3^a) Prova Mat120 - Álgebra noturno, Turma 47 Licenciatura em Matemática Prof. Eduardo Marcos 19 de junho de 2018

Nome :	1	
	2	
	3	
	4	
	5	
	Total	

Q

N

- 1. A prova pode ser feita a lápis;
- 2. Não é permitido o uso de calculadora;
- 3. Celulares e outras ferramentas eletrônicas devem ser desligados;
- 4. Boa Prova

1. a) Questão:

Nesta questão cada ítem vale 0,2 pontos, sua nota neste ítem será calculada assim: Seja A= número de respostas certas e B o número de respostas erradas a nota na questão é o $\min\{0.2\times(A-B),2\}$. Em particular qualquer ítem não respondido não entra no cálculo da nota. Nesta questão não serão olhadas as justificativas você responde V para cada afirmação que acha que é verdadeira e F para as que pensa que é falsa. Deixe sem resposta as que não quiser responder nem V nem F.

- 1. Se p é um número primo então p sempre divide $(a^p)^{p^2} a$.
- 2. Seja m um inteiro que não está no conjunto $\{-1,1,0\}$. Então m é primo se e somente se todo par (a,b) de números naturais $m \mid ab$ implica $m \mid a$ ou $m \mid b$.
- 3. Se em $\frac{Z}{nZ}$ a equação ax = b para a não múltiplo de n tem sempre solução então necessariamente n é primo.
- 4. Dados a e b inteiros quaisquer com $b \neq 0$ existe apenas um par de inteiros (q, r) tal que a = bq + r.
- 5. 59 divide $59^{10} 1$.
- 6. Sejam a, b, c com a primo com b então $a \mid bc$ se e somente se $a \mid c$.
- 7. A equação $x^2 + 9x + 21 = 0$ tem duas soluções em $\frac{Z}{103Z}$.
- 8. Um inteiro da forma 6k + 5 é também da forma 3k + 2 e vale também a recíproca.
- 9. O produto de 3 inteiros consecutivos é sempre um múltiplo de 12.
- 10. Sejam a e b inteiros não nulos e não ambos pares. Então eles são primos entre si se e somente se a equação ax + by = 2 tem solução.

2. a) Questão:

Seja $\phi: N^* \to N^*$ a função de Euler. (Lembre que esta função associa a cada inteiro positivo n o número de inteiros positivos primos com n e menores que n)

- (a) Seja p un número primo , r > 0 inteiro mostre que $\phi(p^r) = p^{r-1}(p-1)$.
- (b) Mostre que se m e n são inteiros maiores que zero que são primos entre si, então $\phi(mn) = \phi(m)\phi(n)$.
- (c) Prove que se $m=p_1^{r_1}....p_t^{r_t}$ é a decomposição de m em fatores primos então $\phi(m)=m(1-\frac{1}{p_1})....(1-\frac{1}{p_r})$

3. a) Questão:

Enuncie o Teorema chinês dos restos.

4. a) Questão:

Chamamos ideal de \mathbb{Z} a um subconjunto I de \mathbb{Z} tal que:

- (a) $0 \in I$
- (b) *I* é fechado para a soma.
- (c) Se $x \in I$ e $y \in \mathbb{Z}$ então $xy \in I$

Mostre que para todo ideal I de \mathbb{Z} existe um número a em I tal que $I = \{ta : t \in \mathbb{Z}\}.$

Sugestão: Se $I \neq \{0\}$. Considere o menor elemento positivo de I, dado um outro elemento aplique o algorítmo da divisão.

5. a) Questão:

Uma pessoa ao receber um cheque no banco, percebeu que havia recebido o número de reais e centavos trocados. Em seguida gastou 68 centavos e percebeu que tinha o dobro da quantia original do cheque. Determinar o menor valor possível no qual o cheque pode ter sido preenchido.