
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Graphs

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

 Abstract data types

 Queues

 Graphs

 Graph representations

 Traversing graphs

 Breadth-First Search

 Depth-First Search

 Topological sort

André de Carvalho - ICMC/USP 2

Abstract Data Types (ADTs)

 Mathematical entity that defines data
structures separating:

 Specification

 What are the values the data structure can
assume and the possible operations on these
values

 Implementation

 How the values and operations are
implemented

André de Carvalho - ICMC/USP 3

Abstract Data Types (ADTs)

 Examples of ADTs

 Vector

 List (Sequence)

 Doubly linked list implementation

 Dynamic set ADTs

 Stack

 Queue

 Deque

 Priority Queue

André de Carvalho - ICMC/USP 4

Queue ADT

 Insertion and removal of elements follows the
first-in-first-out (FIFO) principle

 Elements may be inserted at any time
 But only the oldest element in the queue can be removed

 Elements are inserted at the rear (enqueued) and
removed from the front (dequeued)

Front Rear

Queue
André de Carvalho - ICMC/USP 5

Queue ADT

 Constructor:
 make ():Queue - Creates an empty queue

 Access functions:
 size (S:Queue):integer - returns size of the queue

 isEmpty (S:Queue):Boolean - tells if queue is empty
 front (S:Queue):element - return element at the front

 Manipulation procedures:
 Enqueue(S:Queue, o:element):Queue - Inserts object

o at the rear of the queue

 Dequeue (S:Queue):Queue - Removes the object
from the front of the queue

André de Carvalho - ICMC/USP 6

CHOROCHRONOS Midter Review

Timos Sellis 2

Array Implementation

 Create a queue using an array in a circular
fashion

 A maximum size N is specified

 The queue has an N-element array Q and two
integer variables:

 f, index of the front element (head, for dequeue)

 r, index of the element after the rear element (tail, for
enqueue)

André de Carvalho - ICMC/USP 7

Array Implementation

 “wrapped around” configuration

 what does f=r mean?

André de Carvalho - ICMC/USP 8

An Array Implementation

 Pseudo code

Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return size()=0

Algorithm front()
if isEmpty() then

return Error
return Q[f]

Algorithm dequeue()
if isEmpty() then

return Error
Q[f]=null
f=(f+1)modN

Algorithm enqueue(o)
if size = N - 1 then

return Error
Q[r]=o
r=(r +1)mod N

André de Carvalho - ICMC/USP 9

 List ADT implemented as a singly linked list
can be used

 Dequeue(S): S.remove(S.first())

Using List ADT

André de Carvalho - ICMC/USP 10

 Enqueue(S, e): S.insertLast(e)

Using List ADT

André de Carvalho - ICMC/USP 11

 Used in many applications

 Electronic circuits

 Energy distribution

 Transport between places

 Communication networks

 Relationtions between

 Components

 People

 Proteins

Graphs

André de Carvalho - ICMC/USP 12

CHOROCHRONOS Midter Review

Timos Sellis 3

Food Chain

André de Carvalho - ICMC/USP 13

Brain neural connections

k-core: maximal subgraph with minimum degree ≥ k

André de Carvalho - ICMC/USP 14

Protein interaction network

André de Carvalho - ICMC/USP 15

Home network

André de Carvalho - ICMC/USP 16

Social network

André de Carvalho - ICMC/USP 17

Corruption network

André de Carvalho - ICMC/USP 18

CHOROCHRONOS Midter Review

Timos Sellis 4

Corruption network

André de Carvalho - ICMC/USP 19

Graphs

 A graph G = (V,E) is composed of:

 V: set of vertices

 E V V: set of edges connecting graph vertices
 Each edge e = (u,v), e E, connects a pair of vertices

 A graph can be directed or undirected

 In a undirected graph an edge between u and v is
represented by both (u,v) E and (v,u) E

A B

C D

A B

C D

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
(C,D), (D,C), (B,C), (C,B)}

André de Carvalho - ICMC/USP 20

In either case

 May think of vertices storing other information

 Attributes (name, IP address, …)

 Information for algorithms that will be performed
on the graph

 We will want to be able to do the following
operations:

 Edge Membership: Is edge e in E?

 Neighbor Query: Who are the neighbors of vertex
v?

André de Carvalho - ICMC/USP 21

Graph terminology

 A vertex v is adjacent to a vertex u iff (u,v) E

 Degree of a vertex: # of adjacent vertices

 Path: a sequence of vertices v1 ,v2 ,. . .vk , such
that vi+1 is adjacent to vi for i = 1 .. k – 1

André de Carvalho - ICMC/USP 22

Graph terminology

 Simple path: a path with no repeated vertices

 Cycle: a simple path in which the last vertex is
the same as the first vertex

 Connected graph: any two vertices are
connected by some path

André de Carvalho - ICMC/USP 23

Graph terminology

 Subgraph: a subset of vertices and edges
forming a graph

 Connected component: a maximal
connected subgraph

 Ex.: graph with 3 connected components

André de Carvalho - ICMC/USP 24

CHOROCHRONOS Midter Review

Timos Sellis 5

Graph terminology

 (free) tree: connected graph without
cycles

 forest: collection of trees

André de Carvalho - ICMC/USP 25

Data structures for graphs

 Adjacency matrix

 Adjacency list

0 1 2 3 4
0 0 1 0 1 1
1 1 0 1 0 1
2 0 1 0 0 1
3 1 0 0 0 1
4 1 1 1 1 0

André de Carvalho - ICMC/USP 26

3

2

1

0

4

 Matrix M with entries for all pairs of vertices

 M[i,j] = true if there is an edge (i,j) in the graph

 M[i,j] = false if there is no edge (i,j) in the graph

 Space = O(|V|2)

Adjacency matrix

a b c d e
a 0 1 1 1 0
b 1 0 0 0 1
c 1 0 0 1 1
d 1 0 1 0 1
e 0 1 1 1 0

André de Carvalho - ICMC/USP 27

Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

1 2 3 4

1
 2

 3
 4

André de Carvalho - ICMC/USP 28

Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

1 2 3 4

1
 2

 3
 4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

André de Carvalho - ICMC/USP 29

Adjacency matrix

Destination
1 2 3 4

1
 2

 3
 4

S
o
u
rce

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

1

2

3

4

André de Carvalho - ICMC/USP 30

 Option 1: adjacency matrix

CHOROCHRONOS Midter Review

Timos Sellis 6

Adjacency list

 Option 2: linked lists

1

2

3

4

How would you modify
this for directed graphs?

1 2 3 4

3 4 1 2

2
André de Carvalho - ICMC/USP 31

3 4 3

Graph representation

Edge membership
Is e = {u,v} in E?

Neighbor query
Give me v’s neighbors

Suppose there are n
vertices and m edges

Space requirements

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or
O(deg(u))

O(deg(v))

O(n2) O(n + m)

We’ll assume this
representation for the
rest of the class

Generally better for
sparse graphs

André de Carvalho - ICMC/USP 32

Pseudocode assumptions

 Graph ADT with an operation
 V():VertexSet

 A looping construct “for each v V ”, where V is
of a type VertexSet, and v is of a type Vertex

 Vertex ADT with operations:
 adjacent():VertexSet

 d():int and setd(d:int)
 f():int and setf(f:int)
 parent() (ou ()):Vertex and setparent(p:Vertex)

 color():{white, gray, black} and setcolor(c:{white,
gray, black})

André de Carvalho - ICMC/USP 33

Graph searching algorithms

 Systematic search of every edge and vertex of
the graph

 Graph G = (V,E) is either directed or undirected

 Applications

 Compilers

 Computer Graphics

 Maze-solving

 Mapping

 Networks: routing, searching, clustering, etc.

André de Carvalho - ICMC/USP 34

Graph search algorithms

 Searching a graph:

 Systematically follow the edges of a graph
to visit all the vertices of the graph

 Used to discover the structure of a graph

 Standard graph-searching algorithms

 Breadth-First Search (BFS)

 Depth-First Search (DFS)

André de Carvalho - ICMC/USP 35 36

Breadth-First Search (BFS)

 Traverses a connected component of a graph,
defining a spanning tree with useful properties

 In undirected graphs, similar to walk in a
labyrinth with a string

 The starting vertex s, it is assigned a distance 0

 In the first round, the string is unrolled the size
of 1 edge
 All of the edges that are only one edge

away from the starting vertex are visited
(discovered) and assigned distances of 1

André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 7

37

Breadth-First Search (BFS)

 In the second round, all new edges that can be
reached by unrolling the string 2 edges are
visited and assigned a distance of 2

 The walking continues until every vertex has
been assigned a level

 The label of any vertex v corresponds to the
length of the shortest path from s to v
 In terms of the number of edges

André de Carvalho - ICMC/USP

Breadth-First Search (BFS)

 Input: Graph G = (V, E), directed or
undirected, and source vertex s V

 Output:
 d[v]: distance (smallest # of edges or shortest

path) from s to v, for all v V
 d[v] = if v is not reachable from s

 [v]: u, parent (predecessor) of v where (u, v)
is the last edge on the shortest path s v

 Builds a breadth-first tree with root s and all
reachable vertices

André de Carvalho - ICMC/USP 38

Breadth-First Search (BFS)

 Definitions

 Path between vertices u and v :
 Sequence of vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1) E, for all 1 i k-1

 Length of the path:

 Number of edges in the path

 Path is simple if no vertex is repeated

André de Carvalho - ICMC/USP 39

Breadth-First Search (BFS)

 Expands the frontier between discovered and
undiscovered vertices uniformly across its breadth
 A vertex is “discovered” the first time it is encountered

during the search

 A vertex is “finished” if all vertices adjacent to it have
been discovered

 Colors the vertices to keep track of progress
 White – Undiscovered

 Gray – Discovered but not finished

 Black – Finished
 Colors are required only to reason about the algorithm

 Can be implemented without colors

André de Carvalho - ICMC/USP 40

Breadth-First Search (BFS)

Finished

Discovered

Undiscovered

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3

André de Carvalho - ICMC/USP 41

BFS(G,s)

1 for each vertex u in V[G] – {s} do

2 color[u] WHITE

3 d[u]

4 [u] NIL

5 color[s] GRAY

6 d[s] 0

7 [s] NIL

8 Q

9 ENQUEUE (Q,s)

10 while Q do

11 u DEQUEUE (Q)

12 for each v in Adj[u] do

13 if color[v] = WHITE

14 then color[v] GRAY

15 d[v] d[u] + 1

16 [v] u
17 ENQUEUE (Q,v)

18 color[u] BLACK

WHITE: undiscovered
GRAY: discovered
BLACK: finished

Q: queue of discovered vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of u

André de Carvalho - ICMC/USP 42

Breadth-First Search algorithm

CHOROCHRONOS Midter Review

Timos Sellis 8

Example (BFS)

 0

r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 43

Example (BFS)

1 0

1

r s t u

v w x y

Q: w r
1 1

André de Carvalho - ICMC/USP 44

Example (BFS)

1 0

1 2

2

r s t u

v w x y

Q: r t x
1 2 2

André de Carvalho - ICMC/USP 45

Example (BFS)

1 0

1 2

2

2

r s t u

v w x y

Q: t x v
2 2 2

André de Carvalho - ICMC/USP 46

Example (BFS)

1 0

1 2

2 3

2

r s t u

v w x y

Q: x v u
2 2 3

André de Carvalho - ICMC/USP 47

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

André de Carvalho - ICMC/USP 48

CHOROCHRONOS Midter Review

Timos Sellis 9

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

André de Carvalho - ICMC/USP 49

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

André de Carvalho - ICMC/USP 50

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q:

André de Carvalho - ICMC/USP 51

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

André de Carvalho - ICMC/USP 52

53

BFS running time

 Given a graph G = (V,E)
 Initializing the algorithm takes O(V)

 Vertices are enqueued if their color is white

 Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(V)

 Adjacency list of a vertex is scanned when the vertex
is dequeued (and only then…)

 The sum of the lengths of all lists is Q(E)
Consequently, O(E) time is spent on scanning them

 Running time of BFS is O(V+E)
 Linear in the size of the adjacency list representation

of G

André de Carvalho - ICMC/USP

BFS properties

 Given a graph G = (V,E), BFS discovers all
vertices reachable from a source vertex s

 It computes the shortest distance to all
reachable vertices

 It computes a breadth-first tree that contains
all such reachable vertices

 For any vertex v reachable from s, the path in the
breadth first tree from s to v is the shortest
path in G

André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

Depth-First Search (DFS)

 In undirected graphs, similar to walk in a
labyrinth with a string and a can of paint

André de Carvalho - ICMC/USP 55

Using DFS to escape from a Labyritnth

André de Carvalho - ICMC/USP 56

1 Start at vertex s, tying the end of our string to s and paint s “visited”
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4 If edge (u,v) leads us to an already visited vertex v

Then Return to u
Else Unroll string and move to v and paint v “visited”

Set v as the current vertex and go to 3
If gets to a point where all incident edges on u lead to visited vertices

Then Backtrack by rolling the string to a previously visited vertex v
Set v as the current vertex and go to 3

If all incident edges on v lead to visited vertices
Then Backtrack as before

Continue to backtrack along the travelled path, finding and exploring
unexplored edges, and repeating the procedure

If backtrack to vertex s and there are no more unexplored edges incident on s
Then DFS search is finished

Depth-First Search (DFS)

 Explore edges out of the most recently
discovered vertex v
 When all edges of v have been explored, backtrack to

explore other edges leaving the vertex from which v
was discovered (its predecessor)

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original
source are discovered

 If any undiscovered vertices remain, one of them is
chosen as a new source and search is repeated from
this source

André de Carvalho - ICMC/USP 57

Depth-First Search (DFS)

 Input: G = (V, E), directed or undirected

 No source vertex is given

 Output:

 2 timestamps on each vertex
 Integers between 1 and 2|V|

 d[v] = discovery time (when v turns from white to gray)

 f [v] = finishing time (when v turns from gray to black)

 [v] : predecessor of v

 Vertex u ifv was discovered in u adjacency list

 Uses the same coloring scheme used for vertices
as BFS

André de Carvalho - ICMC/USP 58

Pseudo-code

DFS(G)

1 for each vertex u V[G] do

2 color[u] white

3 [u] NIL

4 time 0

5 for each vertex u V[G] do

6 if color[u] = white

7 then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

/* White vertex u has been discovered.

1 color[u] GRAY

2 time time + 1

3 d[u] time

4 for each v Adj[u] do

5 if color[v] = WHITE

6 then [v] u

7 DFS-Visit(v)

/* Blacken u; it visited all its adj list

8 color[u] BLACK

9 time time + 1

10 f[u] time

André de Carvalho - ICMC/USP 59

DFS Algorithm

 Initialize: color all vertices white

 Visit each and every white vertex using
DFS-Visit

 Call from DFS to DFS-Visit(u) roots a new
tree of the depth-first forest at vertex u

 When DFS finishes, every vertex has:

 A discovery time d

 A finishing time f

André de Carvalho - ICMC/USP 60

CHOROCHRONOS Midter Review

Timos Sellis 11

DFS Timestamping

 Vertex u is
 White before time d[u]

 Gray between time d[u] and time f[u]

 Black after f[u]

 Structure throughout the search:
 Gray vertices form a linear chain

 Chain corresponds to a stack of vertices that
were not exhaustively explored

 DFS-Visit started but did not finished

André de Carvalho - ICMC/USP 61

Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 62

Example (DFS)

1/ 2/

u v w

x y z

André de Carvalho - ICMC/USP 63

Example (DFS)

1/

3/

2/

u v w

x y z

André de Carvalho - ICMC/USP 64

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

André de Carvalho - ICMC/USP 65

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 66

Non tree edges:
B: back edge
C: cross edge
F: forward edge

CHOROCHRONOS Midter Review

Timos Sellis 12

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 67

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 68

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

André de Carvalho - ICMC/USP 69

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

André de Carvalho - ICMC/USP 70

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

André de Carvalho - ICMC/USP 71

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF

André de Carvalho - ICMC/USP 72

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

CHOROCHRONOS Midter Review

Timos Sellis 13

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

André de Carvalho - ICMC/USP 73

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

André de Carvalho - ICMC/USP 74

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 75

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 76

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 77

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

78

DFS Algorithm running time

 Running time

 The loops in DFS take time Q(V) each

 Excluding the time to execute DFS-Visit

 DFS-Visit is called once for every vertex
 It is only called for white vertices, when it immediately

paints the vertex with gray

 For each DFS-visit, a loop interates over all v.adjacent()

 Total cost for DFS-Visit is Q(E)

 Running time of DFS is Q(V+E)

. () ()
v V

v adjacent E

 Q

André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 14

Generic Graph Search

 BFS, when GrayVertices is a Queue

 DFS, when GrayVertices is a Stack

GenericGraphSearch(G,s)
01 for each vertex u G.V()
02 u.setcolor(white)
03 u.setparent(NIL)
04 s.setcolor(gray)
05 GrayVertices.init()
06 GrayVertices.add(s)
07 while not GrayVertices.isEmpty()
08 u GrayVertices.remove()
09 for each v u.adjacent() do
10 if v.color() = white then
11 v.setcolor(gray)
12 v.setparent(u)
13 GrayVertices.add(v)
14 u.setcolor(black)

André de Carvalho - ICMC/USP 79

BFS versus DFS

 BFS

 Search wider

 Find shortest-path
distances to a given
source

 Forms a tree

 One source

 FIFO (queue)

 DFS

 Search deeper

 It is often a
subroutine in
another algorithm

 Forms a tree forest

 One or more sources

 LIFO (stack)

André de Carvalho - ICMC/USP 80

DFS Parenthesis Theorem

 Discovery and finish times have a
parenthesis structure
 Represents discovery of u with left parenthesis

 "(u"

 Represents finishing of u with right parenthesis
 "u)"

 History of discoveries and finishings makes a
well-formed expression

 Parenthesis are properly nested

 Example: (s (a (b b) a) s)

André de Carvalho - ICMC/USP 81

DFS Parenthesis Theorem

André de Carvalho - ICMC/USP 82

André de Carvalho - ICMC/USP 83

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 For all u, v, one of the following holds:

 d[u] < f [u] < d[v] < f [v] or
d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other

 d[u] < d[v] < f [v] < f [u] and
v is a descendant of u

 d[v] < d[u] < f [u] < f [v] and
u is a descendant of v

André de Carvalho - ICMC/USP 84

DFS Parenthesis Theorem

CHOROCHRONOS Midter Review

Timos Sellis 15

DFS Parenthesis Theorem

 Intuition for proof:
 Any two intervals are either disjoint or

enclosed (one inside the other)

 Overlapping intervals would mean:
 Finishing ancestor, before finishing descendant or

 Starting descendant without starting ancestor

André de Carvalho - ICMC/USP 85

DFS Edge Classification

 DFS can be used to classify the edges of the
graph G = (V,E)

 Tree (T) edges

 Back (B) edges

 Forward (F) edges

 Cross (C) edges

 Edge classification can provide important
information about the graph

 E.g. a direct graph is acyclic if and only if DFS
produces no back edges

André de Carvalho - ICMC/USP 86

DFS Edge Classification

 Tree edge (from gray to white)

 Edges in depth-first forest

 Back edge (from gray to gray)

 From descendant to ancestor in depth-first
tree

André de Carvalho - ICMC/USP 87

 Forward edge (from gray to black)

 Non-tree edge from ancestor to descendant in
depth-first tree

 Cross edge (from gray to black)

 Remainder: between trees or subtrees

André de Carvalho - ICMC/USP 88

DFS Edge Classification

DFS Edge Classification

 Edge type for edge (u, v) can be identified when
it is first explored by DFS

 Tree and back edges are the most important

 Most algorithms do not distinguish between
forward and cross edges

 Undirected graphs:

 Classification is difficult , since (u,v) = (v,u)
 Edge is classified according to the vertex encountered first

 Forward and cross edges never occur

André de Carvalho - ICMC/USP 89

Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedence among events
 Event a must happen before event b

 Example: parallel code execution

 Total order can be introduced using Topological
Sorting

André de Carvalho - ICMC/USP 90

CHOROCHRONOS Midter Review

Timos Sellis 16

Topological Sort (TS)

 TS of a DAG G = (V,E) is a linear ordering
of all its vertices, such that:

 If G contains an edge (u,v), u must appear
before v in the ordering

 No ordering is possible in a cyclic graph

 Like ordering all vertices in a horizontal line so
that all directed edges go from left to right

 First vertex always has in-degree equal to 0

 Vertex with no incoming edges

André de Carvalho - ICMC/USP 91

Topological Sort Example

 Precedence relations: an edge from u to v means
that u must be finished before start v

 Intuition: conclude a task when all necessary
previous tasks are concluded

André de Carvalho - ICMC/USP 92

DAG

TS

Topological Sort Algorithm

Topological-Sort(G)
1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

André de Carvalho - ICMC/USP 93

The linked lists has a total ordering

Topological Sort Running Time

 Running time

 DFS: O(V+E) time

 insert each of the |V| vertices to the front of
the linked list: O(1) per insertion

 The total running time is O(V+E)

André de Carvalho - ICMC/USP 94

Next Lecture

 Strongly connected components

 Transpose of directed graphs

 Algorithm to find strongly connected
components

André de Carvalho - ICMC/USP 95

Acknowledgement

 A large part of this material were adapted from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

André de Carvalho - ICMC/USP 96

CHOROCHRONOS Midter Review

Timos Sellis 17

Questions

André de Carvalho - ICMC/USP 97

