
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Minimum Spanning
Trees

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

 Weighted Graphs

 Minimum Spanning Trees

 Greedy Choice Theorem

 Kruskal Algorithm

 Prim Algorithm

André de Carvalho - ICMC/USP 2

Spanning Tree

 Given an undirected, connected graph G = (V,E)

 A spanning tree of G is a subgraph which:

 Contains all vertices of G (spans the graph G)

 Each edge is weighted by the function W: E  R

 Is a tree

 How many edges are

there in a spanning tree

with V vertices?

André de Carvalho - ICMC/USP 3

Minimum Spanning Trees

 Minimum spanning tree (MST)
 Spanning tree T that connects all vertices

minimizing total cost

 How to find a MST?
 Optimization problem

(,)

() (,)
u v T

w T w u v


 

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

André de Carvalho - ICMC/USP 4

Minimum Spanning Trees

 Minimum spanning tree (MST)
 Spanning tree T that connects all vertices

minimizing total cost

 How to find a MST?
 Optimization problem

(,)

() (,)
u v T

w T w u v


 

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

André de Carvalho - ICMC/USP 5

Example 1

 Road Problem
 A town has a set of houses

and a set of roads

 A road connects 2 and
only 2 houses

 A road connecting houses u
and v has a repair cost w(u, v)

 Goal: Repair enough roads such that:
 Everyone stays connected

 Can reach every house from all other houses

 Total repair cost is minimum

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

André de Carvalho - ICMC/USP 6

CHOROCHRONOS Midter Review

Timos Sellis 2

Example 2

 Electronic circuit problem

 Interconnect the pins of n
components in an electronic circuit

 It is possible to arrange n - 1
wires, each connecting two pins

 Goal: Use the least amount of wire
 The wiring problem can be modeled acyclic

by an undirected graph G = (V,E)
 V: set of pins

 E: set of possible interconnections between pairs of pins

 For each edge (u,v), there is a cost (amount of wire) to connect
u and v

André de Carvalho - ICMC/USP 7

Minimum Spanning Trees

 Other applications

 Clustering

 K-means: find MST and remove the k-1 most
expensive edges

 Design of Network

 Cable TV, distributed systems, electrical, hydraulic,
Road, Streets

 Taxonomy

 Animals, genes,

 Travelling salesman problem

André de Carvalho - ICMC/USP 8

Cutting a graph

A cut partitions
vertices into
disjoint sets
S and V – S

b ca

d e f

5

11

0

3 1

7

-3

2

A edge crossing the cut

A light edge crossing the
cut (can be more than one)

The cut respects A = {(a, b), (b, c)}

One endpoint is in S and the other is in V – S

No edge in the edge set A crosses the cut

Light edge: minimum
weight edge crossing the cut

André de Carvalho - ICMC/USP 9

Safe edge recognition rule

 Theorem 23.1:

 Let (S, V-S) be any cut that respects A and let
(u, v) be a light edge crossing (S, V-S)

 Then (u, v) is safe for A

 Proof:

 Let T be a MST that includes A

 Case 1: (u, v) in T
 It is proved

 Case 2: (u, v) not in T
 See next

André de Carvalho - ICMC/USP 10

Proof of case 2

u y

x

v

edge in A

cut

Shows edges in T

Edge (x, y) crosses the cut
Let T´ = T - {(x, y)}  {(u, v)}

Since (u, v) is an light edge for
cut, w(u, v)  w(x, y)
Thus w(T´) = w(T) - w(x, y) +
w(u, v)  w(T´)  w(T)
But T is a MST, thus
w(T)  w(T´)

Hence, T´ is also a MST
Thus, (u, v) is safe for A

André de Carvalho - ICMC/USP 11

Greedy Algorithm for MST

 Greedy algorithm:
 Other algorithm design technique

 Anther is dynamic programming

 At each step, select, from the possible options, the
best option at the moment

 Not guaranteed to find globally optimal solutions

 For the MST problem, some greedy algorithms
can find globally optimal solutions

 Algorithm grows the MST one edge at the time

 Manages a set of edges A with the loop invariant:
 Before each iteration, A is s subset of some MST

André de Carvalho - ICMC/USP 12

CHOROCHRONOS Midter Review

Timos Sellis 3

Generic MST Algorithm

Generic-MST(G, w)
1 A// Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 Find an edge (u,v) that is safe for A
4 A A{(u,v)}
5 return A

Safe edge : can be added to A maintaining the invariant

MoreSpecific-MST(G, w)
1 A// Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that respects A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A A{(u,v)}
5 return A

André de Carvalho - ICMC/USP 13

Generic MST Algorithm

 Initialization: after line 1, set A satisfies the
loop

 Maintenance: loop in lines 2-4 keep the
invariant by adding only safe edges

 Termination: all edges added to A are in a
MST

 Therefore, A returned in line 5 is a MST

 Challenge: find a safe edge for line 3

André de Carvalho - ICMC/USP 14

Disjoint sets

 Groups n distinct elements into a collection
of disjoint sets S

 Each disjoint set is identified by one of its
members, called a representative

 In a forest of trees, each set can be a tree and each
element a vertex in a tree

 Two important operations are:

 Find to which set a given element belongs

 Unite two sets creating a new set

André de Carvalho - ICMC/USP 15

Operations for disjoint sets

 MAKE-SET(x) creates a new set whose only
member (and thus representative) is x
 Since the sets are disjoint, x must not already be in

some other set from S (collection of sets)

 UNION(x, y) unites the sets that contain x and y
into a new set, the union of these two sets

 The two sets, Sx and Sy, are assumed to be disjoint
 The representative of the united set is any member of Sx  Sy

 The two previous sets are removed the collection S

 FIND-SET(x) returns a representative of the
(unique) set containing x

André de Carvalho - ICMC/USP 16

MST Algorithms

 Two MST algorithms are often employed
 Use different rules to find a safe edge in line 3

 Kruskal

 The set of edges A forms a forest of trees

 The safe edged added to A is always the least-weight
edge in the graph connecting two components

 Prim-Jarnik (Prim)
 The set of edges A forms a single tree

 The safe edged added to A is always the least-weight
edge in the graph connecting the tree to a vertex
outside the tree

André de Carvalho - ICMC/USP 17

Kruskal Algorithm

 Keeps adding the edge with the smallest weight
that connects two trees of the forest

 One at a time

MST-Kruskal (G, w, r)
1 A  
2 for each v  V[G] do
3 MAKE-SET (v)
4 sort the edges of E into nondecreasing order by weight
5 for each edge (u,v)  E taken in nondecreasing by weight do
6 if FIND-SET(u)  FIND-SET (v)
7 then A  A  {(u,v)}
8 UNION (u,v)
9 return A

André de Carvalho - ICMC/USP 18

CHOROCHRONOS Midter Review

Timos Sellis 4

1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b, c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c)

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

Exemple

Sort Edges

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}
MAKE-SET

A  A  {(u,v)} UNION (u,v)

Example 2

André de Carvalho - ICMC/USP 20

c

d
b

a

4

2

6
1

3

c

d
b

a

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2
6

1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

2

1

3

Exercise

 Apply Kruskak to the graph below (r = B)

H

B
C

I

A

D

G

F E

 Keep track of:

 What is the set A, what is a collection S , what
cuts did you make

1

6
8

4

12

8

3

6

5 3

4 13 9

10

André de Carvalho - ICMC/USP 21

Kruskal Running Time

 Initialization O(V) time

 Sorting the edges Q(E lg E) = Q(E lg V) (why?)

 O(E) calls to FindSet

 Union operation costs
 Let t(v) be the number of times v is moved to a new

set (cluster)

 Each time a vertex is moved to a new set, the size of
the new set at least doubles: t(v) log V

 Total time spent doing Union:

 Total time: O(E lg V)

() log
v V

t v V V




André de Carvalho - ICMC/USP 22

Prim-Jarnik Algorithm

 Vertex based algorithm

 Grows one tree T, one vertex at a time

 Stores the portion of T already computed
in a set A

 Labels the vertices v outside of the set A
with key[v]

 The minimum weigth of an edge connecting v
to a vertex in A

 key[v] = , if no such edge exists
André de Carvalho - ICMC/USP 23

Priority Queue

 Data structure to maintain a set S of elements,
each with an associated value called a key

 A min-priority queue supports operations:

 INSERT(S, x) inserts the element x into the set S
This operation could be written as S ← S ∪ {x}

 MINIMUM(S) returns the element of S with the
smallest key

 EXTRACT-MIN(S) removes and returns the element
of S with the smallest key

 DECREASE-KEY(S, x, k) decreases the value of
element x’ s key to the new value k

André de Carvalho - ICMC/USP 24

CHOROCHRONOS Midter Review

Timos Sellis 5

Prim-Jarnik Algorithm

MST-Prim (G, w, r)
1 for each u  V[G] do
2 key[u]  
3 [u]  NIL
4 key[r]  0
5 Q  V[G] // Q is a priority queue ADT
6 while Q   do
7 u  EXTRACT-MIN(Q) // make u part of T
8 for each v Adj[u] do
9 if v  Q and w(u, v) < key[v] // update keys
10 then [v]  u;
12 key[v]  w(u, v) // decrease key

Complexity:
Using binary heaps: O(E lg V)

Initialization: O(V)
Building initial queue: O(V)
V Extract-Mins: O(V lgV)
E Decrease-Keys: O(E lg V)

Using Fibonacci heaps: O(E + V lg V)

Note: A = {(v, [v]) : v  v - {r} - Q}.
André de Carvalho - ICMC/USP 25

André de Carvalho -
ICMC/USP

b/ c/a/0

d/ e/ f/

5

11

0

3
1

7

-3

2

Q = a b c d e f
0  

Not in tree T

Example of Prim Algorithm

26

André de Carvalho -
ICMC/USP

b/5 c/a/0

d/11 e/ f/

5

11

0

3
1

7

-3

2

Q = b d c e f
5 11  

Example of Prim Algorithm

27
André de Carvalho -
ICMC/USP

b/5 c/7a/0

d/11 e/3 f/

5

11

0

3
1

7

-3

2

Q = e c d f
3 7 11 

Example of Prim Algorithm

28

André de Carvalho -
ICMC/USP

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3
1

7

-3

2

Q = d c f
0 1 2

Example of Prim Algorithm

29
André de Carvalho -
ICMC/USP

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3
1

7

-3

2

Q = c f
1 2

Example of Prim Algorithm

30

CHOROCHRONOS Midter Review

Timos Sellis 6

André de Carvalho -
ICMC/USP

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3
1

7

-3

2

Q = f
-3

Example of Prim Algorithm

31
André de Carvalho -
ICMC/USP

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3
1

7

-3

2

Q = 

Example of Prim Algorithm

32

André de Carvalho -
ICMC/USP

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3
1 -3

Example of Prim Algorithm

33

Prim-Jarnik’s Example

 Apply Prim to the graph below (r = B)

H

B
C

I

A

D

G

F E

 Keep track of:

 What is set A, which vertices are in Q, what
cuts are we making, what are the key values

1

6
8

4

12

8

3

6

5 3

4 13 9

10

André de Carvalho - ICMC/USP 34

Prim-Jarnik’s Running Time

 Time = |V|T(extractMin) + O(E)T(modifyKey)

 Binary heap implementation:
 Time = O(V lgV + E lgV) = O(E lgV)

Q T(extractMin) T(modifyKey) Total

array O(V) O(1) O(V 2)

binary heap O(lg V) O(lg V) O(E lgV)

Fibonacci
heap

O(lg V) O(1) amortized O(V lgV +E)

André de Carvalho - ICMC/USP 35

Next Lecture

 Single-source shortest paths in weighted
graphs

 Shortest-Path Problems

 Dijkstra’s Algorithm

 Bellman-Ford Algorithm

 Shortest-Paths in DAG’s

André de Carvalho - ICMC/USP 36

CHOROCHRONOS Midter Review

Timos Sellis 7

Acknowledgement

 A large part of this material were adapted from
 Simonas Šaltenis, Algorithms and Data Structures,

Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

André de Carvalho - ICMC/USP 37

Questions

André de Carvalho - ICMC/USP 38

