## SCC0602 - Algoritmos e Estruturas de Dados I



Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

## Today

- Abstract data types
- Queues
- Graphs
- Graph representations
- Traversing graphs
- Breadth-First Search
- Depth-First Search
- Topological sort


## Abstract Data Types (ADTs)

- Mathematical entity that defines data structures separating:
- Specification
- What are the values the data structure can assume and the possible operations on these values
- Implementation
- How the values and operations are implemented


## Queue ADT

- Insertion and removal of elements follows the first-in-first-out (FIFO) principle
- Elements may be inserted at any time

- But only the oldest element in the queue can be removed
- Elements are inserted at the rear (enqueued) and removed from the front (dequeued)


Queue
André de Carvalho - ICMC/USP

## Queue ADT

- Constructor:
- make ():Queue - Creates an empty queue
- Access functions:
- size (S:Queue): integer - returns size of the queue
- isEmpty (S:Queue): Boolean - tells if queue is empty
- front (S:Queue): element - return element at the front
- Manipulation procedures:
- Enqueue(S:Queue, o:element):Queue - Inserts object $o$ at the rear of the queue
- Dequeue (S:Queue): Queue - Removes the object from the front of the queue


## Array Implementation

- Create a queue using an array in a circular fashion
- A maximum size $N$ is specified
- The queue has an $N$-element array $Q$ and two integer variables:
- $f$, index of the front element (head, for dequeue)
- $r$, index of the element after the rear element (tail, for enqueue)




## Array Implementation

- "wrapped around" configuration

- what does $f=r$ mean?


## An Array Implementation

- Pseudo code

```
Algorithm size()
return (N-f+r) mod N
Algorithm isEmptyO
return size()=0
Algorithm front()
if isEmpty() then
    return Error
    return Q[f]
```

                        Algorithm dequeue()
    if isEmpty() then
return Error
$Q[f]=$ null
$f=(f+1)$ mod $N$

Algorithm enqueue(o)
if size $=N-1$ then
return Error
$Q[r]=o$
$r=(r+1)$ mod $N$

## Using List ADT

- List ADT implemented as a singly linked list can be used

- Dequeue(S): S.remove(S.first())


André de Carvalho - ICMC/USP

## Using List ADT

- Enqueue(S, e): S.insertLast(e)





## Graphs

- A graph $G=(V, E)$ is composed of:
- V : set of vertices
- $\mathrm{E} \subset \mathrm{V} \times \mathrm{V}$ : set of edges connecting graph vertices - Each edge $\boldsymbol{e}=(u, v), \boldsymbol{e} \in \boldsymbol{E}$, connects a pair of vertices
- A graph can be directed or undirected
- In a undirected graph an edge between $u$ and $v$ is represented by both $(u, v) \in \mathrm{E}$ and $(v, u) \in \mathrm{E}$



## In either case

- May think of vertices storing other information
- Attributes (name, IP address, ...)
- Information for algorithms that will be performed on the graph
- We will want to be able to do the following operations:
- Edge Membership: Is edge e in E?
- Neighbor Query: Who are the neighbors of vertex v ?


## Graph terminology

- A vertex $v$ is adjacent to a vertex $u$ iff $(u, v) \in \mathrm{E}$
- Degree of a vertex: \# of adjacent vertices

- Path: a sequence of vertices $v_{1}, v_{2}, \ldots v_{k}$, such that $v_{i+1}$ is adjacent to $v_{\mathrm{i}}$ for $i=1$.. $k-1$


## Graph terminology

- Simple path: a path with no repeated vertices
- Cycle: a simple path in which the last vertex is the same as the first vertex

- Connected graph: any two vertices are connected by some path


André de Carvalho - ICMC/USP


## Graph terminology

- Subgraph: a subset of vertices and edges forming a graph
- Connected component: a maximal connected subgraph
- Ex.: graph with 3 connected components



André de Carvalho - ICMC/USP

## Graph terminology

- (free) tree: connected graph without cycles
- forest: collection of trees



## Data structures for graphs

- Adjacency matrix

- Adjacency list



## Adjacency matrix

- Matrix M with entries for all pairs of vertices
- $M[i, j]=$ true if there is an edge $(i, j)$ in the graph
- $M[i, j]=$ false if there is no edge $(i, j)$ in the graph
- Space $\left.=\alpha|\mathrm{V}|^{2}\right)$

$\left.\mathrm{a}+\mathrm{b} \mathrm{b}+\begin{array}{lllll}\mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ \mathrm{c} \\ \mathrm{d} & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0\end{array}\right]$

André de Carvalho - ICMC/USP

## Adjacency matrix

- Option 1: adjacency matrix
$\left.\stackrel{-}{-} \begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ \sim \\ \sim & 0 & 0 & 1 \\ - & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$



## Adjacency matrix

- Option 1: adjacency matrix

|  | 1 | 2 |  | 3 |  | 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 0 |  |  | 0 |  |
| $\sim$ | 0 |  |  |  |  | 1 |  |
|  | 1 |  |  |  |  | 1 |  |
|  |  |  |  |  |  | 0 |  |



## Adjacency matrix

- Option 1: adjacency matrix



## Adjacency list

- Option 2: linked lists


| Graph representation | Generally better for <br> sparse graphs <br> Suppose there are n <br> vertices and m edges | $\left.\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$ |
| :--- | :---: | :---: |

## Graph searching algorithms

- Systematic search of every edge and vertex of the graph
- Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is either directed or undirected
- Applications
- Compilers
- Computer Graphics
- Maze-solving
- Mapping
- Networks: routing, searching, clustering, etc.
- color():\{white, gray, black\} and setcolor(c:\{white, gray, black\})


## Graph search algorithms

- Searching a graph:
- Systematically follow the edges of a graph to visit all the vertices of the graph
- Used to discover the structure of a graph
- Standard graph-searching algorithms
- Breadth-First Search (BFS)
- Depth-First Search (DFS)


## Breadth-First Search (BFS)

- Traverses a connected component of a graph defining a spanning tree with useful properties
- In undirected graphs, similar to walk in a labyrinth with a string
- The starting vertex $s$, it is assigned a distance 0
- In the first round, the string is unrolled the size of 1 edge
- All of the edges that are only one edge away from the starting vertex are visited (discovered) and assigned distances of 1



## Breadth-First Search (BFS)

- In the second round, all new edges that can be reached by unrolling the string 2 edges are visited and assigned a distance of 2
- The walking continues until every vertex has been assigned a level
- The label of any vertex $v$ corresponds to the length of the shortest path from $s$ to $v$
- In terms of the number of edges


## Breadth-First Search (BFS)

- Input: Graph $G=(V, E)$, directed or undirected, and source vertex $s \in V$
- Output:
- d[v]: distance (smallest \# of edges or shortest path) from $s$ to $v$, for all $v \in V$
- $q[v]=\infty$ if $v$ is not reachable from $s$
- $\pi[\mathrm{v}]: u$, parent (predecessor) of $v$ where ( $u, v$ ) is the last edge on the shortest path $s \sim v$
- Builds a breadth-first tree with root $s$ and all reachable vertices


## Breadth-First Search (BFS)

- Definitions
- Path between vertices $u$ and $v$ :
- Sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{\mathrm{k}}\right)$ such that $u=v_{1}$ and $v=v_{k}$, and $\left(v_{i j} v_{i+1}\right) \in E_{1}$ for all $1 \leq i \leq k-1$
- Length of the path:
- Number of edges in the path
- Path is simple if no vertex is repeated


## Breadth-First Search (BFS)

- Expands the frontier between discovered and undiscovered vertices uniformly across its breadth
- A vertex is "discovered" the first time it is encountered during the search
- A vertex is "finished" if all vertices adjacent to it have been discovered
- Colors the vertices to keep track of progress
- White - Undiscovered
- Gray - Discovered but not finished
- Black - Finished
- Colors are required only to reason about the algorithm
- Can be implemented without colors



Example (BFS)


$$
\text { Q: } \begin{array}{llll} 
& \text { w } \\
& 1 & 1 \\
\hline
\end{array}
$$



Example (BFS)



## Example (BFS)

## Example (BFS)



André de Carvalho - ICMC/USP


BF Tree

André de Carvalho - ICMC/USP

## BFS running time

- Given a graph G = (V,E)
- Initializing the algorithm takes $\mathrm{O}(\mathrm{V})$
- Vertices are enqueued if their color is white
- Assuming that en- and dequeuing takes $\mathrm{O}(1)$ time the total cost of this operation is $\mathrm{O}(\mathrm{V})$
- Adjacency list of a vertex is scanned when the vertex is dequeued (and only then...)
- The sum of the lengths of all lists is $\Theta(E)$ Consequently, $\mathrm{O}(\mathrm{E})$ time is spent on scanning them
- Running time of BFS is $\mathbf{O}(\mathbf{V}+E)$
- Linear in the size of the adjacency list representation of G


## Depth-First Search (DFS)

- In undirected graphs, similar to walk in a labyrinth with a string and a can of paint


1 Start at vertex $s$, tying the end of our string to $s$ and paint $s$ "visited"
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4 If edge ( $u, v$ ) leads us to an already visited vertex $v$
Then Return to $u$
Else Unroll string and move to v and paint v "visited" Set v as the current vertex and go to 3
f gets to a point where all incident edges on $u$ lead to visited vertices Then Backtrack by rolling the string to a previously visited vertex $v$ Set v as the current vertex and go to 3
If all incident edges on $v$ lead to visited vertices
Then Backtrack as before
Continue to backtrack along the travelled path, finding and exploring unexplored edges, and repeating the procedure
If backtrack to vertex $s$ and there are no more unexplored edges incident on $s$ Then DFS search is finished

## Depth-First Search (DFS)

- Explore edges out of the most recently discovered vertex $v$
- When all edges of $v$ have been explored, backtrack to explore other edges leaving the vertex from which $v$ was discovered (its predecessor)
. "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered
- If any undiscovered vertices remain, one of them is chosen as a new source and search is repeated from this source


## Depth-First Search (DFS)

- Input: $G=(V, E)$, directed or undirected
- No source vertex is given
- Output:
- 2 timestamps on each vertex
- Integers between 1 and $2|\mathrm{~V}|$
$d[v]=$ discovery time (when $v$ turns from white to gray)
$f[v]=$ finishing time (when $v$ turns from gray to black)
- $\pi[v]$ : predecessor of $v$
- Vertex $u$ if $v$ was discovered in $u$ adjacency list
- Uses the same coloring scheme used for vertices as BFS

André de Carvalho - ICMC/USP


## DFS Algorithm

- Initialize: color all vertices white
- Visit each and every white vertex using DFS-Visit
- Call from DFS to DFS-Visit(u) roots a new tree of the depth-first forest at vertex $u$
- When DFS finishes, every vertex has:
- A discovery time $d$
- A finishing time $f$



Example (DFS)


Discovery time / finish time


Example (DFS)


Discovery time / finish time



Example (DFS)


Discovery time / finish time


Example (DFS)


Discovery time / finish time


## DFS Algorithm running time

- Running time
- The loops in DFS take time $\Theta(V)$ each
- Excluding the time to execute DFS-Visit
- DFS-Visit is called once for every vertex
- It is only called for white vertices, when it immediately
paints the vertex with gray
- For each DFS-visit, a loop interates over all v.adjacent()

$$
\sum_{v \in V}|v \cdot \operatorname{adjacent}()|=\Theta(E)
$$

- Total cost for DFS-Visit is $\Theta$ (E)
- Running time of DFS is $\Theta(V+E)$


## Generic Graph Search

GenericGraphSearch ( $G$, s)
Gen for each vertex $u \in G . V()$
01 for each vertex $u \in$
$u$.setcolor(white)
u.setparent (NIL)

4 s.setcolor (gray)
05 GrayVertices.init()
06 GrayVertices.add(s)
while not GrayVertices.isEmpty()
$u \leftarrow$ GrayVertices.remove
for each $v \in u$.adjacent() do
v.color() $=$ white then
v . setcolor (gray)
V.setparent (

1. setcolor (black)

- BFS, when GrayVertices is a Queue
- DFS, when GrayVertices is a Stack


## DFS Parenthesis Theorem

- Discovery and finish times have a parenthesis structure
- Represents discovery of $u$ with left parenthesis . "(u"
- Represents finishing of $u$ with right parenthesis . "u)"
- History of discoveries and finishings makes a well-formed expression
- Parenthesis are properly nested
- Example: (s (a (b b) a) s)


## BFS versus DFS



Search wider

- Find shortest-path distances to a given source
- Forms a tree . One source
- FIFO (queue)

It is often a subroutine in another algorithm - Forms a tree forest . One or more sources

- LIFO (stack)



## DFS Parenthesis Theorem

- For all $u, v$, one of the following holds:

For all $u, v$, exactly one of the following holds:

1. $d[u]<f[u]<d[v]<f[v]$ or $d[v]<f[v]<d[u]<f[u]$ and neither $u$ nor $v$ is a descendant of the other.
2. $d[u]<d[v]<f[v]<f[u]$ and $v$ is a descendant of $u$.
3. $d[v]<d[u]<f[u]<f[v]$ and $u$ is a descendant of $v$.

## DFS Parenthesis Theorem

- Intuition for proof:
- Any two intervals are either disjoint or enclosed (one inside the other)
- Overlapping intervals would mean:
- Finishing ancestor, before finishing descendant or
- Starting descendant without starting ancestor


## DFS Edge Classification

- DFS can be used to classify the edges of the graph $G=(\mathrm{V}, \mathrm{E})$
- Tree ( $T$ ) edges
- Back (B) edges
- Forward (F) edges
- Cross (C) edges
- Edge classification can provide important information about the graph
- E.g. a direct graph is acyclic if and only if DFS produces no back edges


## DFS Edge Classification

- Tree edge (from gray to white)
- Edges in depth-first forest
- Back edge (from gray to gray)
- From descendant to ancestor in depth-first tree


André de Carvalho - ICMC/USP

## DFS Edge Classification

- Edge type for edge ( $u, v$ ) can be identified when it is first explored by DFS
- Tree and back edges are the most important
- Most algorithms do not distinguish between forward and cross edges
- Undirected graphs:
- Classification is difficult , since $(u, v)=(v, u)$ - Edge is classified according to the vertex encountered first
- Forward and cross edges never occur


## Directed Acyclic Graphs

- A DAG is a directed graph with no cycles


- Often used to indicate precedence among events - Event a must happen before event b
- Example: parallel code execution
- Total order can be introduced using Topological Sorting


## Topological Sort (TS)

- TS of a DAG G = $(\mathrm{V}, \mathrm{E})$ is a linear ordering of all its vertices, such that:
- If G contains an edge ( $\mathrm{u}, \mathrm{v}$ ), u must appear before $v$ in the ordering
- No ordering is possible in a cyclic graph
- Like ordering all vertices in a horizontal line so that all directed edges go from left to right
- First vertex always has in-degree equal to 0 - Vertex with no incoming edges


## Topological Sort Algorithm

Topological-Sort(G)
1 call $D F S(G)$ to compute finishing times $f[v]$ for each vertex $v$ 2 as each vertex is finished, insert it onto the front of a linked list 3 return the linked list of vertices

The linked lists has a total ordering

## Next Lecture

- Strongly connected components
- Transpose of directed graphs
- Algorithm to find strongly connected components


