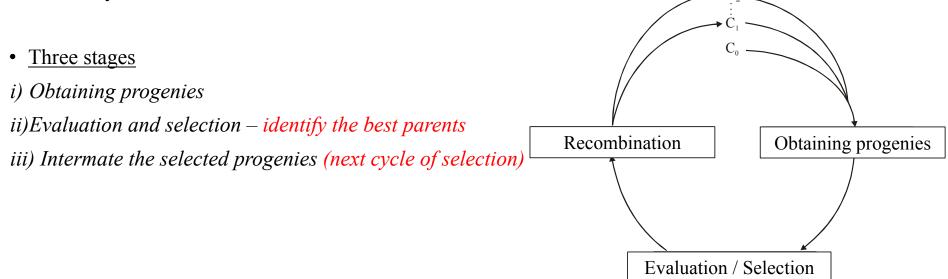


Recurrent selection

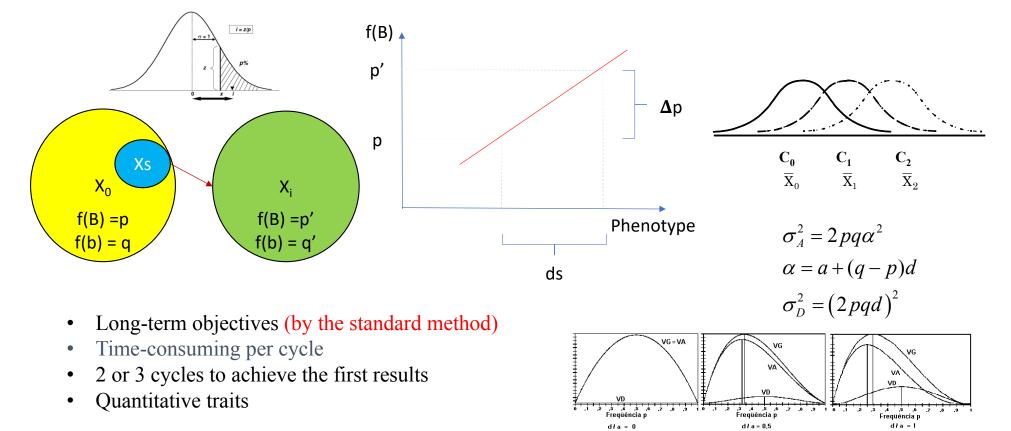
Prof. Roberto Fritsche-Neto

roberto.neto@usp.br

Piracicaba, June 15th, 2018

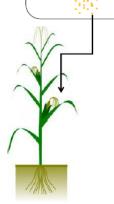

Applications

- Heterogeneous populations
- Advantages
- Disadvantages
- There is a limit of heterosis exploited
- It is difficult to identify the best balance between genetic variability, heterozygosity, and number of cycles
- Types of population
- Synthetics
- Pre-breeding
- Heterotic groups
- Open-pollinated varieties (OPV)

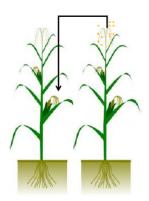


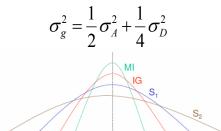
Definition and scheme

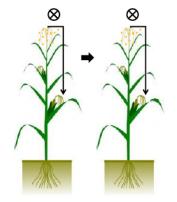
- Continuous process which aims the increasing of the allele frequencies but without miss substantial genetic variability.
- Dynamic process every cycle is possible to release na improved material and add more genetic variability


Main features

Stages of recurrent selection


• Stage 1: obtaining progenies




Half-sibs (HS) Open-pollinated

Full-sibs (FS) Controlled pollination

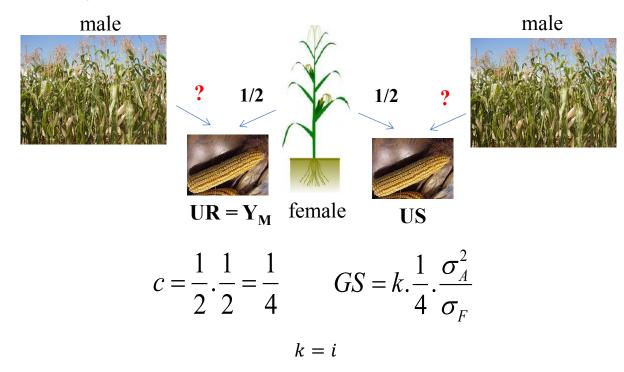
Self-pollinated (Sn) Controlled pollination

$$\sigma_g^2 = \frac{1}{2}\sigma_A^2$$

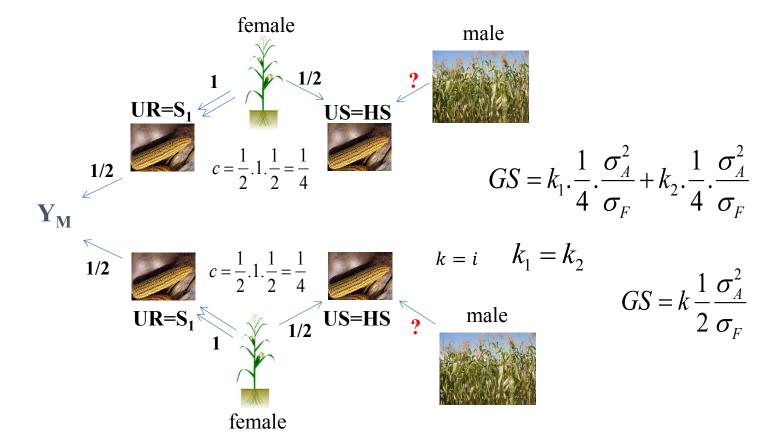
Stages of recurrent selection

- Stage 2: evaluation and selection
- Breeding objectives

$$RS = \frac{i}{\sigma_P} c \sigma_A^2$$


$$RS = \frac{i}{\sigma_P} c \left(\sigma_A^2 + \frac{D1}{2Ne} \right) - \frac{ID}{2Ne}$$

ves	Evaluate	Intermate	c	Ne	Ne (10% of 200)	D ₁	
	HS	HS	1⁄4	4	80	0	% 20 10 1 0.1
	HS	\mathbf{S}_1	1/2	1	20	0	<i>i</i> 1.40 1.76 2.67 3.37
ID	FS	FS	1/2	2	40	0	1
2Ne	FS	\mathbf{S}_1	1/2	1	20	0	$Ne = \frac{1}{2F}$
	S_1	\mathbf{S}_1	1	1	20	0.5	2F


- c = Parental control and additive covariance between the units of selection and recombination
- D_1 = covariance between additive and dominance effects in the homozygous genotypes
- **DE** = inbreeding depression
- Effective population size evaluation (200) and intermate (30 to 40)
- Avoid to miss the genetic variability and boost the genetic drift

Scheme based on one type of progenies

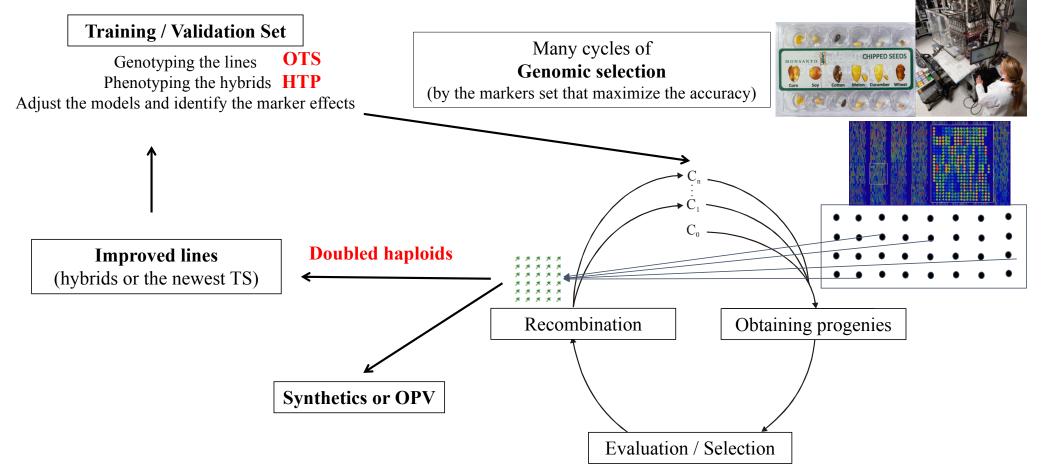
• Among half-sibs (only one sex)

Scheme based on two types of progenies – HS / S_1

Stages of recurrent selection

• Stage 3: intermate

- Produce genetic variability for the next cycle
- Combine the superior allele/genes selected from different individuals in the newest genotypes



- 50 plants at least in the female rows
- Just one cycle of random intermate is enough to achieve the HWE

Macho mistura das sementes das progênies selecionadas Fêmea: progênies selecionadas

• Use the same number of seeds to hybridize and to compose the post-harvest sample

Genomic Recurrent Selection

Is this an worthy effort?

TABELA 6. Número de indíviduos a serem avaliados em um ciclo seletivo para se obter uma linhagem com o mesmo número de alelos favoráveis de dois ciclos seletivos, considerando 40 locos segregantes e diferentes números de famílias (Q) sendo avaliadas.

abilities of the second		Número de famílias		
Núm	ero desejado de alelos favoráveis	Dois ciclos seletivos	Um ciclo seletivo	Q,/2Q
	dues (mhaques, Masse a	Q=Q'	Q,	
	31,3	50	3500	35
	32,6	100	18800	94
STOL S	33,8	200	116400	291
in the	34,8	400	543200	679

^{1/}Q=Q' indica que o mesmo número de famílias foi considerado nos dois ciclos.