CHOROCHRONOS Midter Review

SCCO0602 - Algoritmos e
Estruturas de Dados 1

il

Minimum Spanning
Trees

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

i Today

= Weighted Graphs

= Minimum Spanning Trees
= Greedy Choice Theorem
= Kruskal Algorithm
= Prim Algorithm

André de Carvalho - ICMC/USP 2

i Spanning Tree

= Given an undirected, connected graph G = (V,E)
= A spanning tree of G is a subgraph which:

= Contains all vertices of G (spans the graph G)

= Each edge is weighted by the function Wt £— R

= Is atree
= How many edges are

there in a spanning tree

with Vvertices?

G spanning tree of G

André de Carvalho - ICMC/USP 3

i Minimum Spanning Trees

= Minimum spanning tree (MST)
= Spanning tree 7 that connects all vertices
minimizing total cost w(I)= 3 w(u.v)
= How to find a MST?
= Optimization problem

(uw)el

André de Carvalho - ICMC/USP 4

i Minimum Spanning Trees

= Minimum spanning tree (MST)
= Spanning tree 7 that connects all vertices
minimizing total cost w(7)= Y w(w.v)
= How to find a MST?
= Optimization problem

(uw)el

André de Carvalho - ICMC/USP 5

i Example 1

= Road Problem .
' P

8 o
= A town has a set of houses 4 ;
and a set of roads
= A road connects 2 and %l ;‘/—% 4 14/&
only 2 houses 8N 1/ el
P AE e

= Aroad connecting houses u 8= | S8
and v has a repair cost w(u, v)
= Goal: Repair enough roads such that:

= Everyone stays connected
= Can reach every house from all other houses

= Total repair cost is minimum

André de Carvalho - ICMC/USP 6

Timos Sellis

CHOROCHRONOS Midter Review

i Example 2

= Electronic circuit problem I

= Interconnect the pins of n
components in an electronic circuit

= It is possible to arrange n - 1
wires, each connecting two pins
= Goal: Use the least amount of wire

= The wiring problem can be modeled
by an undirected graph G = (V,E)
V: set of pins
E: set of possible interconnections between pairs of pins

For each edge (u,v), there is a cost (amount of wire) to connect
uand v

André de Carvalho - ICMC/USP 7

i Minimum Spanning Trees

= Other applications

= Clustering
= K-means: find MST and remove the k-1 most
expensive edges
= Design of Network
= Cable TV, distributed systems, electrical, hydraulic,
Road, Streets & -

o
= Taxonomy -@{: \ \‘[’ﬂ\ﬁ
b N i
= Animals, genes, =
__\-.._fn.'"
= Travelling salesman problem =
André de Carvalho - ICMC/USP 8

i Cutting a graph

No edge in the edge set A crosses the cut
The cut respects A= {(a, b), (b, ¢)} Light edge: minimum

weight edge crossing the cut
5
A cut partitions 9 @ o
vertices into
disjoint sets \ 11
Sand V-8 @

A light edge crossing the
‘_3/ cut (can be more than one)
-
@ —®

A edge crossing the cut
One endpoint is in S and the other is in V'—§

André de Carvalho - ICMC/USP 9

i Safe edge recognition rule

= Theorem 23.1:
= Let (S, V-S) be any cut that respects A and let
(u, v) be a light edge crossing (S, V-S)
= Then (u, v) is safe for A
= Proof:
« Let T be a MST that includes A
=« Casel: (u,v)inT
= It is proved
« Case 2: (u,v) notinT
= See next

André de Carvalho - ICMC/USP 10

i Proof of case 2

edge i“\A‘ Edge (x, y) crosses the cut

e LetT" =T- {(x,y)} U {(u,V)}

D cut Since (u, v) is an light edge for
N cut, w(u, v) < w(x, y)
N
N N

Thus w(T") = w(T) - w(x, y) +
w(u, v) = w(T") <w(T)
But T is a MST, thus
Shows edges in T w(T) <w(T")
Hence, T’ is also a MST
Thus, (u, v) is safe for A

André de Carvalho - ICMC/USP 11

i Greedy Algorithm for MST

= Greedy algorithm:
= Other algorithm design technique
= Anther is dynamic programming

= At each step, select, from the possible options, the
best option at the moment

= Not guaranteed to find globally optimal solutions
= For the MST problem, some greedy algorithms
can find globally optimal solutions
= Algorithm grows the MST one edge at the time

= Manages a set of edges A with the loop invariant:
= Before each iteration, A is s subset of some MST

André de Carvalho - ICMC/USP 12

Timos Sellis

CHOROCHRONOS Midter Review

* Generic MST Algorithm

Generic-MST (G, w)

1 A« // Contains edges that belong to a MST
2 while A does not form a spanning tree do

3 Find an edge (u,v) that is safe for A

4 A « AU{ (u,v)}

5 return A

Safe edge : can be added to A maintaining the invariant

MoreSpecific-MST (G, w)

1 A<Q // Contains edges that belong to a MST

2 while A does not form a spanning tree do

I Make a cut (S, V-S) of G that respects A

3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A < AU{(u,v)}

5 return A

André de Carvalho - ICMC/USP 13

i Generic MST Algorithm

= Initialization: after line 1, set A satisfies the
loop

= Maintenance: loop in lines 2-4 keep the
invariant by adding only safe edges

= Termination: all edges added to A arein a
MST

= Therefore, A returned in line 5 is a MST
= Challenge: find a safe edge for line 3

André de Carvalho - ICMC/USP 14

* Disjoint sets

= Groups n distinct elements into a collection
of disjoint sets S

= Each disjoint set is identified by one of its
members, called a representative

= In a forest of trees, each set can be a tree and each
element a vertex in a tree

= Two important operations are:
= Find to which set a given element belongs
= Unite two sets creating a new set

André de Carvalho - ICMC/USP 15

i Operations for disjoint sets

= MAKE-SET (x) creates a new set whose only
member (and thus representative) is x
= Since the sets are disjoint, x mustnot already be in
some other set from S (collection of sets)
= UNION(X,) unites the sets that contain xand y
into a new set, the union of these two sets
= The two sets, S, and S,, are assumed to be disjoint
= The representative of the united set is any member of S, U S,
= The two previous sets are removed the collection S
= FIND-SET(x) returns a representative of the
(unique) set containing x

André de Carvalho - ICMC/USP 16

* MST Algorithms

= Two MST algorithms are often employed

= Use different rules to find a safe edge in line 3

= Kruskal
= The set of edges A forms a forest of trees
= The safe edged added to A is always the least-weight

edge in the graph connecting two components

= Prim-Jarnik (Prim)

= The set of edges A forms a single tree

= The safe edged added to A is always the least-weight
edge in the graph connecting the tree to a vertex
outside the tree

André de Carvalho - ICMC/USP 17

Timos Sellis

i Kruskal Algorithm

= Keeps adding the edge with the smallest weight
that connects two trees of the forest
= One at a time

MST-Kruskal (G, w, r)

14O

2 for eachv € V[G] do

3 MAKE-SET (v)

4 sort the edges of E into nondecreasing order by weight

5 for each edge (u,v) € E taken in nondecreasing by weight do
6 if FIND-SET(u) # FIND-SET (v)

7 thenA AU {(uv)}

8 UNION (u,v)

9 return A

André de Carvalho - ICMC/USP 18

CHOROCHRONOS Midter Review

* Exemple
A«AU {(uv) UNION (uyv)

° o 1. Add (h, g) {g. h}, {a}, {b}, {c}, {d}, {e}. {f}. {i}
2. Add (c, i) {g. h} {c. i}, {a}, {b}. {d}, {e}. {f}
3. Add (g, f) {9, h. 7. {c. 1, {a}, {b}, {d}. {e}
4. Add (a, b) {g.h. . {c. 1}, {a, b}, {d}, {e}
5. Add (c, f) {g.h.f.c. i}, {a, b}, {d}, {e}
6.
7.
8.
9.

Ignore (i, g) {g.h.f.c. i} {a, b}, {d}. e}

MAKE-SET

), b}, (o}, (), (e}, {6}, {gp, (hy, gy 7 Add @ d) oo idh da bl fe)
Sort Edges Ignore (i, h) {g.h.f.c i d}, {a, b} {e}
1:(h, @) 8: (a, h), (b, c) Add (3, h) {g.h.fcid ab){e}
2:(c,i), (@, f) 9:(d, e) 0. Ignore (b, ¢) {g.h.f c.i d, a, b} {e}
4:(a, b), (c, f) 10: (e,) 1 Add(d,e) {g.hfcidabe
6: (i, 9) 11: (b, h) 12. Ignore (e, f) {g.hf.cid ab,e}
7: (c, d), (i, h) 14:(d, f) 3. Ignore (b, h) {g.h.fc i d ab,e}

14. Ignore (d, f) {g.hfcidab e

i Example 2
®

André de Carvalho - ICMC/USP 20

* Exercise

= Apply Kruskak to the graph below (r = B)

= Keep track of:

= What is the set A4, what is a collection S, what
cuts did you make

André de Carvalho - ICMC/USP 21

* Prim-Jarnik Algorithm

= Vertex based algorithm

= Grows one tree T, one vertex at a time

= Stores the portion of T already computed
inasetA

= Labels the vertices v outside of the set A
with key[Vv]

= The minimum weigth of an edge connecting v
to a vertex in A

= key[v] = o, if no such edge exists

André de Carvalho - ICMC/USP 23

Timos Sellis

i Kruskal Running Time

= Initialization (V) time

= Sorting the edges O(£1g £) = O(£lg V) (why?)
E) calls to FindSet

= Union operation costs

» Let {v) be the number of times vis moved to a new
set (cluster)

= Each time a vertex is moved to a new set, the size of
the new set at least doubles: #v)<log V

= Total time spent doing Union: " «(v) <[V|log[V|
Total time: A £lg V) <

André de Carvalho - ICMC/USP 22

i Priority Queue

= Data structure to maintain a set S of elements,
each with an associated value called a key

= A min-priority queue supports operations:

» INSERT(S, x) inserts the element x into the set S
This operation could be written as S« Su {x}

=« MINIMUM(S) returns the element of Swith the
smallest key

» EXTRACT-MIN(S) removes and returns the element
of Swith the smallest key

=« DECREASE-KEY (5, x, k) decreases the value of
element X s key to the new value £

André de Carvalho - ICMC/USP 24

CHOROCHRONOS Midter Review

* Prim-Jarnik Algorithm

Complexity:

Using binary heaps: O(E Ig V)
Initialization: O(V)
Building initial queue: O(V)
V Extract-Mins: O(V IgV)
E Decrease-Keys: O(E g V)

MST-Prim (G, w, r)

1 for each u € V[G] do
2 key[u] « o

3 n[u] < NIL

4 key[r] <0 . i X
5Q< V[G] //Qisapriority queue ADT Using Fibonacci heaps: O(E + V Ig V)

6 while Q = & do
7 u< EXTRACT-MIN(Q) // make u part of T
8 foreach v e Adj[u] do

9 if v e Q and w(u, v) <key[v] // update keys
10 then n[v] < u;
12 key[v] < w(u, v) // decrease key

Note: A= {(v, n[v]) : v e v- {r} - Q}.
André de Carvalho - ICMC/USP 25

i Example of Prim Algorithm

Not in tree T

—

Q=abcdef

0 0 +—w

André de Carvalho -
ICMC/usP

* Example of Prim Algorithm

Q=bdcef

511 co+—=>o0

André de Carvalho -
ICMC/USP 27

i Example of Prim Algorithm

André de Carvalho -
ICMC/UsP

* Example of Prim Algorithm

André de Carvalho -
ICMC/USP 29

Timos Sellis

i Example of Prim Algorithm

André de Carvalho -
ICMC/uUsP

CHOROCHRONOS Midter Review

André de Carvalho -
ICMC/USP

i Example of Prim Algorithm

i Example of Prim Algorithm

André de Carvalho -
ICMC/usP

i Example of Prim Algorithm

André de Carvalho -
ICMC/USP

i Prim-Jarnik’s Example

= Apply Prim to the graph below (r = B)

= Keep track of:

= What is set A4, which vertices are in @, what
cuts are we making, what are the key values

André de Carvalho - ICMC/USP 34

i Prim-Jarnik’s Running Time

= Time = | Y T{extractMin) + O(£) T{modifyKey)
= Binary heap implementation:
= Time = QVigV+ Elgh) = AEIgl)

Q T(extractMin) | T(modifyKey) | Total

array av al) av?y
binary heap | Xlg 1) Alg V) AElgV)
Fibonacci Alg V) (1) amortized | VIgV+E)
heap

André de Carvalho - ICMC/USP

Timos Sellis

i Next Lecture

= Single-source shortest paths in weighted
graphs
= Shortest-Path Problems
= Dijkstra’s Algorithm
= Bellman-Ford Algorithm
= Shortest-Paths in DAG's

André de Carvalho - ICMC/USP 36

CHOROCHRONOS Midter Review

Timos Sellis

* Acknowledgement

= A large part of this material were adapted from

= Simonas Saltenis, Algorithms and Data Structures,
Aalborg University, Denmark

= Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

= George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

= David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

André de Carvalho - ICMC/USP 37

i Questions

André de Carvalho - ICMC/USP

