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SCC0602 - Algoritmos e 
Estruturas de Dados I

Minimum Spanning
Trees

Professor: André C. P. L. F. de Carvalho, ICMC-USP 
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

 Weighted Graphs

 Minimum Spanning Trees

 Greedy Choice Theorem

 Kruskal Algorithm

 Prim Algorithm
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Spanning Tree

 Given an undirected, connected graph G = (V,E)

 A spanning tree of G is a subgraph which:

 Contains all vertices of G (spans the graph G)

 Each edge is weighted by the function W: E  R 

 Is a tree

 How many edges are

there in a spanning tree

with V vertices?
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Minimum Spanning Trees

 Minimum spanning tree (MST)
 Spanning tree T that connects all vertices 

minimizing total cost

 How to find a MST?
 Optimization problem
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Example 1

 Road Problem
 A town has a set of houses                                     

and a set of roads

 A road connects 2 and                                     
only 2 houses

 A road connecting houses u
and v has a repair cost w(u, v)

 Goal: Repair enough roads such that:
 Everyone stays connected 

 Can reach every house from all other houses

 Total repair cost is minimum
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Example 2

 Electronic circuit problem

 Interconnect the pins of n                    
components in an electronic circuit

 It is possible to arrange n - 1                              
wires, each connecting two pins

 Goal: Use the least amount of wire 
 The wiring problem can be modeled                   acyclic 

by an undirected graph G = (V,E)
 V: set of pins

 E: set of possible interconnections between pairs of pins

 For each edge (u,v), there is a cost (amount of wire) to connect 
u and v
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Minimum Spanning Trees

 Other applications

 Clustering

 K-means: find MST and remove the k-1 most 
expensive edges

 Design of Network

 Cable TV, distributed systems, electrical, hydraulic, 
Road, Streets

 Taxonomy

 Animals, genes, 

 Travelling salesman problem
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Cutting a graph

A cut partitions 
vertices into
disjoint sets 
S and V – S
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A edge crossing the cut

A light edge crossing the 
cut (can be more than one)

The cut respects A =  {(a, b), (b, c)}

One endpoint is in S and the other is in V – S

No edge in the edge set A crosses the cut

Light edge: minimum 
weight edge crossing the cut
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Safe edge recognition rule

 Theorem 23.1: 

 Let (S, V-S) be any cut that respects A and let 
(u, v) be a light edge crossing (S, V-S)

 Then (u, v) is safe for A

 Proof:

 Let T be a MST that includes A

 Case 1: (u, v) in T
 It is proved

 Case 2: (u, v) not in T
 See next
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Proof of case 2

u y

x

v

edge in A

cut

Shows edges in T

Edge (x, y) crosses the cut
Let T´ = T - {(x, y)}  {(u, v)}

Since (u, v) is an light edge for 
cut, w(u, v)  w(x, y)
Thus  w(T´) = w(T) - w(x, y) + 
w(u, v)  w(T´)  w(T)
But T is a MST, thus
w(T)  w(T´)

Hence, T´ is also a MST
Thus, (u, v) is safe for A
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Greedy Algorithm for MST

 Greedy algorithm:
 Other algorithm design technique

 Anther is dynamic programming

 At each step, select, from the possible options, the 
best option at the moment

 Not guaranteed to find globally optimal solutions

 For the MST problem, some greedy algorithms 
can find globally optimal solutions

 Algorithm grows the MST one edge at the time

 Manages a set of edges A with the loop invariant: 
 Before each iteration, A is s subset of some MST
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Generic MST Algorithm

Generic-MST(G, w)
1 A// Contains edges that belong to a MST
2 while A does not form a spanning tree do
3    Find an edge (u,v) that is safe for A 
4 A A{(u,v)}
5 return A  

Safe edge : can be added to A maintaining the invariant

MoreSpecific-MST(G, w)
1 A// Contains edges that belong to a MST
2   while A does not form a spanning tree do
3.1    Make a cut (S, V-S) of G that respects A 
3.2    Take the min-weight edge (u,v) connecting S to V-S  
4 A A{(u,v)}
5 return A  
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Generic MST Algorithm

 Initialization: after line 1, set A satisfies the 
loop

 Maintenance: loop in lines 2-4 keep the 
invariant by adding only safe edges

 Termination: all edges added to A are in a 
MST

 Therefore, A returned in line 5 is a MST

 Challenge: find a safe edge for line 3
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Disjoint sets

 Groups n distinct elements into a collection 
of disjoint sets S

 Each disjoint set is identified by one of its 
members, called a representative

 In a forest of trees, each set can be a tree and each 
element a vertex in a tree 

 Two important operations are:

 Find to which set a given element belongs

 Unite two sets creating a new set
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Operations for disjoint sets

 MAKE-SET(x) creates a new set whose only 
member (and thus representative) is x
 Since the sets are disjoint, x must not already be in 

some other set from S (collection of sets)

 UNION(x, y) unites the sets that contain x and y
into a new set, the union of these two sets

 The two sets, Sx and Sy, are assumed to be disjoint
 The representative of the united set is any member of Sx  Sy

 The two previous sets are removed the collection S

 FIND-SET(x) returns a representative of the 
(unique) set containing x
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MST Algorithms

 Two MST algorithms are often employed 
 Use different rules to find a safe edge in line 3 

 Kruskal

 The set of edges A forms a forest of trees

 The safe edged added to A is always the least-weight 
edge in the graph connecting two components

 Prim-Jarnik (Prim)
 The set of edges A forms a single tree

 The safe edged added to A is always the least-weight 
edge in the graph connecting the tree to a vertex 
outside the tree
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Kruskal Algorithm

 Keeps adding the edge with the smallest weight  
that connects two trees of the forest

 One at a time

MST-Kruskal (G, w, r)
1 A  
2 for each v  V[G] do
3 MAKE-SET (v)
4  sort the edges of E into nondecreasing order by weight
5 for each edge (u,v)  E taken in nondecreasing by weight do
6      if FIND-SET(u)  FIND-SET (v)
7      then A  A  {(u,v)}
8 UNION (u,v)
9 return A
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1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b, c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)
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1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c) 

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

Exemple

Sort Edges

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}
MAKE-SET

A  A  {(u,v)}        UNION (u,v)

Example 2
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Exercise

 Apply Kruskak to the graph below (r =  B)

H

B
C

I

A

D

G

F E

 Keep track of:

 What is the set A, what is a collection S , what 
cuts did you make
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Kruskal Running Time

 Initialization O(V) time

 Sorting the edges Q(E lg E) = Q(E lg V) (why?)

 O(E) calls to FindSet 

 Union operation costs
 Let t(v) be the number of times v is moved to a new 

set (cluster)

 Each time a vertex is moved to a new set, the size of 
the new set at least doubles: t(v) log V

 Total time spent doing Union:

 Total time: O(E lg V) 

( ) log
v V

t v V V



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Prim-Jarnik Algorithm

 Vertex based algorithm

 Grows one tree T, one vertex at a time

 Stores the portion of T already computed 
in a set A

 Labels the vertices v outside of the set A
with key[v] 

 The minimum weigth of an edge connecting v 
to a vertex in A

 key[v] = , if no such edge exists
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Priority Queue

 Data structure to maintain a set S of elements, 
each with an associated value called a key

 A min-priority queue supports operations:

 INSERT(S, x) inserts the element x into the set S
This operation could be written as S ← S ∪ {x}

 MINIMUM(S) returns the element of S with the 
smallest key

 EXTRACT-MIN(S) removes and returns the element 
of S with the smallest key

 DECREASE-KEY(S, x, k) decreases the value of 
element x’ s key to the new value k
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Prim-Jarnik Algorithm

MST-Prim (G, w, r)
1 for each u  V[G] do
2 key[u]  
3       [u]  NIL
4 key[r]  0
5 Q  V[G]   // Q is a priority queue ADT
6 while Q   do 
7 u  EXTRACT-MIN(Q)  // make u part of T
8 for each v Adj[u] do
9 if v  Q and w(u, v) < key[v] // update keys
10 then [v]  u;
12 key[v]  w(u, v) // decrease key 

Complexity:
Using binary heaps: O(E lg V)

Initialization: O(V)
Building initial queue: O(V)
V Extract-Mins: O(V lgV)
E Decrease-Keys: O(E lg V)

Using Fibonacci heaps: O(E + V lg V)

Note: A = {(v, [v]) : v  v - {r} - Q}.
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Prim-Jarnik’s Example

 Apply Prim to the graph below (r =  B)

H

B
C

I

A

D

G

F E

 Keep track of:

 What is set A, which vertices are in Q, what 
cuts are we making, what are the key values 
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5 3

4 13 9

10
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Prim-Jarnik’s Running Time

 Time = |V|T(extractMin) + O(E)T(modifyKey)

 Binary heap implementation: 
 Time = O(V lgV + E lgV) = O(E lgV)   

Q T(extractMin) T(modifyKey) Total

array O(V) O(1) O(V 2)

binary heap O(lg V) O(lg V) O(E lgV )

Fibonacci 
heap

O(lg V) O(1) amortized O(V lgV +E )
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Next Lecture

 Single-source shortest paths in weighted 
graphs

 Shortest-Path Problems

 Dijkstra’s Algorithm

 Bellman-Ford Algorithm

 Shortest-Paths in DAG’s
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Questions
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