
June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

1

Texture

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

2

Overview

• Objectives and introduction

• Painted textures

• Bump mapping

• Environment mapping

• Three-dimensional textures

• Functional textures

• Antialiasing textures

• OpenGL details

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

3

Objectives

• Why texture mapping?

• Introduce mapping methods

– Texture Mapping

– Environment Mapping

– Bump Mapping

• Consider basic strategies

– Forward vs backward mapping

– Point sampling vs area averaging

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

4

Why texture mapping?

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

5

Limits of Geometric Modeling

• Graphics cards

– Render over 10 million polygons per
second

• Still insufficient for many phenomena

– Clouds

– Grass

– Terrain

– Skin

• Few real objects are smooth

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

6

Textures

• Can handle

– Large repetitions

•Brick wall

•Stripes

– Small scale patterns

•Brick’s roughness

•Concrete

•Wood grain

• Typically 2-D images of what’s being
simulated

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

7

E.g., problem: Modeling an
orange (fruit)

• Start with orange-colored sphere

– Too simple

• Replace sphere with more complex
shape

– Does not capture surface
characteristics

•Small dimples

– Too many polygons to model all
dimples

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

8

Modeling an orange (2)

• Take picture of real orange

– Scan

– “paste” onto simple geometric
model

– Process known as “texture mapping”

• Still not sufficient

– Resulting surface smooth

– Need to change local shape

•Bump mapping

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

9

Three types of mapping

• Texture Mapping

– Uses images to fill inside of polygons

• Environment (reflection) mapping

– Uses picture of environment for texture
maps

– Allows simulation of highly specular
surfaces

• Bump mapping

– Emulates altering normal vectors during
rendering

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

10

Texture mapping

geometric model texture mapped

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

11

Environment (reflection)
mapping

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

12

Bump mapping

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

13

Where does mapping take
place?
• Mapping techniques implemented at end of

rendering pipeline

– Very efficient because few polygons make
it past clipper

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

14

Is it simple?

• Idea: simple

– Map image to surface

• But, 3 or 4 coordinate systems
involved
2D image

3D surface

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

15

Coordinate systems

• Parametric coordinates

– Model curves and surfaces

• Texture coordinates

– Identify points in image to be mapped

• Object or World Coordinates

– Conceptually, where mapping takes place

• Window Coordinates

– Where final image really produced

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

16

Texture mapping

parametric
coordinates

texture coordinates
world coordinates

window
coordinates

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

17

Mapping functions

• Basic problem: how to find the maps

• Consider mapping from texture coo’s to
point on surface

• Appear to need three functions

x = x(s,t)
y = y(s,t)
z = z(s,t)

• But really want

to go other way

s

t

(x,y,z)

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

18

Backward mapping

• Really want to go backwards

– Given pixel, want to know

•to which point on object it corresponds

– Given point on object, want to know

•to which point in texture it corresponds

• Need map of form

s = s(x,y,z)
t = t(x,y,z)

• Such functions difficult to find in general

s
t

(x,y,z)

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

19

Two-part mapping

• One solution to mapping problem

– first map texture to simple
intermediate surface

• Example: map to cylinder

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

20

Cylindrical mapping

parametric cylinder

x = r cos 2π u
y = r sin 2πu
z = v/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

s = u
t = v

maps from texture space

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

21

Spherical map

• Can use parametric sphere

• Similar manner to cylinder

– But have to decide where to put distortion

• Spheres used in environmental maps

x = r cos 2πu
y = r sin 2πu cos 2πv
z = r sin 2πu sin 2πv

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

22

Box mapping

• Easy to use with simple orthographic
projection

• Also used in environment maps

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

23

Second mapping

• Map from intermediate object to actual object

– Normals from intermediate to actual

– Normals from actual to intermediate

– Vectors from center of intermediate

intermediateactual

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

24

Aliasing

• Point sampling of texture can lead to
aliasing errors point samples in u,v

(or x,y,z) space

point samples in texture space

miss blue stripes

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

25

Area averaging

• Better but slower option

– Use area averaging

Note that preimage of pixel is curved

pixelpreimage

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

26

Painted textures -- details

• Map locations on object into locations in texture
• Value from texture replaces diffuse component in

shading calculations
• If texture > object,

– only part of texture used, or
– texture is shrunk

• If object > texture,
– texture repeated

across object
or

– texture
stretched

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

27

Painted textures

• If object location maps between texture
locations, value between them can be
interpolated

f1 = fract(u)

f2 = fract(v)

T1 = (1.0 – f1) * texture[trunc(u)][trunc(v)]
+ f1 * texture[trunc(u)+1][trunc(v)]

T2 = (1.0 – f1) *
texture[trunc(u)][trunc(v)+1]

+ f1 *
texture[trunc(u)+1][trunc(v)+1]

result = (1.0 – f2) * T1 + f2 * T2

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

28

Repeating textures

• A texture can be repeated across an
object with the equations:

u= fract
repeatx

xmax − xmin()
* x − xmin()

 *Tu

v = fract
repeaty

ymax − ymin()
* y − ymin()

 * Tv

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

29

Repeating textures

• Repeated texture must be continuous
along edges to prevent obvious seams

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

30

Painted texture problem

• Texture values don’t alter specular
highlights

– Specular highlighting may be
inconsistent with texture
appearance

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

31

Bump Mapping

• For real bump, surface normal
changes when moving across bump

• Similar appearance if similar change
made to surface normal for a plane

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

32

Bump Mapping

• ==> texture image called ‘bump map’
• bump map used to alter surface normal
• altered surface normal used for color calculations

NB = bump(u, v, N)
RB = 2 * NB * (NB • V) – V
Cr = kar + IL * [kdr * L • NB + ks * (RB • V)n]
Cg = kag + IL * [kdg * L • NB + ks * (RB • V)n]
Cb = kab + IL * [kdb * L • NB + ks * (RB • V)n]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

33

Bump Mapping

• bump function based on gradient of bump map
– gradient = measure of how much bump map

values change at chosen location
• modified normal calculated using gradients in two

directions (Bu and Bv) and two vectors tangent to
surface in those directions (Su and Sv)

• parenthesized expression can also be multiplied by
factor to control appearance of size of bumps

′ N = N + B u * S v

S v

+ B v * S u

S u

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

34

Bump Mapping Examples

• Bump map based on product of sine
taken of two coordinates:

sin(10*u*π/1024)
*sin(10*v*π/1024)

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

35

Bump Mapping Examples

• Bump mapped
plane using
factors (h) of 1.0,
0.5, and 2.0

• 3 light sources
illuminate
surface patch

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

36

Bump mapping problem

• Surface shape not changed ==>
“bumps” near silhouette will not
change silhouette shape

• If bump-mapped object rotated,
bumps will disappear when they reach
object profile

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

37

Displacement mapping

• In displacement mapping, object is
subdivided into many very small polygons

• Texture values cause vertices to be
displaced in
direction of
surface normal

• In this case,
texture actually
changes
object shape

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

38

Environment mapping

• Environment mapping simulates
reflective objects

• Environment map

– = rendering of scene from inside
reflective object

– used to determine what would be
seen in reflection direction

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

39

Environment mapping

• Environment map can be

– Spherical,

•require calculation to convert
direction through sphere into 2-
dim matrix location

– or

– cube shaped …
u = 1

2
1+ 1

π
* arctan

Rx

Ry

v = R z + 1

2

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

40

Environment mapping

• Cube shaped environment map

– renders scene from center of object
onto faces of a cube

• component of
reflection vector with
largest absolute
value determines
face reflection vector
goes through

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

41

Environment Mapping

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

42

Environment Mapping

• Location on correct face is calculated by:

• Where

– a = component of reflection vector shown
on horizontal axis,

– b = component shown for vertical axis,
and

– c = component for chosen face

u = a + c

2 c

v = b + c

2 c

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

43

Three-Dimensional Textures

• Very difficult (impossible?) to create texture
that can be wrapped around irregularly
shaped object without visible discontinuity

• 2-D texture applied to surface ==>

– object can be thought to be carved out of
3-D texture

• Storage requirements for 3-D texture
extremely large

• ==> 3-D textures closely related to
functional textures

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

44

Functional Textures

• Calculation based on texture location

– Instead of stored image as texture

• Function continuous in every direction

– ==> texture continuous in every direction

• Space <---> computation time

• Change how texture calculated

– ==> many different textures can be
created

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

45

Noise

• 1st step : noise function

• True white noise is highly
random

• For graphics, pseudo random
noise that is repeatable is
important

– Truly random noise ==>
texture would change

•every time image is
rendered

•or for every scene of
animation

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

46

Perlin Noise

• Perlin: developed noise function

– used in many Hollywood movies

• This noise function has:

– No statistical variance when rotated

– No statistical variance when
translated

– Narrow range of values

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

47

Turbulence

• 2nd step : build turbulence function
on top of noise function

• Functional textures then built on top
of turbulence function

• Turbulence function takes multiple
samples of noise function at many
different frequencies

• Different researchers frequently
develop own turbulence function

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

48

Peachy’s Turbulence
Function

float turb(float x, float y, float z, float minFreq,
float maxFreq)

{

float result = 0.0;

for (float freq = minFreq; freq < maxFreq; freq =
2.0*freq)

{

result += fabs(noise(x*freq, y*freq, z*freq) /
freq);

}

return result;

}

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

49

Peachy’s Turbulence Results

• Samples have frequency ranges of
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

50

Perlin’s Turbulence Function
float turb(float x, float y, float z, float minFreq, float

maxFreq) // minFreq = lowest allowed; maxFreq =
image resolution

{

float result = 0.0;

x = x + 123.456;

for (float freq = minFreq; freq < maxFreq; freq =
2.0*freq)

{

result += fabs(noise(x, y, z)) / freq;

x *= 2.0;

y *= 2.0;

z *= 2.0;

}

// return the result adjusted so the mean is 0.0

return result-0.3;

}

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

51

Perlin’s Turbulence Results

• Samples have frequency ranges of
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

52

Marble Texture

• Perlin/Ebert marble function uses turbulence value
to determine color for location

void marble(float x, float y, float z, float
color[3])

{
float value = x + 3.0 * turb(x, y, z,
minFreq, maxFreq);
marbleColor(sin(π * value), color);

}
• Variations how marbleColor function implemented

– Linear interpolation between light and dark color
– Spline-based interpolation between light and

dark color

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

53

Linear Interpolation Marble
Examples

• Samples have frequency ranges of
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

54

Spline Interpolation Marble
Examples

• Samples have frequency ranges of
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

55

Spline Interpolation Marble
Examples

• Samples have a frequency range of
[1.0, 256.0] and have no multiplier,
and multipliers of 3 and 7

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

56

Cosine Textures

• Based on summations of cosine curves

• Parameters in equation provide control
on result

• 2-D equation is:

f (x, y) = C i * cos ω x i
* x + ΦGx()+ φ x i()+ A0[]

i=1

N

∑

* C i * cos ω y i
* y + ΦGy()+ φ y i()+ A0[]

i=1

N

∑

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

57

Cosine Texture Parameters
• N controls # cos terms

– Typically 4 to 7

• Cons’ts ΦGx ΦGy = global phase shifts

– move pattern

• Ci terms change amp of various cos com’s

• A0 terms shift pattern but related to Ci

terms

• ωx1 & ωy1 determine # times pattern repeats

• φxi
and φyi

= phase values

– interdependent with base periods of x & y

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

58

Number of Cosines

• Examples show the results of using 1,
4, and 7 cosines

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

59

Global Phase Shift

• Examples with x global phase shifts of
0 and 150 show that global phase
shift moves the pattern

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

60

Cosine Amplitude Ratio

• Examples show cosine amplitude
ratios of 0.3535, 0.7070, and 1.414

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

61

Cosine Offset

• Examples show cosine offset values of
0.5, 1.0, and 1.5

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

62

Base Periods

• 1st example : same base period (256)
for x and y; 2nd : x base period of 256
& y base period of 512

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

63

Base Period Ratio

• Examples have base period ratios of
1.5, 2.0, and 2.5

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

64

Phase Shift Amplitude

• Examples have phase shift amplitudes
of 0, π/4, π/2, and π

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

65

Cosine Texture Results

• Cloud-like texture possible with
4 cosine components, x global
offset of 200, cosine amplitude
ratio of 0.5, phase shift amplitude
of π/2, cosine offset of 0.75, x
base period of 655, y base period
of 325, and base period ratio of 1.7

• Bark-like texture possible with
4 cosine components, cosine
amplitude ratio of 0.707, cosine
offset of 1.0, x base period of
256, y base period of 1216, and
base period ratio of 1.7

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

66

Antialiasing Textures

• Frequency of entity & rate
sampled can cause visible
artifacts

• Example: appears like
multiple textures used

• Aliasing
causes
visible
artifacts

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

67

Aliasing Corrections

• Aliasing artifacts: reduced by altering
sampling method

• Common techniques include

– Supersampling

– Supersampling with jittering

– Inverse mapping

• Techniques discussed re textures

– Apply to other antialiasing applications

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

68

Supersampling

• Multiple evenly spaced samples taken
from texture for each location

• Average / weighted average taken of
samples to produce final result

• One weighted average uses 9 samples
and filter (weighting):

1 2 1

2 4 2

1 2 1

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

69

Supersampling With Jittering

• Sample locations shifted by random
amount

– Instead of evenly-spaced samples

• ==> helps disturb regular sampling
frequency

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

70

Supersampling Examples

• Supersampling

• Supersampling
with jittering

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

71

Inverse Mapping

• Area of pixel projected back onto object

• That object area projected back into texture

• Integrating or averaging values in this area
of texture ==> final texture result to be
used

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

72

Inverse Mapping Example

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

73

OpenGL Texture

• Steps to using texture in OpenGL :

– Create / load texture into OpenGL

– Enable texturing

– Specify how texture is to be used

– Specify texture coordinates for polygon vertices
or surface corners

• Allows programmer to specify if texture is to be
added before or after specular highlight

• Allows textures of varying resolutions to deal with
aliasing problems

• Also support for environment mapping

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

74

Texture Coordinates

• Texture coordinates

– influence how texture is applied

– are in range [0.0, 1.0]

• If OpenGL told to repeat texture

– ==> values outside of range cause
multiple copies of texture used

• If OpenGL told to clamp coordinates

– ==> any values

•below range set to 0.0

•above range set to 1.0

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

75

Texture Coordinates

• In 1st example, texture coordinates in
range [0.0, 1.0]

• In 2nd example, texture coordinates in
range [0.0, 0.5]

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

76

Texture Coordinates

• By picking
appropriate
texture coordinates,
two adjacent planes
can be textured
seamlessly

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

77

Bézier Surface Texturing

• Bézier surfaces can be textured if
points also supplied for four corner
control points

June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

78

Specular Highlights

• OpenGL can include
specular
component

– before
texturing

– after
texturing

