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Abstract—As standards and accountability have become increasingly
prominent features of the educational landscape, educators have relied
more on remedial programs such as summer school and grade retention to
help low-achieving students meet minimum academic standards. Yet the
evidence on the effectiveness of such programs is mixed, and prior
research suffers from selection bias. However, recent school reform efforts
in Chicago provide an opportunity to examine the causal impact of these
remedial education programs. In 1996, the Chicago Public Schools insti-
tuted an accountability policy that tied summer school and promotional
decisions to performance on standardized tests, which resulted in a highly
nonlinear relationship between current achievement and the probability of
attending summer school or being retained. Using a regression disconti-
nuity design, we find that the net effect of these programs was to
substantially increase academic achievement among third-graders, but not
sixth-graders. In addition, contrary to conventional wisdom and prior
research, we find that retention increases achievement for third-grade
students and has little effect on math achievement for sixth-grade students.

I. Introduction

EDUCATION is one of the most important avenues
through which governments can address concerns of

economic growth and equity. Human capital plays a sub-
stantial role in the economic growth of nations (Topel,
1999), and in the past two decades skill-biased technical
change has increased the returns to schooling, exacerbating
wage inequality between the most and least educated mem-
bers of our society (Katz & Murphy, 1992). At the same
time, cognitive ability has become an increasingly impor-
tant determinant of labor market success in this country
(Murnane, Willet, & Levy, 1995).

Aware of the importance of education, economists have
spent considerable effort examining what factors affect
academic achievement. There is a large literature on the
importance of financial resources in determining educa-
tional outcomes.1 However, researchers have paid consider-
ably less attention to remedial programs designed to im-
prove the performance of low-achieving students, including
summer school and grade retention (Eide & Showalter,
2001).

Such policies, however, have become increasingly popu-
lar in recent years. Sixteen states provide funding for dis-

tricts that institute summer programs, require summer
school attendance for students who do not meet academic
expectations, or require districts to offer summer school to
low-achieving students (ECS, 2000). In the summer of
1999, New York City provided summer help for 70,000
students, and Chicago required over 30,000 low-achieving
students to attend summer classes. Other urban districts with
summer programs include Houston, with 8,000 students
enrolled; Boston, with 6,500; Denver, with 6,000; Los
Angeles, with 139,000; and the District of Columbia, with
30,000 (Pipho, 1999). There is a growing interest in grade
retention as well. Nineteen states explicitly tie student
promotion to performance on a state or district assessment
(ECS, 2000). The largest school districts in the country,
including New York City, Los Angeles, Chicago, and Wash-
ington, DC, have recently implemented policies requiring
students to repeat a grade when they do not demonstrate
sufficient mastery of basic skills.

Despite their popularity, these practices—particularly
grade retention—remain controversial. Prior research sug-
gests that summer school has a substantial positive effect on
student learning in the short run, but there is less evidence
regarding the sustainability of achievement gains made
during the summer. In contrast, the majority of retention
studies find that the practice of requiring students to repeat
a grade decreases self-esteem, school adjustment, and aca-
demic achievement, and increases dropout rates. However,
prior studies fail to take account of the selection of students
into these programs, thus potentially overstating the benefits
of summer school and exaggerating the harm of retention.

In this paper, we use a regression discontinuity design to
examine the causal effect of summer school and grade
retention on student achievement. In 1996, the Chicago
Public Schools (CPS) instituted an accountability policy
that tied summer school attendance and promotional deci-
sions to performance on standardized tests. That policy
resulted in a highly nonlinear relationship between current
achievement and the probability of attending summer
school or being retained.2 We use the exogenous variation
generated by the decision rule to identify the impact of these
remedial programs.

We find that summer school increased academic achieve-
ment in reading and mathematics and that these positive
effects remain substantial at least two years following the
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1 Hanushek (1996) and Hedges and Greenwald (1996) present contrast-
ing views regarding the effectiveness of resources in improving student
achievement. Many researchers have also focused on the effect of class
size on student outcomes. These studies include works by Angrist and
Lavy (1999), Krueger (1999), and Hoxby (2000).

2 In prior work, we have examined the potential motivational effects of
these requirements and found that the policy increased achievement,
particularly among older students (Jacob, 2002; Roderick et al., 2000). In
this analysis, we set aside the incentives associated with the policy and
instead focus on the direct academic consequences of summer school and
grade retention for those students who fail to meet the promotional
standards.
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completion of the program. In contrast to prior studies, we
find that retention has no negative consequences on the
academic achievement of students retained in the third
grade—indeed, it appears that retention may actually in-
crease performance in the short run. The impact of retention
on older students is mixed, with no impact on math and a
negative effect on reading.3

The remainder of this paper is organized as follows.
Section II reviews the previous literature on summer school
and grade retention. Section III provides background on the
Chicago policy. Section IV describes our data, and section V
explains our empirical strategy. Section VI presents findings
on the net effect of summer school and retention. Section
VII presents findings on the separate effect of grade reten-
tion. Section VIII examines the independent effect of sum-
mer school. Section IX discusses these findings and con-
cludes.

II. Previous Literature on Summer School
and Grade Retention

Both summer school and grade retention have a long
history within American education, dating back to the in-
troduction of mass public education in the mid-nineteenth
century (Shepard & Smith, 1989). Both practices have been
widely implemented and have received considerable atten-
tion from researchers. However, prior studies do not ade-
quately address the potential biases introduced by the non-
random selection into summer school and retention.

In a detailed synthesis of 93 summer school evaluations,
Cooper et al. (2000) concluded that remedial summer pro-
grams increased achievement by roughly 0.25 standard
deviations. However, even the most careful of these studies
relied on comparisons between students who chose to attend
summer school and those who chose not to attend. If the
most motivated students (or those with the most motivated,
supportive parents) attend summer school, then the esti-
mated summer school treatment effect will be biased up-
ward. In addition, these studies do not examine whether
these benefits are sustained in subsequent years.

Though less consistent than the summer school literature,
studies of grade retention have generally found that repeat-
ing a grade has a negative impact on student outcomes.4 In
a survey of 47 empirical studies with a variety of academic
achievement measures, Holmes (1989) found that retained
students scored 0.19 to 0.31 standard deviations below
comparable students who had not been retained. Moreover,
a variety of studies have found that retention is associated
with an increased likelihood of dropping out (Schulz et al.,
1986; Rumberger, 1987; Grissom & Shepard, 1989; Fine,

1991; Roderick, 1994). However, selection issues cast doubt
on these findings as well. In contrast to summer school,
students are not generally given a choice whether to repeat
a grade, but rather this decision is made by the teacher or
school principal on the basis of unobservable characteristics
(for example, motivation, maturity, and parental involve-
ment). This suggests that OLS estimates of grade retention
will be biased downward.

III. Background on Chicago’s Social Promotion Policy

An accountability policy recently implemented in Chi-
cago provides an opportunity to more carefully examine the
impacts of these programs. In 1996–1997, Chicago insti-
tuted a policy to end social promotion—the practice of
passing students to the next grade regardless of their aca-
demic skills or school performance. Under the policy, stu-
dents in third, sixth, and eighth grades are required to
perform at predefined levels in both reading and mathemat-
ics in order to be promoted to the next grade. For example,
third graders must obtain a minimum score of 2.8 grade
equivalents (GEs) in both reading and math achievement on
the Iowa Test of Basic Skills (ITBS) in order to advance.5 In
1997, the promotion standards for the third, sixth, and
eighth grades were 2.8, 5.3, and 7.0 respectively, which
roughly corresponded to the 20th percentile in the national
achievement distribution.6 Students who do not meet the
standard in June are required to attend a six-week summer
school program, after which they can retake the exams.
Those who pass the August exams move on to the next
grade. Students who again fail are required to repeat the
grade.7 Figure 1 provides a flowchart illustrating the treat-
ments children receive based on their June and August test
performance. The policy impacted a large proportion of
elementary students. From 1997 to 1999, over 30,000 third-
graders and over 21,000 sixth-graders attended a mandatory
summer school program, and roughly 10% to 20% of the
eligible students were eventually held back.8

There are several reasons to believe that the summer
school and grade retention programs in Chicago might
influence academic achievement. First, the longer school
years in other industrialized nations are often cited as a
reason for higher achievement levels. Second, classes in
summer school were generally quite small, often with fewer
than 15 students per class. Principals hand-picked teachers
for summer school, and the CPS provided a highly struc-
tured curriculum (including resource materials) that teach-

3 However, as we discuss below, the negative effects for sixth-grade
students may be due to differential test incentives faced by retained and
promoted students.

4 Several recent studies have found moderate, positive effects of reten-
tion (Karweit, 1991; Pierson and Connell, 1992; Alexander, Entwisle, &
Dauber, 1994; Eide & Showalter, 2001; Dworkin et al., 1999).

5 Grade equivalents are normed so that a student at the 50th percentile in
the nation scores at the eighth month of her current grade—that is, an
average third-grader will score a 3.8.

6 The CPS has raised the promotional cutoffs several times since 1997.
The eighth-grade cutoff was raised to 7.2 in 1998, 7.4 in 1999, and 7.7 in
2000. The sixth-grade cutoff was raised to 5.5 in 2000.

7 Students over the age of 15 who were retained were placed in special
transition centers.

8 Between 1993 and 1995 roughly 1.5% and 1.1% of third- and sixth-
graders, respectively, who took the ITBS were held back.
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ers were required to follow. Retention was intended to
provide students additional time to master the skills at their
current grade level. The CPS also provided schools with
additional resources to meet the needs of retained students.9

IV. Data

This study utilizes administrative data from the CPS
system. Student records provide individual-level informa-
tion on test scores and student demographics (race, gender,
age, guardian, and free lunch eligibility), bilingual and
special education status, and residential and school mobility.
Unique student identification numbers allow us to follow
individual students throughout their tenure in the public
school system. School-level data provide demographic and
school resource information, including the racial and socio-
economic composition at the school. The outcome measure
we use is student scores on the math and reading sections of

the ITBS, a standardized multiple-choice exam adminis-
tered annually to students in grades three to eight.10

The base sample for this study consists of the cohort of
students who were in the third and sixth grades from the
1993–1994 school year to the 1998–1999 school year, a
total of 402,924 observations.11 We delete approximately

9 The imposition of the program also shifted the student ability distri-
bution in both gate and postgate grades. If peer effects are important, the
change in the ability distribution may have had an indirect effect on
student performance. This is in practice quite difficult to test, because the
schools most affected by grade retention and summer school also faced the
greatest incentives to increase student performance. The change in the
ability distribution within schools was also mitigated by extensive sorting
on the basis of student ability. In particular, in the schools where many
students were retained, most of those promoted did not perform far above
the cutoff and had also attended summer school.

10 ITBS scores are typically reported in terms of GEs. These, however,
present a number of well-known shortcomings for comparisons over time
and across grade: (1) different forms of the exam are administered each
year and can vary in difficulty; (2) GEs are not a linear metric, so that a
score of 5.3 on level 12 of the exam does not represent the same thing as
a score of 5.3 on level 13; (3) GEs are not linear within test level, because
the scale spreads out more at the extremes of the score distribution. To
mitigate some of these concerns, we use an alternative outcome metric
derived from an item-response model. This model assumes that the
probability that student i answers questions j correctly is a function of the
student’s ability and the item’s difficulty. In practice, one estimates a
simple logit model in which the outcome is whether or not student i
correctly answers question j. The explanatory variables include an indi-
cator variable for each question and each student. The difficulty of the
question is given by the coefficient on the appropriate indicator variable,
and the student’s ability is measured by the coefficient on the student
indicator variable. The resulting metric is calibrated in terms of logits. By
taking advantage of the common items across different forms and levels of
the exam, these measures provide an effective way to compare students on
different grade levels or taking different forms of the exam (Wright &
Stone, 1979). We thank the Consortium on Chicago School Research for
providing the Rasch measures used in this analysis.

11 Note that we include prepolicy cohorts in our sample. We will discuss
later the reason for this inclusion.

FIGURE 1.—STUDENT PROGRESS UNDER THE CHICAGO ACCOUNTABILITY POLICY
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14% of cases that were missing demographic data or initial
(third- or sixth-grade) test scores, leaving a sample of
346,909 students. Additionally, we drop 45,534 individuals
who were not subject to the promotion policy because they
were part of bilingual or special education programs. Finally
we exclude an additional 8,080 students who left the system
or were placed in self-contained special education classes
the following year, because these students cannot be cate-
gorized as promoted or retained and generally do not have
future test scores.

Table 1 presents summary statistics for the group of
147,894 students who experienced the accountability policy
from 1997 to 1999. Chicago public school students are
disproportionately minority and extremely low-achieving
compared with a national sample. Roughly 85% of Chicago

students are black or Hispanic, and the same fraction re-
ceived free or reduced-price lunches. Students who are
retained are even more likely to be from minority back-
grounds and low-income families.

Given the low achievement levels in the CPS, the
promotional policy applied to a substantial proportion of
students. Over 40% of third-graders failed to meet the
promotional standards from 1997 to 1999, as did ap-
proximately 30% of sixth graders. The reading exam
proved to be a more difficult hurdle than the math exam,
with nearly all students failing reading alone or both
reading and math. Even after 5% to 10% of students
received waivers from the policy, 21% of third-graders
and 13% of sixth- and eighth-graders were required to
repeat a grade.

TABLE 1.—SUMMARY STATISTICS

Third Grade Sixth Grade

Total
Failed Promotion

Cutoff Retained Total
Failed Promotion

Cutoff Retained

Student Characteristics

Black 0.713 0.822 0.844 0.553 0.645 0.678
Hispanic 0.174 0.136 0.123 0.318 0.314 0.288
Male 0.489 0.528 0.551 0.480 0.518 0.535
Black male 0.347 0.435 0.467 0.261 0.334 0.364
Hispanic male 0.087 0.070 0.066 0.156 0.162 0.152
Age 9.379 9.438 9.406 12.353 12.471 12.448
Free lunch 0.805 0.904 0.927 0.774 0.890 0.905
Reduced-price lunch 0.075 0.043 0.031 0.088 0.052 0.041
Currently in bilingual program 0.023 0.021 0.020 0.112 0.206 0.197
Formerly in bilingual program 0.135 0.087 0.076 0.228 0.111 0.090
Special education 0.033 0.038 0.039 0.019 0.023 0.025
Living with relatives 0.113 0.084 0.076 0.121 0.105 0.100
Living in foster care 0.067 0.086 0.088 0.045 0.062 0.067

Experience Under the Accountability Policy

Passed in June 0.573 0.000 0.012 0.690 0.000 0.035
Failed math only 0.044 0.102 0.041 0.060 0.193 0.135
Fail reading only 0.199 0.465 0.366 0.147 0.473 0.352
Failed math and reading 0.185 0.432 0.581 0.104 0.334 0.478
June waiver 0.028 0.065 0.000 0.028 0.089 0.000
Assigned to summer school 0.401 0.933 1.000 0.286 0.908 1.000
August waiver 0.058 0.135 0.000 0.038 0.121 0.000
Promoted 0.791 0.517 0.000 0.873 0.606 0.000
Retained 0.209 0.483 1.000 0.127 0.394 1.000

School Performance

Base year math score �1.121 �1.916 �2.114 0.772 �0.045 �0.210
(1.066) (0.726) (0.695) (0.917) (0.589) (0.563)

Year 1 math score �0.440 �1.039 �1.210 1.264 0.566 0.348
(0.984) (0.804) (0.843) (0.899) (0.641) (0.665)

Year 2 math score 0.118 �0.491 �0.668 1.739 1.074 0.785
(0.982) (0.760) (0.761) (0.856) (0.661) (0.676)

Base year reading score �1.205 �2.111 �2.280 0.162 �0.755 �0.836
(1.060) (0.560) (0.540) (0.951) (0.466) (0.479)

Year 1 reading score �0.796 �1.440 �1.610 0.727 �0.059 �0.334
(1.010) (0.721) (0.752) (0.970) (0.638) (0.640)

Year 2 reading score �0.350 �0.997 �1.212 1.291 0.540 0.213
(1.011) (0.704) (0.688) (0.962) (0.695) (0.700)

Number of observations 74,260 31,738 15,514 73,634 22,861 9,332

The sample contains all students who were enrolled in the appropriate grades between the spring of 1997 and the spring of 1999.
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V. Empirical Strategy

A. Identification

In order to understand the difficulties inherent in estimat-
ing the treatment effect of school interventions, it is useful
to specify a learning function:

Yi,t�1 � BXi,t � ��Treat�i,t � ui � εi,t�1, (1)

where Y is the outcome, X is a vector of demographic and
past performance variables, Treat is a binary variable that
takes on a value of 1 if a student receives some type of
treatment and 0 otherwise, u represents unobserved (to the
researcher) student ability, ε is an error term, and t and i are
time and individual subscripts respectively. � is the treat-
ment effect, which we assume for the moment to be con-
stant.12 A primary obstacle to identification is the nonran-
dom assignment of treatments. In particular, selection into
treatment on the basis of unobserved ability ui by students,
teachers, and parents may generate a nonzero correlation
between unobserved ability and treatment: cov(Treat,u) �
0. In this case, the treatment effect estimated using OLS
may not reflect the program’s causal effect on student
performance.

By tying promotional decisions to performance on stan-
dardized tests, the Chicago policy created a highly nonlinear
relationship between a student’s current achievement and
his or her probability of attending summer school or being
retained. Figure 2 illustrates this relationship for third- and

sixth-graders from 1997 to 1999. Roughly 90% of students
who passed math but scored just below the cutoff in reading
received some remedial treatment, whereas almost no one
who passed math and scored at or above the cutoff in
reading attended summer school or was retained.

Assuming that unobservable characteristics do not vary
discontinuously around the cutoff, the promotional decision
rule provides exogenous variation in the treatment. Because
treatment is perfectly correlated with observable character-
istics, it is orthogonal to unobservable characteristics. One
can thus identify the impact of these programs by simply
comparing students who scored just below and just above
the promotional cutoff. For example, if students who missed
the cutoff (and were thus required to attend summer school)
learned much more than students who just made the cutoff
(and thus avoided summer school), then one might conclude
that summer school had a positive impact on student
achievement.

This strategy is often referred to as a regression discon-
tinuity design. In one of the first papers to introduce this
design, Thistlethwaite and Campbell (1960) utilized the fact
that National Merit Awards are given on the basis of
whether a test score exceeds a threshold to estimate the
effect of the award on a student’s other scholarship receipt
and college aspirations. Others that have utilized this tech-
nique include Berk and Rauma (1983), Trochim (1984),
Black (1999), Angrist and Lavy (1999), Hahn, Todd, and
Van der Klaauw (1999), and Guryan (2000).

The fundamental assumption behind regression disconti-
nuity techniques is that unobserved characteristics vary
continuously (around the point of the cutoff) with the

12 We explore the implications of heterogeneous treatment effects later in
the paper.

FIGURE 2.—THE RELATIONSHIP BETWEEN JUNE READING SCORES AND THE PROBABILITY OF ATTENDING SUMMER SCHOOL OR BEING RETAINED

Sample of third- and sixth-grade students from 1997 to 1999 whose June math score exceeded the promotional cutoff but whose June reading score did not.
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observable characteristic used to determine treatment. This
assumption may not hold if individuals can influence their
position relative to the cutoff. However, we believe that this
type of intentional manipulation is implausible in our case.
Although a student may purposely miss many or all of the
exam questions, it is unlikely that he or she would have the
incentive or ability to marginally change her score near the
cutoff (for example, intentionally scoring a 2.7 instead of a
2.8), because of the uncertainty regarding both performance
and the grading metric.13

In the case of a sharp discontinuity, where performance
exceeding a predetermined threshold perfectly predicts
treatment, continuity of unobserved characteristics is suffi-
cient to allow identification of the average treatment effect
for marginal students. In some cases, however, treatment
may be partly determined by other factors, leading to a
fuzzy discontinuity. For example, roughly 3% of students
who scored below the cutoffs in June received waivers from
summer school, and approximately 14% of students in
summer school received waivers in August. In addition, a
small percentage of students who passed the exams were
retained because of course failure or poor attendance. If
waivers were distributed randomly, or on the basis of factors
that are not correlated with future outcomes, then this would
not present a problem. However, students who received
waivers differ from their peers over several observable
characteristics, raising a concern that these students differed
along unobservable dimensions as well.

Even with waivers, as long as the probability of treatment
changes discontinuously at the cutoff, it is possible to
determine the treatment effect by comparing mean out-
comes of individuals in a narrow range on either side of the
cutoff. One merely needs to scale the difference in outcomes
by the difference in the probability of treatment. If, how-
ever, the probability of treatment drops over a range around
the cutoff, it may not be possible to identify the treatment
effect by simply comparing individuals to the left and the
right of the cutoff. We can, however, use a broader range of
data to identify the effect. In essence, we can examine
whether performance drops (or rises) in the range of per-
formance where the probability of treatment is rapidly
changing. To do so, we need to use data outside this range
to estimate the baseline relationship between initial perfor-
mance and subsequent outcomes. In this case, we can use an
instrumental variables (IV) strategy in which our instru-
ments are nonlinear terms of current test scores. These terms
are highly correlated with the probability of treatment (as

seen in figure 1), but may not be directly correlated with
future achievement. Because we use only the variation in
treatment associated with observable performance, our
point estimates should be unaffected by the correlation
between treatment and unobserved characteristics.

One drawback of the IV approach described above is that
it relies on knowing the functional form of the relationship
between the outcome variable and the variable that deter-
mines treatment. In our case, this is the relationship between
current test score and future performance. If, for example,
the relationship is nonlinear around the cutoff but we spec-
ify the function as linear, then the estimated treatment effect
may simply pick up any underlying nonlinearity in the
achievement relationship. If the discontinuity is sharp, then
one can use a narrow range of data so that a linear approx-
imation is quite good. If the probability of treatment de-
clines more slowly with observed test score, then we must
rely more heavily on our functional-form assumption.

We test the validity of this assumption in two ways. First,
we examine the relationship between current test scores and
future performance prior to the implementation of the ac-
countability policy. Figure 3 shows that this relationship is
indeed nearly linear, particularly in the range around the
promotional cutoff. Second, we can test the robustness of
our estimates by including second- and third-order polyno-
mials in current test scores, in order to capture any under-
lying nonlinearity in the functional form. As we see in the
next section, our estimates are robust to the inclusion of
nonlinear terms.

B. Estimation

A simple way to implement a regression discontinuity
design is to compare the mean achievement gains of stu-
dents just below the cutoff with those of students at the
cutoff. This can be represented mathematically with the
following expression: (Y� c�1,t�1 � Y� c�1,t) � (Y� c,t�1 �
Y� c,t), where Y� represents mean achievement, the first sub-
script denotes performance relative to the reading cutoff (c
indicates students at the cutoff, and c � 1 denotes students
just below the cutoff) and the second subscript denotes
timing. Because not every individual below the cutoff is
treated and some above the cutoff are treated, we must scale
the expression above by the difference in the probability of
treatment associated with meeting the cutoff. Doing so
yields the following difference-in-difference estimator:

�2d �
�Y� c�1,t�1 � Y� c�1,t� � �Y� c,t�1 � Y� c,t�

T� c�1 � T� c

, (2)

where T� is the mean probability of treatment. Notice that
this difference-in-difference estimate is equivalent to an IV
estimate in which the only instrument is a dummy that takes
on a value of 1 if the student passes the reading cutoff.

Though students below the cutoff and at the cutoff are
similar, they are not identical. We might be worried that any

13 Teacher cheating is a more plausible candidate for such intentional
manipulation. There is some evidence that cheating has increased as a
result of the accountability policies instituted in 1996 and is more common
in the promotional gate grades (Jacob & Levitt, 2001). As a check on this,
we estimated kernel densities of the test score distribution before and after
the establishment of the policy. If students could (and chose to) strategi-
cally influence their scores or teachers cheated in order to get their
students above the cutoff, we would expect a discontinuity around the
cutoff after the policy was established. We find no evidence of this.
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difference in achievement gains between these groups re-
flects differences in initial ability rather than the influence of
the treatment.14 To address this concern, we can examine the
performance of individuals just above the cutoff. If we
assume that the typical difference in achievement between
students just below the cutoff and at the cutoff is similar to
the difference in achievement between those at the cutoff
and those just above the cutoff, we can identify the treat-
ment effect using the third-difference estimator below:

�3d �

��Y� c�1,t�1 � Y� c�1,t� � �Y� c,t�1 � Y� c,t��
� ��Y� c,t�1 � Y� c,t� � �Y� c�1,t�1 � Y� c�1,t��

�T� c�1 � T� c� � �T� c � T� c�1�
.

(3)

The third difference is equivalent to an IV estimate in which
we control for a linear trend of reading ability and instru-
ment for treatment using a dummy that takes on a value of
1 for students who exceed the cutoff.

C. Implementing the Estimation Strategy in
an IV Framework

As we mentioned previously, the second- and third-
difference approaches are simply IV strategies for estimat-
ing the treatment effect. We will implement the third-
difference estimator in the following way. We will assume
that our learning equation takes the following form:

Yi,t�1 � BXi,t � �1 rdgei,t � �2�Treat�i,t � ui � εi,t,

(4)

where Y is the academic outcome of interest, X is a vector
of demographic characteristics, rdge is the ITBS reading
score, u is unobserved ability, and ε is an error term. The
first stage is given by the following:

Treati,t � 	Xi,t � 
1 rdgei,t � 
21i,t
p � 
3ui � �i,t, (5)

where 1p is a dummy variable that indicates that the reading
score is above the cutoff, and � is an error term. If we
included no individual-level covariates, this approach
would be equivalent to the third-difference strategy summa-
rized by equation (3). Implementing this approach using IV
gives us the flexibility to include student-level covariates as
a check on the robustness of our estimates.

For students who passed math and failed reading in June,
the probability of being retained does not change discontin-
uously at the cutoff as a function of August reading perfor-
mance. Instead it drops off sharply in a range just below the
cutoff that we will refer to as the marginal area. This can be
observed in figures 6 and 7. The fact that the probability of
retention does not change discontinuously prevents us from
using the same first-stage relationship given by equation (5).
Instead, while examining the retention treatment, we will
estimate a first-stage relationship of the following form:

Treati,t � 	Xi,t � 
1 rdgei,t � 
21i,t
m � 
31it

m rdgei,t

� 
41i,t
p � 
51i,t

p rdgei,t � 
5ui � �i,t, (6)
14 In other words, high-ability students may enjoy larger gains than

students with lower initial ability.

FIGURE 3.—THE RELATIONSHIP BETWEEN CURRENT AND FUTURE READING PERFORMANCE OF THIRD-GRADE STUDENTS PRIOR TO THE ACCOUNTABILITY

POLICY

Sample includes third-grade students in 1994 whose June math score exceeded what was the promotional cutoff in 1997.
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where 1m is a dummy variable that takes on a value of 1 if
the student’s reading score is in the marginal area and 0
otherwise. The other variables are as previously described.
Away from the cutoff, increases in reading performance
appear to have little effect on the probability of retention.
This suggests that 
1 and 
5 are likely to be small. We
interact the dummy variable for the marginal area with
reading performance to take into account that for students
just below the cutoff, small increases in performance lead to
large reduction in the probability of being retained. If this is
the case, 
3 should be strongly negative. The learning
equation is equivalent to that in equation (4).

D. Interpreting the IV Estimates

Given the nature of our identification strategy, it is par-
ticularly useful to discuss the interpretation of the treatment
effects we estimate. Imbens and Angrist (1994) emphasize
the importance of the local average treatment effect (LATE),
which they define as the average effect of an intervention on
those individuals who were induced to participate on ac-
count of variation in the instruments. In our analysis, the
instruments induced those individuals just below the cutoff
to attend summer school and/or be retained. Thus, our
estimates reflect the treatment effect for those individuals
who received treatment because they scored just below the
cutoff in reading. More generally, our estimates capture the
effect of summer school and grade retention on relatively
low-achieving students (recall that the cutoff is equivalent
to the 20th percentile on a national distribution).15

Given the likelihood of heterogeneous treatment effects,
it is unlikely that our estimates capture either the average
treatment effect (ATE) or even the effect of treatment on the
treated (TT). Unless one is willing to assume that the
treatment effect is constant or does not vary according to
prior reading and math ability, one cannot use our estimates
to say what would have occurred if all students had been
treated. In the following sections, we examine the hetero-
geneity of treatment effects across a variety of observable
student characteristics such as race, gender, special educa-
tion status (SES), and prior achievement. There also exist
methods (such as quantile regression analysis) for examin-
ing the distribution of outcomes in treated and untreated

states for individuals with similar observable characteris-
tics. Unfortunately, it is not straightforward to apply these
methods in the context of our regression discontinuity
analysis.16

Although our estimates capture the treatment effect
only for a particular subset of students, this subset is of
great interest from an education and public policy per-
spective. Indeed, remedial programs such as summer
school and grade retention are generally designed for the
type of low-achieving students to whom our estimates
apply. Given that most other school districts who are
currently running or considering this type of program are
targeting similar students, we believe that these estimates
are likely to be highly relevant.

VI. The Net Effect of Summer School and Grade
Retention on Student Achievement

Our analysis proceeds as follows. We first utilize the
discontinuity created by the promotional cutoff associated
with the June testing to estimate the net effect of summer
school and grade retention. We next take advantage of the
August cutoff to estimate the separate effect of grade reten-
tion, using the sample of students who were assigned to
summer school solely on the basis of their June reading
scores. For these students, the retention decision depended
solely on their August reading scores. Finally, we derive
estimates of the separate effect of summer school, relying
on the estimates of the net and retention effects described
above.

The sharp discontinuity between current achievement and
the probability of attending summer school and possibly
being retained permits one to visually identify the treatment
effect. If these programs had a substantial net impact on
subsequent academic achievement, we would expect to see
a discontinuous or nonlinear change in the average achieve-
ment level around the promotional policy cutoff. By plotting
the probability of receiving some remedial treatment (sum-
mer school and retention) and future achievement against
current test performance, Figures 4 and 5 allow this visual
identification.17 Each figure shows three relationships: (a)
the probability of receiving remedial treatment (summer
school or retention); (b) the reading performance of students
in the following year; and (c) the math performance in the
following year.

For example, in figure 4, we see that the probability of
attending summer school and being retained drops
sharply at the cutoff for promotion in the third grade. At
the same time, next-year reading and math achievement

15 Note that the interpretation of the net effects and the grade retention
effects differs slightly in that we use a larger range of data around the
cutoff to identify the independent retention effect. It is also worthwhile
pointing out that identification of the retention effect also depends on the
fact that the treatment effect does not vary over the range of reading
performance below the cutoff that we use in estimation. If this treatment
effect varies greatly with reading performance below the cutoff, we will be
unable to identify the baseline relationship between current and future
performance. This is because the relationship between current and future
performance below the cutoff will reflect the effect of reading perfor-
mance on the efficacy of treatment. In practice, this is likely a fairly weak
assumption, because the range of data we use to estimate the retention
effect is still quite small, generally less than �1 GE from the cutoff. If this
assumption holds, the estimated coefficient corresponds to the LATE for
those individuals who received treatment because they scored a given
distance below the cutoff.

16 See Heckman, Smith, and Clements (1997) for an excellent discussion
regarding the identification of the distribution of program benefits.

17 Note that these graphs reduce the dimensionality of the problem by
limiting the sample to students who passed the standards in math. The
thinness of data in some cells makes identification from three-dimensional
graphs quite difficult.
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drop sharply around the cutoff, suggesting that summer
school and retention had a net positive effect for third-
graders. In contrast to third grade, the continuous linear
trends in future performance among sixth-graders (in
figure 5) suggest that the summer school and retention
had no substantial effect on the performance of students
near the cutoff. Table 2 confirms this finding. In partic-
ular, we see that at the same point where the probability

of treatment drops, achievement gains fall in the third
grade but not in the sixth. For the third grade, the
performance drops at the cutoff are larger than the dif-
ferences between other adjacent cells.

Though the graphs and table 2 lend transparency to the
analysis, it is important to quantify the magnitude and the
statistical precision of the estimates. We examine the
subset of the student population for which only the

FIGURE 4.—THE RELATIONSHIP BETWEEN READING AND MATH PERFORMANCE AND JUNE READING PERFORMANCE FOR THIRD-GRADE STUDENTS

Sample of third-grade students from 1997 to 1999 whose June math score exceeded the promotional cutoff but whose June reading score did not.

FIGURE 5.—THE RELATIONSHIP BETWEEN READING AND MATH PERFORMANCE AND JUNE READING PERFORMANCE FOR SIXTH-GRADE STUDENTS

Sample of third-grade students from 1997 to 1999 whose June reading score exceeded the promotional cutoff but whose June math score did not.
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reading cutoff is binding (that is, students who passed
math and only need to pass reading to avoid treatment).18

Unless otherwise mentioned, the sample includes stu-
dents who were in the third or sixth grade in 1997, 1998,
or 1999. For all specifications, we include year fixed
effects.

The results in table 3 correspond to the effects displayed
in figures 4 and 5. Column (1) presents OLS results, and
column (2) the IV results associated with the third-
difference specification described earlier. We see that there
are no statistically significant differences between the OLS
and IV estimates, although the IV point estimates tend to be
somewhat larger than the OLS estimates. This suggests that
June waivers were given randomly or on the basis of
characteristics that were uncorrelated with future perfor-
mance (to the extent that the IV estimates are in fact larger,
one would conclude that waivers were given to students
with positive unobservable characteristics). Column (3)
shows IV estimates that control for a detailed set of student
characteristics, including prior math and reading test scores,
race, gender, SES, neighborhood poverty, and free lunch
status. The estimates in columns (2) and (3) are virtually
identical, providing additional evidence that our instruments
are valid.

Summer school and grade retention have a positive net
impact on third-grade achievement in math as well as
reading. In the first year, this effect was roughly 0.11–0.13
logits in the context of average third-grade achievement
gains of 0.68 and 0.42 logits in math and reading respec-
tively. This means that summer school and grade retention
increased student achievement roughly 20% of a year’s
worth of learning. By the second year after the program, the
effects had faded by roughly 25% to 40%, but were still
statistically significant. This is consistent with the fadeout of
program effects found in other evaluations (Barnett, 1995).
In the sixth grade, the picture is much different. It appears
that the net effect of summer school and grade retention for
these older students was essentially 0 in reading, and close
to 0 in mathematics, particularly by year 2. In the following
section, we discuss several reasons for this difference be-
tween the third and sixth grades.

Table 4 examines the robustness of these estimates to
specification and sample choices. The first robustness
checks are designed to ensure that our findings are not
sensitive to functional-form assumptions. In the second row
we control for third-order polynomials in prior achievement.
In the third row, we take advantage of data from prepolicy
years to ensure that our findings are not driven by nonlin-
earity in the relationship between initial performance and
subsequent achievement. Intuitively, we subtract the pre-
policy third-difference estimate of the effect of surpassing
the cutoff from the corresponding postpolicy estimate. If the

18 We focus on students for whom the reading cutoff was binding
because many more students failed on account of reading than mathemat-
ics. In table 3, we show results for students who passed reading and for
whom the math cutoff was binding.

TABLE 2.—THE NET EFFECT OF SUMMER SCHOOL AND GRADE RETENTION ON STUDENT ACHIEVEMENT

Group Means

Left of Cutoff
(C � 0.4 and C � 0.3)

Immediately left of cutoff
(C � 0.2 and C � 0.1)

At and just right of cutoff
(C and C � 0.1)

Right of cutoff
(C � 0.2 and C � 0.3)

Third Grade

% received treatment 0.940 0.920 0.013 0.007
(0.004) (0.004) (0.002) (0.001)

1-year reading gain 0.761 0.620 0.447 0.371
(0.011) (0.009) (0.010) (0.008)

2-year reading gain 1.159 1.032 0.917 0.832
(0.012) (0.009) (0.010) (0.009)

1-year math gain 0.736 0.725 0.588 0.564
(0.010) (0.009) (0.010) (0.008)

2-year math gain 1.250 1.250 1.185 1.178
(0.012) (0.009) (0.011) (0.008)

No. of observations 2,932 4,968 3,564 5,716

Sixth Grade

% received treatment 0.905 0.920 0.027 0.011
(0.008) (0.005) (0.003) (0.002)

1-year reading gain 0.775 0.780 0.721 0.673
(0.015) (0.011) (0.010) (0.010)

2-year reading gain 1.416 1.380 1.322 1.252
(0.017) (0.012) (0.011) (0.011)

1-year math gain 0.511 0.512 0.438 0.429
(0.011) (0.008) (0.008) (0.008)

2-year math gain 1.002 1.031 0.999 0.987
(0.013) (0.009) (0.009) (0.009)

No. of observations 1,408 2,624 2,730 2,956

The sample includes third- and sixth-grade students from 1997 to 1999 whose June math score was above the cutoff and whose June reading score was from 0.4 grade equivalents below to 0.3 grade equivalents
above the cutoff. The table reports the fraction treated and mean outcomes for students in each of the cells. The standard error of the mean is in parentheses.
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relationship between initial and subsequent performance is
stable over time, this fourth difference will ensure that our
findings are not driven by nonlinearity.19 The fourth row
shows estimates using prepolicy data and controlling for
polynomials of prior ability. Although these estimates differ
slightly from the baseline findings, the differences are not
significant. Furthermore, the overall pattern of results stays
the same.

The final three rows of table 4 show net effect estimates
when we modify the sample under examination. First, we
include only those students with the same test forms to
eliminate problems associated with initial performance
measures that may not be comparable across students.20

Next, we examine only those students with consistent grade
patterns. This addresses problems of measurement error that
may be attributable to the miscoding of grades. Neither of

these two sample restrictions has any substantive effects on
the estimated net effect. We also examine those students
who passed reading in June and were marginal in math.21

The effect size is slightly larger for third-grade reading and
somewhat smaller for third- and sixth-grade math. The final
row shows estimated results from taking advantage of more
students below the cutoff for identification.22 Overall, these
results are similar to our baseline estimates.

Table 5 examines the heterogeneity of 2-year net effects
across years and student subgroups. The table also reports
the statistical significance of the differences across groups.
The first row shows the aggregate estimates taken from
column (3) of table 3. Examining the three cohorts of
student to experience the policy, it appears that the 1997
cohort of third-graders appears to have experienced some-
what larger positive effects than the later groups, although
these differences are not statistically significant. Top-
achieving students appear to have experienced the largest

19 We implement this strategy by performing IV in which we control for
the dummy variable that indicates a student surpassed the cutoff and the
interaction of this variable with reading performance. Our instruments
become the dummy variable and interaction term multiplied by another
variable that indicates whether the cohort was exposed to the accountabil-
ity policy.

20 Different test forms are used for different years. The inclusion of year
fixed effects addresses this concern.

21 We can do this because of the two-dimensional nature of the cutoff.
We do not emphasize these results, because few students were treated on
the basis of math—this reduces our sample size and the precision with
which we can estimate the treatment effects.

22 For most specifications, we take advantage of students in three cells:
just below the cutoff (C � 1 and C � 2), at or just above the cutoff (C
and C � 1), and further above the cutoff (C � 2 and C � 3). In this
specification, we add a fourth cell of individuals further below the cutoff
(C � 3 and C � 4).

TABLE 4.—THE ROBUSTNESS OF TWO-YEAR NET SUMMER SCHOOL AND

RETENTION ESTIMATES TO SAMPLE AND SPECIFICATION CHOICE

Specification

Third Grade Sixth Grade

Reading Math Reading Math

Baseline 0.062 0.095 0.000 0.019
(0.026) (0.026) (0.030) (0.023)

Including polynomials in
prior achievement

0.120 0.089 �0.021 �0.007
(0.038) (0.037) (0.035) (0.028)

Including prepolicy cohorts 0.029 0.060 0.003 0.042
(fourth difference
estimates)

(0.018) (0.017) (0.021) (0.017)

Including prepolicy cohorts 0.018 0.062 �0.006 0.025
and polynomials in prior
achievement

(0.018) (0.017) (0.024) (0.019)

Including only students 0.060 0.091 0.003 0.021
with common test form
and level

(0.026) (0.025) (0.030) (0.023)

Including only students 0.064 0.094 �0.004 0.018
with consistent grade
patterns

(0.026) (0.026) (0.030) (0.023)

Passed reading and
marginal in math

�0.007 0.062 0.058 0.007
(0.041) (0.038) (0.043) (0.033)

Wider range with 0.046 0.092 0.016 0.020
additional cell below the
cutoff

(0.024) (0.023) (0.028) (0.022)

Each cell contains an estimate from a separate 2SLS regression that controls for all of the past
performance and demographic characteristics described earlier. For estimates in the last row, we use
children who passed reading and were near the cutoff in math. For the other specifications we use children
who passed math and were near the cutoff in reading.

TABLE 3.—THE NET EFFECT OF SUMMER SCHOOL AND GRADE RETENTION

ON STUDENT ACHIEVEMENT

Dependent Variable

Specification

OLS
(1)

IV
(2)

IV
(3)

Third grade:
Reading:

1 year (n  13,687) 0.082 0.112 0.104
(0.019) (0.026) (0.025)

2 years (n  12,806) 0.032 0.064 0.062
(0.020) (0.027) (0.026)

Math:
1 year (n  13,664) 0.155 0.132 0.136

(0.019) (0.026) (0.024)
2 years (n  12,802) 0.066 0.087 0.095

(0.021) (0.027) (0.026)

Sixth grade:
Reading:

1 year (n  7,920) �0.013 0.012 0.024
(0.022) (0.029) (0.027)

2 years (n  7,262) �0.027 �0.015 0.000
(0.024) (0.032) (0.030)

Math:
1 year (n  7,904) 0.056 0.077 0.077

(0.016) (0.021) (0.021)
2 years (n  7,249) 0.007 0.018 0.019

(0.019) (0.025) (0.023)

Additional performance
and demographic
covariates No No Yes

The sample consisted of third- and sixth-grade students from 1997 to 1999 whose June math score was
above the cutoff and whose June reading score was within �0.2 grade equivalents of the cutoff. Year
fixed effects are included in each model. The additional performance and demographic covariates
include: 1- and 2-year prior achievement scores in math and reading (with missing values set to 0), along
with variables that indicate whether these scores were missing, age, male, black, Hispanic, black � male,
Hispanic � male, free lunch, reduced-price lunch, special education participation, current bilingual
participation, past bilingual participation, lives in foster care, lives with a nonparent relative, census-
block-level social status, and census-block-level poverty.
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gains, although these estimates also have large standard
errors. This may be due to the fact that these students
attended summer school, but were not retained. There are no
significant and consistent differences across race, gender, or
SES. Overall, the net treatment effect of summer school and
grade retention appear fairly homogeneous.

VII. The Effect of Grade Retention

Whereas the June discontinuity allows us to estimate the
net treatment effect, the prior literature suggests that the
effects of summer school and retention may be quite differ-
ent. Fortunately, the structure of the accountability program

TABLE 5.—THE HETEROGENEITY OF TWO-YEAR NET SUMMER SCHOOL AND GRADE RETENTION EFFECTS

Third Grade Sixth Grade

Reading Math Reading Math

Baseline estimates 0.062 0.095 0.000 0.019
(0.026) (0.026) (0.030) (0.023)

Year

1997 Cohort 0.093 0.154 �0.001 0.022
(0.052) (0.050) (0.047) (0.039)

1998 Cohort 0.032 0.065 0.007 0.025
(0.039) (0.038) (0.054) (0.042)

1999 Cohort 0.058 0.085 �0.006 0.020
(0.047) (0.047) (0.054) (0.041)

F-statistic (equal coefficients) 0.44 0.99 0.02 0.00
Pr � F  0.65 Pr � F  0.37 Pr � F  0.98 Pr � F  1.00

Prior Achievement*

Bottom quartile 0.058 0.063 �0.013 �0.009
(0.051) (0.049) (0.063) (0.050)

2nd quartile 0.109 0.144 �0.064 �0.010
(0.053) (0.052) (0.060) (0.047)

3rd quartile 0.019 0.030 0.036 0.040
(0.056) (0.054) (0.058) (0.046)

Top quartile 0.077 0.117 0.038 0.045
(0.059) (0.058) (0.059) (0.046)

F-statistic (equal coefficients) 0.48 0.94 0.66 0.40
Pr � F  0.70 Pr � F  0.42 Pr � F  0.58 Pr � F  0.75

Race

Black 0.071 0.090 �0.047 �0.015
(0.030) (0.025) (0.040) (0.031)

Hispanic 0.053 0.117 0.049 0.061
(0.062) (0.062) (0.048) (0.039)

White/other �0.018 0.082 0.175 0.092
(0.109) (0.104) (0.124) (0.092)

F-statistic (equal coefficients) 0.34 0.09 2.31 1.47
Pr � F  0.71 Pr � F  0.92 Pr � F  0.10 Pr � F  0.23

Gender

Male 0.034 0.077 0.002 �0.011
(0.037) (0.037) (0.043) (0.034)

Female 0.086 0.112 �0.008 0.047
(0.036) (0.035) (0.041) (0.032)

F-statistic (equal coefficients) 0.99 0.47 0.03 1.55
Pr � F  0.32 Pr � F  0.49 Pr � F  0.87 Pr � F  0.21

Family Income

Free lunch 0.061 0.094 �0.005 0.018
(0.027) (0.026) (0.031) (0.024)

No free lunch 0.070 0.126 0.089 0.051
(0.094) (0.095) (0.114) (0.089)

F-statistic (equal coefficients) 0.01 0.11 0.63 0.13
Pr � F  0.93 Pr � F  0.74 Pr � F  0.43 Pr � F  0.72

Each cell includes an estimate from a separate 2SLS regression (equivalent to the third-difference estimates described in the text) that controls for year fixed effects and all of the additional performance and
demographic variables described earlier.

* Prior achievement is measured as the average math and reading score in second or fifth grade. Quartiles are determined on the basis of students in this sample. A small number of students who were missing
second- or fifth-grade test scores are excluded from this categorization.
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in Chicago provides an opportunity to separately identify
the causal effect of grade retention. In order to advance to
the next grade, the maximum of a student’s June and August
scores must exceed a predetermined cutoff in both reading
and math. The discontinuity generated by the August cutoff
allows us to estimate the impact of grade retention for the
group of students who attended summer school.

Just as we did in estimating the net effects, we can reduce
the dimensionality of the problem by considering only
students who passed one subject in June and thus only had
to pass the other subject in August. This is even more
important in the case of the retention estimates, because it
allows us to focus on a student’s August score alone. If we
instead focus on the maximum of June and August test
scores, it is likely that students who scored just above the
cutoff will differ from students who scored just below the
cutoff, thus violating the central assumption of a regression
discontinuity design. This is true because students whose
June scores exceeded the cutoff never attended summer
school, which means that summer school students whose
maximum (June or August) score exceeded the cutoff must
have improved over the summer. It is likely that these
students were more motivated than those students whose
maximum score did not exceed the cutoff. For this reason,
the analysis below focuses on the subset of students who
passed math and failed reading in June.23

Figures 6 and 7 show the probability of retention and

future academic outcomes as a function of August reading
scores. Although the probability of retention does not drop
sharply at the exact point of the cutoff, we can see that it
rapidly decreases over a narrow range of values just below
the cutoff. We will refer to this range as the marginal area.
Figure 6 shows that, for third-grade students, future perfor-
mance is flat or decreasing in the marginal area, consistent
with a positive effect of grade retention. In contrast, figure
7 presents little evidence that retention has any benefit for
sixth-grade students.

Because of the fuzzy discontinuity, we cannot limit our
analysis to students immediately above and below the cut-
off. However, if we use too broad a range of data, students
at the extreme ends of the distribution are unlikely to be
comparable, forcing us to rely heavily on our covariates to
control for the differences between students. As a compro-
mise, we focus on a subset of children who scored relatively
close to the cutoff on the August exam, including children
who scored from 1 GE below the cutoff to 0.5 GE above the
cutoff.24 To ascertain whether students are comparable (con-
ditional on August reading performance), we first estimate
the retention treatment effect without using additional co-
variates. We then estimate the effect controlling for a rich
set of prior achievement measures and demographic char-
acteristics. If the results are insensitive to the inclusion of
these covariates, it is likely that the students to the left and
right of the cutoff are comparable. In addition, we test

23 We could also examine individuals who passed reading and failed
math in June. In practice, however, very few of these students end up near
the cutoff in August.

24 We include a broader range of data below the cutoff in order to
effectively estimate the effect of reading performance on the probability of
retention at and below the marginal area.

FIGURE 6.—RELATIONSHIP BETWEEN AUGUST READING AND NEXT-YEAR READING AND MATH PERFORMANCE FOR THIRD-GRADE STUDENTS

Sample of third-grade students from 1997 to 1999 whose June reading score exceeded the promotional cutoff but whose June reading score did not.
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whether our estimates are robust to changes in the range of
students in the sample.

Table 6 reports the coefficients from the first stage, which
are as expected. In particular, the coefficient of the marginal
reading interaction term is strongly negative for both third
and sixth grades. This confirms that small changes in read-
ing performance in the marginal area are associated with
large reductions in the probability of being retained. The
instruments also have strong predictive power; the F-statis-

tic of the instruments is 236 for the third-grade cohorts and
150 for the sixth-grade cohorts.

Table 7 contains the estimated retention treatment effects
for students in the third and in the sixth grade. We see many
of the same patterns as we did for the net effects. The IV
point estimates [shown in column (2)] are somewhat larger
than the OLS estimates [shown in column (1)], suggesting
that waivers were given to students with positive unobserv-
able characteristics (note that these differences are not
statistically significant). Column (3) shows IV estimates that
control for student characteristics. These estimates are sim-
ilar to those in column (2), suggesting that the students in
our analysis are comparable once we control for August
reading ability.

The point estimates in table 7 suggest that retention may
not have as powerful a negative effect on academic achieve-
ment as commonly cited in the literature. The IV estimates
indicate that being retained in the third grade actually
increases performance the following year by 0.17 logits in
reading and 0.23 logits in math. These treatment effects
correspond to increases in achievement of 41% and 33% of
the average annual gain. By the second year following
retention, the math effect has decreased substantially, but is
still significant. The 2-year reading effect, however, is not
statistically different than 0.

Though it appears that the retention effects have become
more negative by the second year, changes in the policy
effect over time are confounded by the changes in student
incentives from grade to grade. One year after third grade,
retained students (that is, those who are repeating the third

FIGURE 7.—RELATIONSHIP BETWEEN AUGUST READING AND NEXT-YEAR READING AND MATH PERFORMANCE FOR SIXTH-GRADE STUDENTS

Sample of sixth-grade students from 1997 to 1999 whose June math score exceeded the promotional cutoff but whose June reading score did not.

TABLE 6.—THE EFFECT OF AUGUST TEST PERFORMANCE

ON THE PROBABILITY OF GRADE RETENTION

Independent Variable Third Grade Sixth Grade

Math GE �0.027** �0.013*
(.008) (0.009)

Reading GE �0.024 0.047
(0.047) (0.077)

Marginal reading 2.451** 3.387**
(0.178) (0.472)

Marginal reading � reading GE �1.031** �0.733**
(0.074) (0.102)

Passed reading �0.862** �0.250
(0.162) (0.410)

Passed reading � reading GE 0.058 �0.098
(0.063) (0.088)

Number of observations 7,623 4,552
R2 0.477 0.504
F-statistic of instruments 236.0 149.7

(Pr � F  0) (Pr � F  0)

Sample includes students assigned to summer school who passed math but failed reading in June and
who scored between 1 GE below and 0.5 GE above the reading cutoff in August. These results correspond
to the first-stage estimates when reading scores two years later is the variable of interest. The exact results
vary depending on subject and timing. August reading and math measures along with additional ability
and demographic controls are included in both the first and second stages.

REMEDIAL EDUCATION AND STUDENT ACHIEVEMENT 239



grade) face high-stakes testing again, while promoted stu-
dents (now in the fourth grade) do not. Two years later, the
majority of retained students as well as promoted students
face little incentive to perform well on the ITBS exams. For
this reason, the 2-year estimates provide the most accurate
view of the retention effects for third-graders.

When we compare sixth-grade students 1 year later, we
find no statistically significant differences between the
performance of retained and promoted students, despite
the fact that retained students faced high-stakes testing
and the promoted students did not. It may be the case that
the positive incentive effects offset the negative retention
effects. When we compare these students after 2 years,
the incentives are reversed. Students who had been pro-
moted in sixth grade are most likely in eighth grade,
facing a high-stakes exam once again, whereas retained
students are most likely in seventh grade, facing a low-
stakes exam. For this reason, the 2-year effects probably
reflect an upper bound on any negative retention effects.
And, in fact, we do find that retained students score
roughly 0.15 logits (27% of an annual learning gain)
lower than promoted students. However, there is no
significant difference between the math achievement of
retained and promoted students.

The incentives created in different grades by the ac-
countability policy also provide one possible explanation

for the differences between third- and sixth-grade effects.
The 2-year effects for third-graders should not be influ-
enced by differing incentives, because the comparison
involves students in the fourth and fifth grades, neither of
which is a high-stakes grade. As noted before, we find
modest but positive 2-year effects for third-graders. In
contrast, we find zero or slightly negative effects for
sixth-graders. However, as noted above, the 2-year ef-
fects for sixth-graders most likely understate any positive
treatment effects, because the control group scores come
from a high-stakes grade. The other possible factor be-
hind the weaker effects in sixth grade comes from infor-
mal discussions with teachers and administrators. They
note that classroom management becomes more difficult
in the upper elementary grades and have speculated that
even if the initial gains were equivalent in the third and
sixth grades, the sixth-graders may be more likely to
squander these gains over the next several years as
behavior problems slow the pace of instruction or force
teachers to do more reviews.

Table 8 shows the sensitivity of our results to functional-
form assumptions and choice of samples. Rows 2 and 3
show how our estimates vary as we control for second-
and third-order polynomials in initial performance. Our

TABLE 7.—THE EFFECT OF GRADE RETENTION ON STUDENT ACHIEVEMENT

Dependent Variable

Specification

OLS
(1)

IV
(2)

IV
(3)

Third grade:
Reading:

1 year (n  8,120) 0.085 0.162 0.174
(0.017) (0.052) (0.050)

2 years (n  7,623) 0.012 0.026 0.035
(0.017) (0.053) (0.051)

Math:
1 year (n  8,111) 0.096 0.199 0.227

(0.019) (0.058) (0.044)
2 years (n  7,629) 0.022 0.081 0.091

(0.019) (0.059) (0.045)

Sixth grade:
Reading:

1 year (n  5,018) �0.137 �0.077 �0.064
(0.019) (0.058) (0.056)

2 years (n  4,552) �0.176 �0.160 �0.154
(0.023) (0.067) (0.065)

Math:
1 year (n  5,005) �0.018 �0.019 0.057

(0.020) (0.060) (0.040)
2 years (n  4,557) �0.105 �0.097 �0.046

(0.021) (0.063) (0.047)

Additional performance
and demographic
covariates No No Yes

The sample includes third- and sixth-grade students from 1997 to 1999 whose June math score was
above the cutoff, whose June reading score was below the cutoff, and whose August reading score was
between 1 grade equivalent below and 0.5 grade equivalent above the cutoff. Year fixed effects are
included in each model. The additional performance and demographic covariates are the same as those
listed in the notes to table 2.

TABLE 8.—THE SENSITIVITY OF THE 2-YEAR GRADE RETENTION ESTIMATES TO

SAMPLE AND SPECIFICATION CHOICES

Specification

Third Grade Sixth Grade

Reading Math Reading Math

Baseline estimates 0.035 0.091 �0.154 �0.046
(0.051) (0.045) (0.065) (0.047)

Including second-order 0.048 0.109 �0.162 �0.055
polynomials in prior
achievement

(0.053) (0.047) (0.065) (0.048)

Including third-order 0.025 0.108 �0.134 �0.059
polynomials in prior
achievement

(0.079) (0.070) (0.123) (0.089)

Broader range of students 0.001 0.099 �0.139 �0.056
(0.035) (0.032) (0.043) (0.032)

Broader range of students 0.073 0.121 �0.188 �0.050
with second- and third-
order polynomials in prior
achievement

(0.054) (0.049) (0.072) (0.053)

Narrower range of students 0.015 0.150 �0.183 �0.059
(0.071) (0.063) (0.100) (0.073)

Alternative sample (students �0.072 �0.145 �0.228 �0.147
who passed the
promotional cutoff in
reading but not math in
June)

(0.105) (0.087) (0.090) (0.068)

Each cell contains an estimate from a separate 2SLS regression that controls for all of the past
performance and demographic characteristics described earlier. The baseline sample includes children
who passed the promotional cutoff in reading but not math in June. The baseline range of data includes
students who scored between 1.0 GE below and 0.5 GE above the reading cutoff in August. The broader
range of data used in rows 4 and 5 includes students who scored between 1.5 GEs below and 1.0 GE
above the reading cutoff in August. The narrower range of data used in row 6 includes students who
scored between 0.5 GE below and 0.3 GE above the reading cutoff in August.
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estimates appear robust to these changes.25 Rows 4, 5, and
6 show how our estimates change as we use data from
broader and narrower ranges around the cutoff. The results
do depend somewhat on our sample, but the differences are
not significant and do not change the pattern of results. The
final row shows estimates of the retention treatment effect
when we examine students who passed reading and failed
math in June. Our findings in some cases are quite different
when we examine this sample. The difference is significant
only for third-grade math, however. In all cases, the stan-
dard errors of these estimates are quite large, making it
difficult to draw strong conclusions.

Table 9 reports the 2-year retention effects for various
cohorts and subsamples. Several interesting patterns are
evident. First, it appears that the effect of grade retention
has improved for later cohorts, although these patterns are
of marginal statistical significance at best. This pattern,
however, is consistent with the introduction of an after-
school tutoring program for retained students starting in
1998. For sixth-grade students it appears that retention may
be most harmful for the highest- and lowest-ability students.
Retention also may have been worse for boys than for girls.
The treatment effect does not appear to vary systematically
with race or free lunch status.

VIII. The Effect of Summer School

In section VI we estimated the net effect (�N) of summer
school and grade retention. Using information on the mag-
nitude of the retention treatment effects, we can now back
out an estimate of the summer school treatment effect.
Assuming homogeneous treatment effects, the net effect can
be represented in the following way:

�N � �S � �RPR, (7)

where �S and �R are the summer school and retention
treatment effects, respectively, and PR is the probability of
being retained conditional on attending summer school.
Hence, to determine the separate effect of summer school,
we must obtain estimates of the net effect of summer school
and grade retention (�S), the probability of retention con-
ditional on attending summer school (PR), and the separate
effect of grade retention (�R).

For the net effects, we will use the third difference
estimates presented in table 3. Although the probability of
retention is simple to calculate empirically, it is important to
use the same population that was used to estimate the net
effect. Recall that this group consisted of students who in
June passed the promotional cutoff in math and scored just
below or just above the promotional cutoff in reading
(which we therefore refer to as the June sample). It can be
shown that the conditional probability of retention consis-

tent with our third difference estimate of the net effect is the
following:

P̂R �
�R� c�1 � R� c� � �R� c � R� c�1�

�T� c�1 � T� c� � �T� c � T� c�1�
, (8)

where R� is the fraction retained and the other variables are
as previously described. This estimate is the probability of
being retained for those students who went to summer
school because they missed the cutoff.

Finally, we must obtain an estimate of the retention effect,
once again taking care to use the same population that was
used to determine the net effect. Unfortunately, the sample
used to estimate the retention effects in section VII is
somewhat different than the June sample. The retention
effects were estimated using the sample of students who
passed the math, but not the reading, cutoff in June, and then
scored within a limited range around the reading cutoff
(both above and below) in August (which we refer to as the
August sample). In general, this is a lower-ability group
than the population used to estimate the net effects. To the
extent that the effect of retention is different across the two
groups, our estimates of the summer school effect will be
biased. Although the nature of our identification strategy
prevents us from using the same sample to estimate the net
and retention effects, we can attempt to place reasonable
bounds on the summer school effect.

The middle column in Table 10 presents the summer
school effect under the assumption that the retention effect
is identical for the June and August samples. Using the
retention effects presented in table 7, the implied 2-year
summer school treatment effects range from 0.03 to 0.07
logits. For third-grade students, summer school increases
reading and math achievement 2 years later by roughly 12%
of the average annual learning gain. For sixth-graders, the
effects are roughly half as large.

As we mentioned previously, it may be that the retention
treatment effects are different for students near the cutoff in
August than for students near the cutoff in June. To place
reasonable bounds on the potential summer school effects,
we subtract 0.25 logits from the retention treatment effect
for the upper estimates and add 0.25 logits for the lower
estimates. Depending on our assumption regarding the mag-
nitude of the retention treatment effect, the implied summer
school effects can vary substantially. Despite this, it appears
that even under very pessimistic assumptions, summer
school improves performance in mathematics. In reading,
the lower bound estimates are close to 0. On the other hand,
the upper bound estimates are substantial for reading and for
mathematics.

IX. Conclusions

As school districts impose tougher standards on students
and increasingly hold schools accountable for their perfor-
mance, there will be a growing need to find effective

25 Because the ITBS exam was not given in August prior to 1997, it is
not possible to observe the counterfactual relationship between August
scores and subsequent performance.
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remedial education programs to help low-achieving stu-
dents. The evidence presented in this paper suggests that
summer school and grade retention have a modest but
positive net impact on student achievement scores for third-
grade students. For these students, the net effect is a com-
bination of benefits from both summer school and grade
retention. Contrary to conventional wisdom and prior re-

search, we find that retention may actually increase aca-
demic achievement for low-achieving third graders. These
programs appear to have little if any effects for sixth-grade
students.26

26 We were only able to follow students for several years following
summer school and/or retention. It is possible that the summer school

TABLE 9.—THE HETEROGENEITY OF 2-YEAR GRADE RETENTION EFFECTS

Third Grade Sixth Grade

Reading Math Reading Math

Baseline estimates 0.035 0.091 �0.154 �0.046
(0.051) (0.045) (0.065) (0.047)

Year

1997 cohort �0.134 0.053 �0.388 �0.234
(0.126) (.109) (0.140) (0.112)

1998 cohort 0.085 0.052 �0.135 �0.036
(0.065) (.059) (0.103) (0.075)

1999 cohort 0.060 0.184 0.001 0.013
(0.081) (0.072) (0.092) (0.064)

F-statistic (equal coefficients) 1.21 1.13 2.42 1.84
Pr � F  0.30 Pr � F  0.32 Pr � F  0.09 Pr � F  0.16

Prior Achievement*

Bottom quartile 0.051 �0.036 �0.366 �0.199
(0.102) (0.087) (0.147) (0.105)

2nd quartile �0.053 0.071 0.064 0.110
(0.090) (0.079) (0.120) (0.087)

3rd quartile 0.110 0.091 �0.082 0.054
(0.118) (0.109) (0.121) (0.091)

Top quartile 0.021 0.210 �0.303 �0.189
(0.119) (0.109) (0.138) (0.101)

F-statistic (equal coefficients) 0.44 1.05 2.34 2.86
Pr � F  0.72 Pr � F  0.37 Pr � F  0.07 Pr � F  0.04

Race

Black 0.085 0.070 �0.158 �0.050
(.058) (0.052) (0.088) (0.064)

Hispanic �0.105 0.191 �0.180 �0.028
(0.110) (0.097) (0.097) (0.069)

White/other �0.289 �0.060 �0.342 �0.113
(0.203) (0.161) (0.312) (0.219)

F-statistic (equal coefficients) 2.70 1.03 0.17 0.08
Pr � F  0.07 Pr � F  0.36 Pr � F  0.84 Pr � F  0.92

Gender

Male 0.096 0.060 �0.277 �0.126
(0.069) (0.062) (0.090) (0.064)

Female �0.055 0.119 �0.004 0.033
(0.075) (0.066) (0.094) (0.070)

F-statistic (equal coefficients) 2.18 0.42 4.37 2.80
Pr � F  0.14 Pr � F  0.52 Pr � F  0.04 Pr � F  0.09

Family Income

Free lunch 0.030 0.083 �0.161 �0.038
(0.052) (0.046) (0.066) (0.048)

No free lunch 0.134 0.213 �0.188 �0.140
(0.239) (0.213) (0.252) (0.180)

F-statistic (equal coefficients) 0.19 0.35 0.01 0.27
Pr � F  0.67 Pr � F  0.55 Pr � F  0.92 Pr � F  0.61

Each cell includes an estimate from a separate 2SLS regression that controls for year fixed effects and all of the additional performance and demographic variables described earlier.
* Prior achievement is measured as the average math and reading score in second or fifth grade. Quartiles are determined on the basis of students in this sample. A small number of students who were missing

second- or fifth-grade test scores are excluded from this categorization.
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In interpreting these findings, it is important to recognize
several issues. First, the treatments analyzed in this study—
summer school and grade retention—were implemented in
the context of high-stakes testing. Thus, our estimates re-
flect the impact of summer school and grade retention with
incentives (for example, the student had to pass the August
exam to avoid retention), which may be different than the
effects of similar programs in the absence of such incen-
tives. Second, although the Chicago programs are similar in
structure to those being implemented in other urban districts
(such as New York City, Boston, and Washington, DC), they
incorporated features such as small class sizes, a highly
structured curriculum, and teachers selected by the princi-
pal, all of which may have contributed to the success of the
program. On the other hand, to the extent that peer effects
operate, these programs might have had positive spillover
effects that we have not captured.27

Taking these factors into account, our results are best
interpreted as indicating the achievement gains that are
possible with remedial education for low-achieving stu-
dents. In settings with fewer resources, outcomes may be
somewhat worse. Thus remedial summer school and reten-

tion programs under favorable circumstances can improve
the performance of young disadvantaged students. In the
quest for higher standards and achievement, these programs
offer at least some hope for students struggling to cross the
bar.
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Plausible
Lower Bound

Estimated Effect
(% of Annual

Learning Gain)
Plausible

Upper Bound

Third Grade
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Sixth Grade
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(5.5%)
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(5.8%)

The estimated summer school treatment effects are computed using the third-difference 2-year net
effect estimates from table 3 and the retention treatment effects from table 6. We compute the treatment
effect of the summer bridge program by removing that portion of the effect that could be caused by
retention. For third and sixth grade, we compute lower and upper estimates by adding and subtracting
0.25 logits to point estimates of the retention treatment effects.
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