most comprehensively described of 
these sheep-associated viruses (McGuire et al., 1998; Gao et al., 1998). 

3.1 Phylogenetic patterns: The TBE cline 

Viruses in the tick-borne encephalitis (TBE) complex have always 
been hard to distinguish by any conventional serological methods, since they 
are highly similar. Using serology almost no relevant ideas about their 
evolutionary relationships was obtained before sequence data became 
available. Using the cell fusing agent (CF A) virus (Cammisa Parks et aI., 1992) 
as outgroup, phylogenetic trees on the complete envelope (E) gene sequences 
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of 22 flaviviruses reinforced the notion of an early split between the mosquito­
and tick-borne viruses (Marin et al., 1995b). For the maximum likelihood tree 
in figure 3, obtained with PAUP (Swofford, 2001), the transition probability 
matrix was calculated iteratively from the data during a heuristic search with 
the nearest neighbour perturbation (NNI). This tree for 70 E genes of the tick­
borne viruses has basically the same topology as that of Marin et al. (1995b) 
and has kept some of its main features. However, it includes an additional 48 
sequences (Ecker et al., 1999, Hayasaka et aI., 1999, 2001) plus the partial E 
gene sequence of the Meaban virus (Gaunt et aI., 2001). Its adjacency patterns 
show that the tick-borne viruses diverged into two sister lineages: the tick­
borne encephalitis (TBE) complex viruses and the TYU, Meaban and SRE 
group. Interestingly, both the adjacent TYU and the Meaban lineages are made 
of virus found in seabirds and are vectored by the ornithodorus spp. ticks. By 
excluding the 3rd codon position of the gene for the analysis (which was 
saturated and without reliable phylogenetic signal), the overall branch lengths 
of the mosquito- and tick-borne groups indicates other interesting aspects of the 
tick-borne viruses. Firstly, there appears to be a gradual radiation of the TBE 
complex viruses in time since its split from a lineage that leads to the POW 
virus, currently found in Maritime Russia and in the North America. The wider 
geographic distribution of the POW virus compared with other TBE complex 
viruses may be explained by its zoonotic association with different species of 
ticks, mosquitoes, small mammals and birds (Luby, 1995). The Louping ill (LI) 
virus, appears to be a recent lineage in the TBE virus complex, found in the 
Eastern most part of Europe. 

Surprisingly, the gradually increasing genetic distance between the 
TBE viruses correlates directly with increasing geographic distance of the 
viruses from each other in the northern hemisphere, measured from a point in 
Scotland where LI viruses are most frequently found (Zanotto et al., 1995). The 
TBE complex viruses have an asymmetrical phylogenetic pattern (a grade) that 
is indicative of a clinal distribution (Hennig, 1966). It was postulated that the 
TBE-complex viruses form a cline across the northern hemisphere (Fig. 4) by 
Zanotto et aI., (1995). However population level studies are necessary to unveil 
the fine structure of this cline. Hence, calculations based on estimated 
substitution rates and dates of virus isolation (MacGuire et aI., 1998) suggested 
that LI virus in the British mainland was probably introduced from Ireland 
about 400 to 500 years ago and persisted on the northern hillsides of Britain 
during the past 200 to 300 years. This is further supported by veterinary reports 
of sheep encephalomyelitis on the Scottish hillsides and on the Devonshire 
moors following their introduction during the 19th and 20 th centuries 
respectively. The phylogenetic tree in figure 4 was based on sequence data of 
the E gene, (MacGuire et al., 1998). It includes all recognized sheep 
encephalomyelitis viruses, i.e., those from Turkey, Greece, Spain, Ireland, 
Wales, England, Scotland and Norway and illustrates their divergence from the 
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other TBE complex viruses that are associated with rodents in forests. Specific 
viral populations in the cline show considerable sequence homogeneity. For 
example, the LI virus in the United Kingdom vary in only 3% of their amino 
acids in the E gene, even when comparing strains that were isolated more than 
50 years apart (MacGuire et aI., 1998). The Spanish equivalent of LI virus, 
SSE virus, is a distinct lineage 5% divergent from the LI, European TBE and 
TSE virus and it is found only in the Basque region of Spain. Given the high 
conservation among the LI viruses it was found that a unique tripeptide 
sequence in the E gene works as a signature distinguishing each of the 
antigenic ally very closely related LI-like viruses found in Turkey, (Gao et al., 
1993a), Greece and Spain (Marin et aI., 1995a) the United Kingdom and 
Norway (Gao et al., 1993b), and Ireland (MacGuire et al., 1998). Subsequent 
population level studies provided evidence for a TBE virus cline. They were 
also based on additional E genes of isolates from Western and Central Europe 
(Ecker et al., 1999) and Far East Asia (Hayasaka et al., 1999; 2001) (Figs. 3 
and 5). 

LI/917 

LlJNOR 
WG 
LII369 
LII161 

WA 

NEG 

LIIK 

Scollnd 
.nd 

England 

,---_______ POWOntlirio 

L-___ LGTMalaysi. 

OHFOmlk 

FETBE 

KFD India 

Fig. 4. TBE cline from Zanotto et al., 1995. Tree of the TBE is shown over a map of Eurasia with the tips 
connected to the place of sampling of each lineage. The actual root of the tree is near the branch leading to 
the POW virus. 

In figure 3, it can be seen that the isolates of TBE tend to group 
according with the general geographic area where they were isolated from. If 
the TBE did not form a cline one would expect different adjacency patterns, 
with a lot of mixing of lineages among viral populations from Eastern 
European LI virus with those of the TBE of Central Europe (Ecker et aI., 1999) 
and those from Siberia and from the Far-East (Hayasaka et al., 1999; 2001). 
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Furthermore, the postulated continuous evolution of the TBE complex viruses, 
north-eastward and then westward across Asia and Europe (Zanotto et aI., 
1995), was also supported by the sequence data for Karshi (KSI), Royal Farm 
(RF) and Gadgets Gully (GGY) virus (Kuno et al., 1998). 
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Fig 5. Maximum likelihood phylogenetic tree for the E gene from 24 tick-borne flaviviruses (McGuire et aI., 
1998). Branch lengths are drawn to scale and all nodes supported by more than 75% bootstrap support are 
indicated. The tree is rooted with the sequence from FETBE virus, Sofjin strain. The three main populations 
of virus in the British Isles (Ireland, Wales and Great Britain) are indicated, along with those viruses 
secondarily introduced into Ireland and Norway, and the viruses found in the south-west of England. 

3.2 Wide distribution of seabird-tick associated viruses 

A second and smaller group of tick-borne viruses, the TYU and the 
TBE complex viruses, are dependent for their life cycles on different tick 
vectors, i.e., ornithodorus or ixodes spp. that infest the nesting grounds of 
seabirds and appropriate vertebrate hosts, i. e., seabirds and rodents 
respectively. These seabird-associated viruses (Tab. 1; Fig. 2) found only in the 
Old World and the lineages leading to these viruses diverged relatively early in 
the radiation of the genus. The Tyuleniy (TYU), Saumarez Reef (SRE) and 
Meaban (MEA) virus are thought not to be human pathogens. They have 
dispersed into very different regions of the world, i. e., Far Eastern Russia 
(TYU), the Great Barrier Reef (SRE) and North Western France (MEA). 
Serological evidence shows that seabirds may become infected by these viruses 
when they are bitten by infected ticks, but no clinical signs of infection have 
been noted. This may indicate a long-term association between the birds and 
the viruses. Given its phylogenetic relationship to the seabird viruses (Fig. 2), 
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the Kadam (KAD) virus, which was isolated from both tick species, 
Rhipicephalus pravus, feeding on cows in Uganda and Hyalomma dromedarri, 
feeding on camels in Saudi Arabia, was also included in table 1 in this group of 
viruses. The seabird-tick associated viruses (TYU, SRE and MEA) consitute a 
monophyletic sister group to the TBE complex viruses. The sequence diversity 
between each of the seabird-tick associated viruses appear to be greater 
(approximately 40% amino acid differences) than that between most of the 
TBE complex viruses (approximately 30% amino acid differences). These 
viruses can be isolated from ticks that are found in the nests of the migratory 
seabirds. It is fair to assume that their wide biogeographic distribution, 
including almost all continents, may be due to their association with migratory 
seabirds. It is quite possible that some TBE lineages were dispersed by 
mechanisms similar to those for the TYU serogroup viruses. For example, 
Macquarie Island in the Southern Ocean, the source of Gadgets Gully (GGY) 
virus, is situated several hundred miles off Southern Australia, and is visited by 
very few humans. This virus, also associated with migratory seabirds, can be 
found under the rocks and debris that are used by the penguins and other 
seabirds. Because of their antigenic relatedness with the TBE complex viruses 
in the northern hemisphere, it was suggested that GG Y virus could have been 
introduced to the Island by Storm Petrels (Oceanites oceanicus) or the Arctic 
Tern (Sterna Paradisaea) which have reciprocal breeding patterns between the 
Arctic and Antarctic (S1. George et al., 1985). It was suggested that the GG Y 
virus could represent a natural link between subarctic and subantarctic TBE 
complex viruses and possibly also a more genetically distant link between the 
seabird associated TYU group and the rodent associated TBE complex viruses 
(S1. George et al., 1985). Possibly during their clinal dispersal, the TBE 
complex viruses reached the forests and woodlands of Asia (POW, KSI, RF, 
KFD, LGT, etc) where the opportunity arose for continuous or progressive 
dispersal along the defined corridors provided by the forests. 

4. MOSQUITO-BORNE VIRUSES 

In the natural environment the mosquito-borne viruses are known to be 
primarily, but not exclusively, associated with mosquitoes from either Culex 
spp. or Aedes spp. (Tab. 1). This division of the viruses on the basis of their 
associated mosquito species correlates precisely with phylogenetic inferences 
(Fig. 2). 

Viruses associated with Culex spp. are distributed in the Old World, 
such as the Japanese encephalitis (JE) virus and West Nile virus; or in the New 
World, such as the Rocio virus, Ilheus virus, Cacipacore virus and St Louis 
encephalitis virus. Most of these viruses are possibly ancestrally related, since 
they form a monophyletic group in phylogenies based on either the E gene 
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(Zanotto et at., 1996) or in the NS5 gene (Kuno et at., 1998). However, at this 
time it is not clear where they did come from. The Culex spp. viruses, 
preferentially bite birds and rodents in forest environments and are also 
attracted to pigs, horses, ducks, etc. that form an essential part of the human 
food chain in rural Asia. There is debate on if the JE group viruses have moved 
from the Old to the New World or vice-versa. However, frequently the origin 
of any specific virus is quite hard to pinpoint. During the last four centuries 
humans started to move around all continents, with increasing speed and 
numbers. As a consequence, drastic changes in the natural ecological balance 
and distributions of many host and vector species took place since then. Today, 
modem transportation systems diminished global distances to a few hours 
flight, certainly having a serious impact on the spread of infectious agents and 
the emergence of viral diseases (Morse, 1993). An example on how a flavivirus 
may become an unsuspected emergent health threat happened in 1999. During 
that year the West Nile (WN) virus, previously only detected in Southern 
Europe and Africa, made its way to North America causing a highly publicized 
outbreak in the city of New York (Briese et al., 2000; Lanciotti et at., 1999). 
Several of the Culex spp. associated flaviviruses have also been isolated in 
nature from a wide range of species of bats and rodents. It is interesting that 
some Culex spp. associated flaviviruses such as Murray Valley encephalitis, 
Alfuy, Kokobera and Stratford are found only in Australia and nearby regions 
of Southeast Asia. 

As shown in figure 2, flaviviruses associated with Aedes spp. are found 
in the Old World. These viruses tend to bite primates in forest or savannah 
environments and/or humans and herded animals in urban or rural 
environments. Some of these viruses (yellow fever and dengue virus) are also 
associated with the development of haemorrhagic disease in humans. In 
contrast with the Aedes spp. viruses, many of the Culex spp. viruses (SLE, JE, 
MVE and WN) are more characteristically associated with encephalitic disease 
in humans. Whether or not such divisions in disease characteristics have 
occurred through selection of specific genetic determinants remains to be 
confirmed. Possibly due to its association with humans in recent historical 
times, both the yellow fever (YF) and dengue (DEN) virus have also been 
found in the New World. The role of slave trading on their emergence and 
establishment in the Americas has always been considered (Strode, 1951; Innis, 
1995). There is good historical evidence that the YF virus caused outbreaks in 
the Caribbean 350 years ago due the introduction of its natural vector, Aedes 
aegypti, which was transported from Africa (Markoff and Falgout, 1995). The 
YF virus was also the first human disease known to be caused by filterable 
agent and the first human-infecting arbovirus isolated (Theiler and Downs, 
1973). Yellow fever shows a relatively restricted geographic distribution, and 
can be found in central tropical regions of both the Old World (Africa) and 
New World (Americas). Yet, the YF virus did not became established in 
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tropical Asia, even when the virus could make use of susceptible mosquitoes 
and non-human primates hosts. Several causes to this interesting bias on the 
pattern of YF virus dispersal have been postulated (Gould et aI., 2001). 
Possibly in Asia, the YF virus may become subjected to competitive exclusion, 
either by related viruses or by some form of herd immunity. Moreover, the low 
vector competence of Asian strains of Aedes aegypti, and the relatively low 
frequency and load of virus introduced into Asia, compared with the Americas 
(there was no significant slave trading between Africa and Asia) may also have 
reduced its chances to move west. Differences in biological characteristics of 
viral lineages and on the immunity of vertebrate reservoirs may also be brought 
to mind. The viral strains dispersed eastward could be significantly different 
from the strains from central and West Africa. It would be interesting to see if 
Asians and/or Asian primates may not allow YF viruses to establish competent 
sylvatic cycles. The role of the sylvatic cycle in the establishment of the YF in 
the Americas compared to its failure in the West has yet to be fully assessed. 

On the other hand, DEN viruses appear to have bypassed the need of a 
sylvatic cycle. They are now mainly a human disease and have a worldwide 
distribution along the tropics wherever Aedes (Stegnomyia) becomes 
established. This is certainly helped by the intense anthropophilic nature of the 
Aedes aegypti, which is its main vector (Innis, 1995). Outbreaks of dengue 
fever were described 200 years ago and the DEN virus was isolated in 1907 
and shown to transmit by arthropods (Markoff and Falgout, 1995). Today, its 
four known serotypes, which also happen to map onto four distinct groups (Fig. 
1) cause 100 million cases of dengue fever (DF) every year, producing at least 
250,000 cases of dengue hemorrhagic fever (DHF) with a 5% mortality rate 
(Monath, 1994). DEN virus frequently produces dual infections in humans 
(LaiIle et aI., 1991; Lorono Pino et al., 1999), which in some cases result in 
intratypic genetic recombination (Worobey et al., 1999). The increasingly wide 
dispersal of DEN viruses throughout the tropics, reflects the severe impact that 
urbanization, transportation, commercialization and tourism, are having on 
human disease. Other Aedes spp. associated viruses, such as Spondweni, Zika, 
Wesselsbron, Banzi, Uganda S, etc. appear to have more restricted geographic 
distributions. They are found in Africa or Asia in forest habitats, or in 
environments containing wild or farmed animals. As with some of the Aedes 
spp., many of the Culex spp., associated viruses also frequently show 
geographic overlap in Asia, Australasia or the Americas. 

4.1 Dispersal of mosquito-borne viruses 

Mosquito-transmitted viruses, have dispersal characteristics which are 
largely understood to be based on the different behavioural patterns of 
mosquitoes and their vertebrate hosts. Whereas a tick bloodmeal usually takes 
several days to complete, mosquitoes feed on vertebrate hosts within a few 
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seconds. If the mosquito becomes infected, the virus then replicates and within 
8 to 10 days reaches a high level of infectivity in the brain, body and salivary 
glands of the mosquito. Within a few weeks, the mosquito may feed again, 
transferring the virus to a vertebrate host which if susceptible will reproduce 
the virus to high titres in the target organs, develop a viraemia and transmit this 
virus to uninfected mosquitoes that feed during the viraemic stage. The 
mosquito-borne viruses are therefore replicated through many cycles in a 
relatively short period of time. Mosquitoes are more mobile than ticks and may 
disperse the virus over significant distances within a few hours. Moreover, the 
hosts that are infected by the mosquitoes may also be more mobile than the 
corresponding forest animals that serve as hosts for ticks. Overall, the life cycle 
and the factors that determine dispersion are much more dynamic in mosquito­
transmitted viruses than tick-borne viruses. This is reflected by (i) the wider 
geographic dispersal of many individual mosquito-transmitted virus species (ii) 
the fact that mosquito-borne viruses show overlapping distributions and (iii) 
the mosquito-borne viruses show greater levels of genetic variation and higher 
estimated evolution rates particularly those that cause human epidemics, the 
structure of the phylogenetic trees suggests periods of rapid population growth. 
Despite these generalizations, many of the Old World Aedes spp. associated 
viruses have remained essentially sylvatic and show restricted geographic 
dispersal presumably because of their adaptation to local vector-vertebrate 
ecology. Yellow fever virus has a geographically limited distribution. Epidemic 
outbreaks occur in Central and West Africa, the Caribbean, Central and South 
America. Cases of YF anywhere else are introduced by individuals infected in 
a YF region, and then traveling to other parts of the world. Yellow fever 
introduced in this way, does not lead to subsequent infections. In the natural 
environment, the virus can be isolated from Aedes spp. that bite and infect 
monkeys living in the tree canopy of the tropical rainforests and in the 
savannah, which borders the equatorial forests. In Africa, many species of 
monkey show no clinical symptoms although they replicate and serve as 
reservoir hosts for the virus that is then transmitted to non-infected mosquitoes 
feeding on the infected monkeys. A similar virus life cycle, between mosquito 
and monkey, also occurs in the New World rain forests but the monkeys 
frequently become sick and die as the result of becoming infected which is 
taken to indicate that YF virus was introduced into the Americas relatively 
recently. As mentioned above, the considered wisdom is that the virus was 
transported from Africa on the slave boats that traveled frequently to the 
Americas during the past three or four hundred years (Strode, 1951; Innis, 
1995; Markoff and Falgout, 1995). The fact that cases of YF were also seen in 
many seaports in Europe and even in northern ports of the United States of 
America, where slave boats were frequent visitors, supports this argument. 
Dispersal of YF out of Africa is therefore very restricted and is almost entirely 
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attributable to human commercial activities, particularly the slave trade, during 
the past few centuries. 

Human YF infections occur throughout the year in the humid 
equatorial forests. Humans are bitten by infected sylvatic Aedes spp. vectors 
that usually feed on monkeys. The sylvatic cycle of virus being transmitted 
between monkeys and mosquitoes is referred to as jungle fever when it 
involves humans. Yellow fever epidemics in Africa occur towards the end of 
the rainy season when Aedes aegypti densities are at their highest. Humans 
infected in the savannah or rain forests take the disease to urban dwelling 
Aedes aegypti. These mosquitoes then spread the disease through the human 
population. This form of YF, i.e., "human-mosquito-human", is referred to as 
urban fever (Strode, 1951). In tropical America, the urban form of YF has not 
been reported for many years although in some of the heavily populated parts 
of tropical America it seems to be only a matter of time. 

The dispersal characteristics of the dengue virus serotypes contrast 
significantly with YF virus. Whereas YF virus appears to have retained its 
sylvatic nature, the dengue viruses are better suited to the urban environment 
and epidemic dengue no longer seems to require a sylvatic reservoir host. All 
four dengue serotype viruses circulate and cause human epidemics throughout 
most tropical regions of the World wherever high densities of Aedes aegypti 
are present. On the basis of their phylogenies, the dengue viruses represent 
more recent evolutionary lineages than YF virus. It is therefore tempting to 
postulate that an ancestral dengue lineage arose in Africa, where Aedes spp. 
competent for dengue virus transmission were present, and the four recognized 
serotypes subsequently emerged and diverged as they dispersed across Asia 
and then into the New World, exploiting modern transportation to aid their 
dispersal. In common with YF, other viruses in the Aedes spp. clades, for 
example, SEP, EH, UGS show more restricted geographic dispersal 
presumably because, like YF virus, they are preferentially adapted to the 
prevailing vectors, vertebrates and local ecology. 

Not surprisingly, the dispersal characteristics of the Culex spp. 
associated viruses contrast strongly with those of the Aedes spp. viruses mainly 
due to the fact that most Culex spp. viruses have life cycles that involve birds. 
Strains of many of these viruses, for example SLE, JE, WN, etc. can be isolated 
over wide geographic areas, because they are carried by migrating birds. 
Nevertheless, it is guesswork to try defining dispersal patterns for bird­
associated viruses. However, in some cases, for example, WN or JE virus, 
dispersion was very efficient and these viruses can now be isolated over very 
large geographic regions. In other cases, for example KOK and STR, the 
viruses were more suitably adapted to local species in Northeast Australia and 
neighbouring regions of Southeast Asia. Even though there are Culex spp. 
viruses in both the Old and the New World, WN virus is the only one that has 
become established simultaneously, on both sides of the Atlantic Ocean and 
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this occurred only very recently. This supports the belief that birds do not 
routinely disperse Culex spp associated flaviviruses across the major Oceans. It 
is thought that WN virus was inadvertently introduced into the New York area 
of the United States after being carried by or in (i) an infected human, (ii) an 
infected mosquito (iii) the luggage of an aeroplane passenger, (iv) an infected 
bird or animal, imported illegally into North America, and (v) an infected bird 
blown off course from the Old World. Whilst any of these alternatives is 
theoretically possible, the fact that WN virus appears to have been successfully 
introduced to the New World on only one occasion argues against its 
introduction by an infected bird flying in from the Old World. 

5. NO-KNOWN VECTOR VIRUSES 

The NK V viruses (Tab. 1) fall into two distinct groups: (i) those 
associated with bats in the Old World and, (ii) those associated with rodents in 
the New World. Interestingly, each group is in a distinct phylogenetic lineage. 
The NKV viruses make a third monophyletic group (Fig. 2), being a sister 
group to both the mosquito- and tick-borne groups. The individual bat­
associated NKV viruses are found either in the New World or in the Old World 
but none so far has been found in both regions. On the other hand, and with the 
exception of APOI virus, rodent associated NKV viruses have only been 
isolated in the New World where they have retained very restricted dispersal 
patterns. It is known that neither bats nor birds use migratory pathways across 
the major Oceans, i.e., the most common long distance migratory flights are 
generally in a northerly and southerly direction. This probably accounts for the 
apparent lack of mixing between Old and New World NKV viruses even 
though there have clearly been introductions at some time in the past in one 
direction or the other, perhaps by rodents on ships. Nevertheless, bats 
undoubtedly contribute significantly to localized spread of flaviviruses, over 
major land masses. All the other viruses in the family Flaviviridae are non­
vectored suggesting that this could be the ancestral state for the genus. In this 
case, we could speculate that flavivirus vector-transmission evolved from non­
vectored transmission. The fact that some NKV viruses (EB, YOK, SOK) 
diverged with the mosquito-borne viruses and then separated to form a distinct 
NKV group, could imply that there has been a secondary loss of vector-borne 
transmission in these viruses. This is also evident from the fact that several 
mosquito-borne and even some tick-borne flaviviruses have been isolated from 
bats in the natural environment. The NKV viruses are an interesting group in 
the genus, which may hold some interesting clues as to the origin and biology 
of this genus. Moreover, the tree in figure 2, suggests that the divergence 
between the rodent and bat NKV viruses may have occurred early in the 
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evolutionary history of the genus Flavivirus, which poses important questions 
on its origin and ancestral biology. 
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6_ METHODOLOGICAL CONSIDERATIONS ABOUT 
PHYLOGENETIC INFERENCES 

6.1 The origin of the Negishi (NEG) virus: A case study 

The use of molecular phylogenies for distinguishing flaviruses allowed 
solving the puzzle of the Negishi (NEG) virus, which was found to be a LI 
virus (Venugopal et al., 1992; Marin et aI., 1995b; Kuno et aI., 1998; Gao et 
al., 1998). The Negishi virus was apparently isolated from two children during 
an epidemic of Japanese encephalitis in 1948 in an urban area of Tokyo (Ando 
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et al., 1952; Okuno et al., 1961). However, historical evidence corroborates the 
molecular phylogenies. Firstly, the LI virus has been isolated many times in the 
British Isles and was fully characterized nearly twenty years before the first 
reports on the Negishi virus. Therefore, the LI virus was already in many 
different laboratories around the W orId, being used as a reference strain. 
Secondly, Negishi virus was never re-isolated in Japan and there is no 
definitive serological evidence of its presence there. Finally, the concept that LI 
virus (strain Negishi) exists in Japan is inconsistent with the recognized 
characteristic of LI virus as the etiological agent of tick-borne sheep 
encephalomyelitis on the sheep-grazing uplands of the British Isles (Reid, 
1984). It remains to be explained how a strain of LI virus apparently traveled 
thousands of miles from Britain, to cause two fatal infections in children in a 
region of Japan where there were no sheep and suitable ticks to transmit the 
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6.2 Birth and death, rates and dates 

The TBE complex viruses appear to have diverged continuously, 
generating new lineages continually through time. This can be recovered in its 
asymmetric phylogenetic tree with the characteristic stepwise branching 
process (Figs. 1, 3, 4 and 5). In contrast, the mosquito-borne viruses, such as de 
DEN viruses, show a distinct phylogenetic pattern, with long branches 
followed by intense apical cladogenetic activity (Zanotto et aI., 1996a) (Figs. 1 
and 6). For the mosquito-borne viruses there are no observable lineages 
branching deep from within each of the main serotypes until relatively recently, 
when there is a burst of cladogenesis (Fig. 1). The lack of intermediary lineages 
in the DEN viruses, which has four distinct serotypes, could be explained by 
intense replacement of lineages in time, whereas the TBE viruses may not have 
been subjected to the same stringent birth and death process (Zanotto et aI., 
1996a). This notion is also supported by the serological data, which shows 
close antigenic relationships between the TBE complex viruses and greater 
antigenic and genetic diversity among the mosquito-borne viruses. The 
simplest explanation for the two-phase branching pattern observed in 
mosquito-borne viruses, such as DEN viruses, is that they have been enzootic 
until the last 200 years. Since then, the DEN viruses were able to find an 
endless transmission web in the exponentially growing human population. This 
notion was suggested by some rough calculations of the times of divergence of 
the mosquito-borne viruses, which show that many of the viruses currently 
causing epidemic outbreaks possibly represent very recent lineages. In the 
DEN and JE serotypes the period of intense cladogenesis was estimated to have 
occurred during the past two centuries (Zanotto et al., 1996a; Holmes, 1998), 
reflecting the recent availability of new and susceptible hosts, i.e., humans, 
coupled with increased worldwide movement and mixing of vectors, viruses 
and hosts (Fig. 7). Assuming the CF A as an outgroup for the Flavivirus and by 
knowing the dates of isolation of these viruses, it was possible to speculate on 
some rough estimates of the rates of evolution of tick-borne and mosquito­
borne viruses. These preliminary results indicated that mosquito-borne viruses 
could be evolving almost twice as fast as the tick-borne viruses (Zanotto et al., 
1995). If these rates are different, they could entail the higher turnover of the 
pandemic mosquito-borne viruses in mosquitoes and humans compared to that 
of the tick-borne virus, which is mainly zoonotic. Based on these rates, 
estimations of the times of emergence for the entire TBE complex suggest that 
the earliest lineage of the TBE complex viruses, i.e., the POW virus, separated 
from the TYU group between 4000 to 6000 years ago (Zanotto et al., 1996a). 
However, those estimates can underestimate the amount of change along 
branches and inel ude a substantial margin of error and uncertainty. 
Interestingly, this dating is sensible since the most recent glaciation lasted until 
about 10,000 to 12,000 years ago encompassing extensive areas of the northern 
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hemisphere. It can be speculated that after the ice age, viruses carried by ticks 
left the warmer regions of Africa and South East Asia and moved northward 
into the Far East Asia and westward into Europe forming clines. 

6.3 The origin of the Flavivirus 

It has been postulated that the genus Flavivirus originated in the Old 
World (Gould et aI., 2001). However, there is insufficient information to 
answer unequivocally the question of the origin of the flaviviruses. 
Nevertheless, most of the tick-borne viruses, all of the Aedes spp. associated 
viruses and many of the NKV viruses, have sylvatic life cycles in the Old 
W orId, implying their presence there over a long period of time. Cell fusing 
agent (CFA), which is a very divergent lineage, has been used extensively to 
root flavivirus trees (Marin et aI., 1995b) on the basis of its similar genome 
strategy and sequence similarity. This insect virus was isolated from African 
Aedes aegypti and appears to be non-pathogenic for this mosquito species 
(Cammisa Parks, 1992), suggestive of a possible long term relationships 
between the virus and the host. The rooting based on the CF A is however 
problematic for two reasons. Firstly, the level of sequence similarity 
approaches random and because of this, it may lead to spurious inferences on 
the temporal relationships among sister groups that are function of its precise 
placement on the phylogeny. Therefore, as a precautionary measure, the age 
relationships among the three groups in the genus should be understood as a 
hard trichotomy, since their association based on the placement of the CF A 
could be misleading. The proper use of outgroups for the genus is of 
contrastive nature. For example, in order to study more than the patterns of 
adjacency of the mosquito-borne viruses, one should use either NKV or tick­
borne viral sequences (preferably a comprehensive medley of both) to try 
making inferences about the relative age of lineages. Certainly the use of 
consensus sequences as outgroups is highly problematic (Chang et aI., 1995). 
Consensus sequences are based on the frequency and representation of each 
character state in a dataset, not on the ancestral status of each state for each 
character. By using proper outgroups, consensus sequences will move outwards 
in trees, becoming useless when we try to order the cladogenetic events in time. 
Moreover, phylogenetic studies on the Flavivirus genus should take into 
account the need to correct for superimposed mutations, use of better 
phylogenetic reconstruction methods, which can estimate among-sites rate 
variations and optimize the values of nucleotide transition probability matrices. 

Another pressing issue is that of the proper estimation of the amount 
change along lineages (genetic distance) (K). Provided we know the time of 
isolation of lineages, this can lead to dating estimations (T), since both time (T) 
and distance (K) are related by the substitution rate (R) and can be 
approximated by the simple expression R=Kl2T. It was stated that the fast 
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mutation of some viruses with RNA genomes has led some virologists to 
conclude that most RNA viruses we know today probably arose in the last 
10,000 years (Gibbs et al., 1995). We know that RNA viruses possibly existed 
way before then and their presence in all life Kingdoms is a sure proof of this. 
However, the "Gibbs paradox" is real but has an interesting explanation. The 
high mutation rate in conjunction with the replacement of lineages through 
time (i.e., birth-death process) possibly sets a threshold of phylogenetic signal, 
limiting the extent in which we can look back in time using viral sequences 
(Zanotto et aI., 1996b). Therefore, the viral popuations that we sample today 
may not carry all the phylogenetic information of those viruses from which 
they arose. The genus Flavivirus comprises viruses that are recognizable today 
and it is the lineages that these viruses represent that we can attempt to date. 
Many other related flaviviruses may have emerged but subsequently become 
extinct. Possibly there is a common ancestor for the Flaviviridae family, but 
we may not have access to their ancestral lineages since they are long gone and 
left no trace in currently available sequences (Zanotto et al., 1996a; 1996b). 

However, the datings within closely related members of the genus may 
be reasonable. Using either logical arguments based on historical facts or by 
calculating nucleotide substitution rates and then estimating dates of 
divergence from known times of virus isolation, one can attempt to estimate the 
divergence times. As a consequence, a few interesting correlations appear. The 
evidence based on molecular phylogenies for the presence of the LI viruses in 
the UK for no more than three or four centuries is now compelling (McGuire et 
aI., 1998). The term louping ill is an ancient word and was used in the 18th 

century to describe a disease of sheep occurring in the Border counties of 
England and Scotland where sheep were farmed intensively on the hillsides 
(MacFadzean, 1990). Sheep were then introduced north of the Forth-Clyde 
valley onto the Scottish moorlands and the disease followed quite rapidly. 
Phylogenetic trees indicate that Scottish LI viruses appeared more recently than 
those lineages leading to the Irish and Welsh LI viruses (McGuire et al., 1998). 
In each of these geographic regions, grouse are highly susceptible to infection 
by LI virus even though the grouse have clearly been associated with moorland 
environments for many centuries, as shown by the fact that they have adapted a 
specialized digestive tract for the digestion of heather (Leslie and Shipley, 
1912). The very high virulence of LI virus for grouse could also imply its 
recent introduction to the moorlands (Chamberlain, 1982). Further support 
comes from the evidence that sheep could not have been successfull~ farmed 
either on moorlands or even on any uplands during most of the 16t century 
because Britain and Europe experienced a "Little Ice Age". Moreover, 
throughout Europe and Asia, Ixodes ricinus is essentially a forest and 
woodland tick and only prospers on moorlands if there are sufficient suitable 
mammalian hosts, such as sheep or deer. Despite significant investigation, 
there is no evidence that either LI virus or an antigenically closely related TBE 
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complex virus is, or ever was, present in the British forests or woodlands. 
These facts therefore strongly support the phylogenetic explanation for the 
appearance of LI virus in the British mainland, i. e., an early sheep 
encephalomyelitic virus was introduced from Europe, probably from Spain, 
through Ireland during the past few centuries. The increasing amount of data on 
distinct populations of the TBE complex virus (Ecker et at., 1999; Hayasaka et 
at., 1999; 2001) could lead to a better understanding on the mode and tempo of 
the dispersal of these viruses in Eurasia. 

In sum, it could be assumed that the viruses in the genus Flavivirus are 
likely to represent lineages that have radiated during the past 5000 to 10,000 
years, since the last major Ice Age across the northern hemisphere. Estimates 
were made for several tick- and mosquito-borne viruses (Zanotto et al., 1996a; 
McGuire et al., 1998) and they are in general agreement. Whilst it is 
recognized that the precision with which such estimates can be made, is likely 
to be low for viruses in the deeper nodes of the tree, it is unlikely that they are 
incorrect by several orders of magnitude. 
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