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Overview

• Objectives and introduction

• Painted textures

• Bump mapping

• Environment mapping

• Three-dimensional textures

• Functional textures

• Antialiasing textures

• OpenGL details
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Objectives

• Why texture mapping?

• Introduce mapping methods

– Texture Mapping

– Environment Mapping

– Bump Mapping

• Consider basic strategies

– Forward vs backward mapping

– Point sampling vs area averaging
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Why texture mapping?
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Limits of Geometric Modeling

• Graphics cards

– Render over 10 million polygons per 
second

• Still insufficient for many phenomena

– Clouds

– Grass

– Terrain

– Skin

• Few real objects are smooth
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Textures

• Can handle 

– Large repetitions

•Brick wall

•Stripes

– Small scale patterns

•Brick’s roughness

•Concrete

•Wood grain

• Typically 2-D images of what’s being 
simulated



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

7

E.g., problem: Modeling an 
orange (fruit)

• Start with orange-colored sphere

– Too simple

• Replace sphere with more complex 
shape

– Does not capture surface 
characteristics

•Small dimples 

– Too many polygons to model all 
dimples
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Modeling an orange (2)

• Take picture of real orange

– Scan

– “paste” onto simple geometric 
model

– Process known as “texture mapping”

• Still not sufficient

– Resulting surface smooth

– Need to change local shape

•Bump mapping
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Three types of mapping

• Texture Mapping

– Uses images to fill inside of polygons

• Environment (reflection) mapping

– Uses picture of environment for texture 
maps

– Allows simulation of highly specular 
surfaces

• Bump mapping

– Emulates altering normal vectors during 
rendering
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Texture mapping

geometric model texture mapped
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Environment (reflection) 
mapping
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Bump mapping



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

13

Where does mapping take 
place?
• Mapping techniques implemented at end of 

rendering pipeline

– Very efficient because few polygons make 
it past clipper 
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Is it simple?

• Idea: simple

– Map image to surface

• But, 3 or 4 coordinate systems 
involved
2D image

3D surface
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Coordinate systems

• Parametric coordinates

– Model curves and surfaces

• Texture coordinates

– Identify points in image to be mapped

• Object or World Coordinates

– Conceptually, where mapping takes place

• Window Coordinates

– Where final image really produced
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Texture mapping

parametric 
coordinates

texture coordinates
world coordinates

window 
coordinates
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Mapping functions

• Basic problem: how to find the maps

• Consider mapping from texture coo’s to 
point on surface 

• Appear to need three functions

x  = x(s,t)
y = y(s,t)
z = z(s,t)

• But really want 

to go other way

s

t

(x,y,z)
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Backward mapping

• Really want to go backwards

– Given pixel, want to know 

•to which point on object it corresponds

– Given point on object, want to know 

•to which point in texture it corresponds

• Need map of form 

s = s(x,y,z)
t = t(x,y,z)

• Such functions difficult to find in general 

s
t

(x,y,z)
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Two-part mapping

• One solution to mapping problem

– first map texture to simple 
intermediate surface

• Example: map to cylinder
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Cylindrical mapping

parametric cylinder

x = r cos 2π u
y = r sin 2πu
z = v/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

s = u
t = v

maps from texture space
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Spherical map

• Can use parametric sphere

• Similar manner to cylinder 

– But have to decide where to put distortion 

• Spheres used in environmental maps

x = r cos 2πu
y = r sin 2πu cos 2πv
z = r sin 2πu sin 2πv
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Box mapping

• Easy to use with simple orthographic 
projection

• Also used in environment maps
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Second mapping

• Map from intermediate object to actual object

– Normals from intermediate to actual

– Normals from actual to intermediate

– Vectors from center of intermediate 

intermediateactual
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Aliasing

• Point sampling of texture can lead to 
aliasing errors point samples in u,v 

(or x,y,z) space

point samples in texture space

miss blue stripes
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Area averaging

• Better but slower option

– Use area averaging

Note that preimage of pixel is curved

pixelpreimage
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Painted textures -- details

• Map locations on object into locations in texture
• Value from texture replaces diffuse component in 

shading calculations
• If texture > object, 

– only part of texture used, or 
– texture is shrunk

• If object > texture, 
– texture repeated 

across object 
or 

– texture 
stretched
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Painted textures

• If object location maps between texture 
locations, value between them can be 
interpolated

f1 = fract(u)

f2 = fract(v)

T1 = (1.0 – f1) * texture[trunc(u)][trunc(v)] 
+ f1 * texture[trunc(u)+1][trunc(v)]

T2 = (1.0 – f1) * 
texture[trunc(u)][trunc(v)+1] 

+ f1 * 
texture[trunc(u)+1][trunc(v)+1]

result = (1.0 – f2) * T1 + f2 * T2
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Repeating textures

• A texture can be repeated across an 
object with the equations:

u= fract
repeatx

xmax − xmin( )
* x − xmin( )

 

 
 

 

 
 *Tu

v = fract
repeaty

ymax − ymin( )
* y − ymin( )

 

 
 

 

 
 * Tv
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Repeating textures

• Repeated texture must be continuous 
along edges to prevent obvious seams
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Painted texture problem

• Texture values don’t alter specular 
highlights

– Specular highlighting may be 
inconsistent with texture 
appearance
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Bump Mapping

• For real bump, surface normal 
changes when moving across bump

• Similar appearance if similar change 
made to surface normal for a plane



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

32

Bump Mapping

• ==> texture image called ‘bump map’
• bump map used to alter surface normal
• altered surface normal used for color calculations

NB = bump(u, v, N)
RB = 2 * NB * (NB • V) – V
Cr = kar + IL * [kdr * L • NB + ks * (RB • V)n]
Cg = kag + IL * [kdg * L • NB + ks * (RB • V)n]
Cb = kab + IL * [kdb * L • NB + ks * (RB • V)n]
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Bump Mapping

• bump function based on gradient of bump map
– gradient = measure of how much bump map 

values change at chosen location
• modified normal calculated using gradients in two 

directions (Bu and Bv) and two vectors tangent to 
surface in those directions (Su and Sv)

• parenthesized expression can also be multiplied by 
factor to control appearance of size of bumps

′ N = N + B u * S v

S v

+ B v * S u

S u
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Bump Mapping Examples

• Bump map based on product of sine 
taken of two coordinates:

sin(10*u*π/1024)
*sin(10*v*π/1024) 
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Bump Mapping Examples

• Bump mapped 
plane using 
factors (h) of 1.0, 
0.5, and 2.0

• 3 light sources 
illuminate 
surface patch
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Bump mapping problem

• Surface shape not changed ==> 
“bumps” near silhouette will not 
change silhouette shape

• If bump-mapped object rotated, 
bumps will disappear when they reach 
object profile
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Displacement mapping

• In displacement mapping, object is 
subdivided into many very small polygons

• Texture values cause vertices to be 
displaced in 
direction of 
surface normal

• In this case, 
texture actually
changes 
object shape
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Environment mapping

• Environment mapping simulates 
reflective objects

• Environment map

– = rendering of scene from inside 
reflective object

– used to determine what would be 
seen in reflection direction
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Environment mapping

• Environment map can be 

– Spherical, 

•require calculation to convert 
direction through sphere into 2-
dim matrix location

– or 

– cube shaped …
u = 1

2
1+ 1

π
* arctan

Rx

Ry

 

 
  

 

 
  

 

 
  

 

 
  

v = R z + 1

2
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Environment mapping

• Cube shaped environment map 

– renders scene from center of object 
onto faces of a cube

• component of 
reflection vector with 
largest absolute 
value determines 
face reflection vector
goes through
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Environment Mapping
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Environment Mapping

• Location on correct face is calculated by:

• Where 

– a = component of reflection vector shown 
on horizontal axis, 

– b = component shown for vertical axis, 
and 

– c = component for chosen face

u = a + c

2 c

v = b + c

2 c
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Three-Dimensional Textures

• Very difficult (impossible?) to create texture 
that can be wrapped around irregularly 
shaped object without visible discontinuity

• 2-D texture applied to surface ==> 

– object can be thought to be carved out of 
3-D texture

• Storage requirements for 3-D texture 
extremely large

• ==> 3-D textures closely related to 
functional textures
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Functional Textures

• Calculation based on texture location

– Instead of stored image as texture

• Function continuous in every direction

– ==> texture continuous in every direction

• Space <---> computation time

• Change how texture calculated

– ==> many different textures can be 
created
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Noise

• 1st step : noise function

• True white noise is highly 
random

• For graphics, pseudo random 
noise that is repeatable is 
important

– Truly random noise ==> 
texture would change 

•every time image is 
rendered 

•or for every scene of 
animation
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Perlin Noise

• Perlin: developed noise function

– used in many Hollywood movies

• This noise function has:

– No statistical variance when rotated

– No statistical variance when 
translated

– Narrow range of values
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Turbulence

• 2nd step : build turbulence function 
on top of noise function

• Functional textures then built on top 
of turbulence function

• Turbulence function takes multiple 
samples of noise function at many 
different frequencies

• Different researchers frequently 
develop own turbulence function
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Peachy’s Turbulence 
Function

float turb(float x, float y, float z, float minFreq, 
float maxFreq)

{

float result = 0.0; 

for (float freq = minFreq; freq < maxFreq; freq = 
2.0*freq)

{

result += fabs( noise(x*freq, y*freq, z*freq ) / 
freq );

}

return result;

}
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Peachy’s Turbulence Results

• Samples have frequency ranges of 
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]
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Perlin’s Turbulence Function
float turb(float x, float y, float z, float minFreq, float 

maxFreq) // minFreq = lowest allowed; maxFreq = 
image resolution

{

float result = 0.0;

x = x + 123.456;

for (float freq = minFreq; freq < maxFreq; freq = 
2.0*freq)

{

result += fabs( noise(x, y, z ) ) / freq;

x *= 2.0;

y *= 2.0;

z *= 2.0;

}

// return the result adjusted so the mean is 0.0

return result-0.3;

}
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Perlin’s Turbulence Results

• Samples have frequency ranges of 
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]
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Marble Texture

• Perlin/Ebert marble function uses turbulence value 
to determine color for location

void marble(float x, float y, float z, float 
color[3])

{
float value = x + 3.0 * turb(x, y, z, 
minFreq, maxFreq);
marbleColor( sin(π * value), color );

}
• Variations how marbleColor function implemented

– Linear interpolation between light and dark color
– Spline-based interpolation between light and 

dark color



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

53

Linear Interpolation Marble 
Examples

• Samples have frequency ranges of 
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

54

Spline Interpolation Marble 
Examples

• Samples have frequency ranges of 
[1.0, 4.0], [1.0, 16.0], and [1.0, 256.0]
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Spline Interpolation Marble 
Examples

• Samples have a frequency range of 
[1.0, 256.0] and have no multiplier, 
and multipliers of 3 and 7
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Cosine Textures

• Based on summations of cosine curves

• Parameters in equation provide control 
on result

• 2-D equation is:

f ( x, y ) = C i * cos ω x i
* x + ΦGx( )+ φ x i( )+ A0[ ]

i=1

N

∑

* C i * cos ω y i
* y + ΦGy( )+ φ y i( )+ A0[ ]

i=1

N

∑
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Cosine Texture Parameters
• N controls # cos terms

– Typically 4 to 7

• Cons’ts ΦGx ΦGy = global phase shifts 

– move pattern

• Ci terms change amp of various cos com’s

• A0 terms shift pattern but related to Ci

terms

• ωx1 & ωy1 determine # times pattern repeats

• φxi
and φyi

= phase values

– interdependent with base periods of x & y
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Number of Cosines

• Examples show the results of using 1, 
4, and 7 cosines
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Global Phase Shift

• Examples with x global phase shifts of 
0 and 150 show that global phase 
shift moves the pattern
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Cosine Amplitude Ratio

• Examples show cosine amplitude 
ratios of 0.3535, 0.7070, and 1.414
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Cosine Offset

• Examples show cosine offset values of 
0.5, 1.0, and 1.5
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Base Periods

• 1st example : same base period (256) 
for x and y; 2nd : x base period of 256 
& y base period of 512
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Base Period Ratio

• Examples have base period ratios of 
1.5, 2.0, and 2.5
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Phase Shift Amplitude

• Examples have phase shift amplitudes 
of 0, π/4, π/2, and π
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Cosine Texture Results

• Cloud-like texture possible with 
4 cosine components, x global 
offset of 200, cosine amplitude 
ratio of 0.5, phase shift amplitude 
of π/2, cosine offset of 0.75, x 
base period of 655, y base period 
of 325, and base period ratio of 1.7 

• Bark-like texture possible with 
4 cosine components, cosine 
amplitude ratio of 0.707, cosine 
offset of 1.0, x base period of 
256, y base period of 1216, and 
base period ratio of 1.7 
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Antialiasing Textures

• Frequency of entity & rate 
sampled can cause visible 
artifacts

• Example: appears like 
multiple textures used

• Aliasing 
causes 
visible 
artifacts
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Aliasing Corrections

• Aliasing artifacts: reduced by altering 
sampling method

• Common techniques include

– Supersampling

– Supersampling with jittering

– Inverse mapping

• Techniques discussed re textures

– Apply to other antialiasing applications
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Supersampling

• Multiple evenly spaced samples taken 
from texture for each location

• Average / weighted average taken of 
samples to produce final result

• One weighted average uses 9 samples 
and filter (weighting):

1 2 1

2 4 2

1 2 1
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Supersampling With Jittering

• Sample locations shifted by random 
amount 

– Instead of evenly-spaced samples 

• ==> helps disturb regular sampling 
frequency



June 9, 2008 Dr. Haim Levkowitz
IVPR/CS/UML | www.cs.uml.edu/~haim

70

Supersampling Examples

• Supersampling

• Supersampling 
with jittering
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Inverse Mapping

• Area of pixel projected back onto object

• That object area projected back into texture

• Integrating or averaging values in this area 
of texture ==> final texture result to be 
used
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Inverse Mapping Example
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OpenGL Texture

• Steps to using texture in OpenGL :

– Create / load texture into OpenGL

– Enable texturing

– Specify how texture is to be used

– Specify texture coordinates for polygon vertices 
or surface corners

• Allows programmer to specify if texture is to be 
added before or after specular highlight

• Allows textures of varying resolutions to deal with 
aliasing problems

• Also support for environment mapping
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Texture Coordinates

• Texture coordinates 

– influence how texture is applied

– are in range [0.0, 1.0]

• If OpenGL told to repeat texture

– ==> values outside of range cause 
multiple copies of texture used

• If OpenGL told to clamp coordinates

– ==> any values 

•below range set to 0.0

•above range set to 1.0
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Texture Coordinates

• In 1st example, texture coordinates in 
range [0.0, 1.0]

• In 2nd example, texture coordinates in 
range [0.0, 0.5]
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Texture Coordinates

• By picking 
appropriate 
texture coordinates, 
two adjacent planes 
can be textured 
seamlessly
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Bézier Surface Texturing

• Bézier surfaces can be textured if 
points also supplied for four corner 
control points
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Specular Highlights

• OpenGL can include 
specular 
component 

– before 
texturing

– after 
texturing


