
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Graphs

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

 Abstract data types

 Queues

 Graphs

 Graph representations

 Traversing graphs

 Breadth-First Search

 Depth-First Search

 Topological sort

André de Carvalho - ICMC/USP 2

Abstract Data Types (ADTs)

 Mathematical entity that defines data
structures separating:

 Specification

 What are the values the data structure can
assume and the possible operations on these
values

 Implementation

 How the values and operations are
implemented

André de Carvalho - ICMC/USP 3

Abstract Data Types (ADTs)

 Examples of ADTs

 Vector

 List (Sequence)

 Doubly linked list implementation

 Dynamic set ADTs

 Stack

 Queue

 Deque

 Priority Queue

André de Carvalho - ICMC/USP 4

Queue ADT

 Insertion and removal of elements follows the
first-in-first-out (FIFO) principle

 Elements may be inserted at any time
 But only the oldest element in the queue can be removed

 Elements are inserted at the rear (enqueued) and
removed from the front (dequeued)

Front Rear

Queue
André de Carvalho - ICMC/USP 5

Queue ADT

 Constructor:
 make ():Queue - Creates an empty queue

 Access functions:
 size (S:Queue):integer - returns size of the queue

 isEmpty (S:Queue):Boolean - tells if queue is empty
 front (S:Queue):element - return element at the front

 Manipulation procedures:
 Enqueue(S:Queue, o:element):Queue - Inserts object

o at the rear of the queue

 Dequeue (S:Queue):Queue - Removes the object
from the front of the queue

André de Carvalho - ICMC/USP 6

CHOROCHRONOS Midter Review

Timos Sellis 2

Array Implementation

 Create a queue using an array in a circular
fashion

 A maximum size N is specified

 The queue has an N-element array Q and two
integer variables:

 f, index of the front element (head, for dequeue)

 r, index of the element after the rear element (tail, for
enqueue)

André de Carvalho - ICMC/USP 7

Array Implementation

 “wrapped around” configuration

 what does f=r mean?

André de Carvalho - ICMC/USP 8

An Array Implementation

 Pseudo code

Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return size()=0

Algorithm front()
if isEmpty() then

return Error
return Q[f]

Algorithm dequeue()
if isEmpty() then

return Error
Q[f]=null
f=(f+1)modN

Algorithm enqueue(o)
if size = N - 1 then

return Error
Q[r]=o
r=(r +1)mod N

André de Carvalho - ICMC/USP 9

 List ADT implemented as a singly linked list
can be used

 Dequeue(S): S.remove(S.first())

Using List ADT

André de Carvalho - ICMC/USP 10

 Enqueue(S, e): S.insertLast(e)

Using List ADT

André de Carvalho - ICMC/USP 11

 Used in many applications

 Electronic circuits

 Energy distribution

 Transport between places

 Communication networks

 Relationtions between

 Components

 People

 Proteins

Graphs

André de Carvalho - ICMC/USP 12

CHOROCHRONOS Midter Review

Timos Sellis 3

Food Chain

André de Carvalho - ICMC/USP 13

Brain neural connections

k-core: maximal subgraph with minimum degree ≥ k

André de Carvalho - ICMC/USP 14

Protein interaction network

André de Carvalho - ICMC/USP 15

Home network

André de Carvalho - ICMC/USP 16

Social network

André de Carvalho - ICMC/USP 17

Corruption network

André de Carvalho - ICMC/USP 18

CHOROCHRONOS Midter Review

Timos Sellis 4

Corruption network

André de Carvalho - ICMC/USP 19

Graphs

 A graph G = (V,E) is composed of:

 V: set of vertices

 E V V: set of edges connecting graph vertices
 Each edge e = (u,v), e  E, connects a pair of vertices

 A graph can be directed or undirected

 In a undirected graph an edge between u and v is
represented by both (u,v)  E and (v,u)  E

A B

C D

A B

C D

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
(C,D), (D,C), (B,C), (C,B)}

André de Carvalho - ICMC/USP 20

In either case

 May think of vertices storing other information

 Attributes (name, IP address, …)

 Information for algorithms that will be performed
on the graph

 We will want to be able to do the following
operations:

 Edge Membership: Is edge e in E?

 Neighbor Query: Who are the neighbors of vertex
v?

André de Carvalho - ICMC/USP 21

Graph terminology

 A vertex v is adjacent to a vertex u iff (u,v)  E

 Degree of a vertex: # of adjacent vertices

 Path: a sequence of vertices v1 ,v2 ,. . .vk , such
that vi+1 is adjacent to vi for i = 1 .. k – 1

André de Carvalho - ICMC/USP 22

Graph terminology

 Simple path: a path with no repeated vertices

 Cycle: a simple path in which the last vertex is
the same as the first vertex

 Connected graph: any two vertices are
connected by some path

André de Carvalho - ICMC/USP 23

Graph terminology

 Subgraph: a subset of vertices and edges
forming a graph

 Connected component: a maximal
connected subgraph

 Ex.: graph with 3 connected components

André de Carvalho - ICMC/USP 24

CHOROCHRONOS Midter Review

Timos Sellis 5

Graph terminology

 (free) tree: connected graph without
cycles

 forest: collection of trees

André de Carvalho - ICMC/USP 25

Data structures for graphs

 Adjacency matrix

 Adjacency list

0 1 2 3 4
0 0 1 0 1 1
1 1 0 1 0 1
2 0 1 0 0 1
3 1 0 0 0 1
4 1 1 1 1 0

André de Carvalho - ICMC/USP 26

3

2

1

0

4

 Matrix M with entries for all pairs of vertices

 M[i,j] = true if there is an edge (i,j) in the graph

 M[i,j] = false if there is no edge (i,j) in the graph

 Space = O(|V|2)

Adjacency matrix

a b c d e
a 0 1 1 1 0
b 1 0 0 0 1
c 1 0 0 1 1
d 1 0 1 0 1
e 0 1 1 1 0

André de Carvalho - ICMC/USP 27

Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

1 2 3 4

1
 2

 3
 4

André de Carvalho - ICMC/USP 28

Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

1 2 3 4

1
 2

 3
 4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

André de Carvalho - ICMC/USP 29

Adjacency matrix

Destination
1 2 3 4

1
 2

 3
 4

S
o
u
rce

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

1

2

3

4

André de Carvalho - ICMC/USP 30

 Option 1: adjacency matrix

CHOROCHRONOS Midter Review

Timos Sellis 6

Adjacency list

 Option 2: linked lists

1

2

3

4

How would you modify
this for directed graphs?

1 2 3 4

3 4 1 2

2
André de Carvalho - ICMC/USP 31

3 4 3

Graph representation

Edge membership
Is e = {u,v} in E?

Neighbor query
Give me v’s neighbors

Suppose there are n
vertices and m edges

Space requirements

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or
O(deg(u))

O(deg(v))

O(n2) O(n + m)

We’ll assume this
representation for the
rest of the class

Generally better for
sparse graphs

André de Carvalho - ICMC/USP 32

Pseudocode assumptions

 Graph ADT with an operation
 V():VertexSet

 A looping construct “for each v V ”, where V is
of a type VertexSet, and v is of a type Vertex

 Vertex ADT with operations:
 adjacent():VertexSet

 d():int and setd(d:int)
 f():int and setf(f:int)
 parent() (ou ()):Vertex and setparent(p:Vertex)

 color():{white, gray, black} and setcolor(c:{white,
gray, black})

André de Carvalho - ICMC/USP 33

Graph searching algorithms

 Systematic search of every edge and vertex of
the graph

 Graph G = (V,E) is either directed or undirected

 Applications

 Compilers

 Computer Graphics

 Maze-solving

 Mapping

 Networks: routing, searching, clustering, etc.

André de Carvalho - ICMC/USP 34

Graph search algorithms

 Searching a graph:

 Systematically follow the edges of a graph
to visit all the vertices of the graph

 Used to discover the structure of a graph

 Standard graph-searching algorithms

 Breadth-First Search (BFS)

 Depth-First Search (DFS)

André de Carvalho - ICMC/USP 35 36

Breadth-First Search (BFS)

 Traverses a connected component of a graph,
defining a spanning tree with useful properties

 In undirected graphs, similar to walk in a
labyrinth with a string

 The starting vertex s, it is assigned a distance 0

 In the first round, the string is unrolled the size
of 1 edge
 All of the edges that are only one edge

away from the starting vertex are visited
(discovered) and assigned distances of 1

André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 7

37

Breadth-First Search (BFS)

 In the second round, all new edges that can be
reached by unrolling the string 2 edges are
visited and assigned a distance of 2

 The walking continues until every vertex has
been assigned a level

 The label of any vertex v corresponds to the
length of the shortest path from s to v
 In terms of the number of edges

André de Carvalho - ICMC/USP

Breadth-First Search (BFS)

 Input: Graph G = (V, E), directed or
undirected, and source vertex s V

 Output:
 d[v]: distance (smallest # of edges or shortest

path) from s to v, for all v V
 d[v] =  if v is not reachable from s

 [v]: u, parent (predecessor) of v where (u, v)
is the last edge on the shortest path s v

 Builds a breadth-first tree with root s and all
reachable vertices

André de Carvalho - ICMC/USP 38

Breadth-First Search (BFS)

 Definitions

 Path between vertices u and v :
 Sequence of vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1)  E, for all 1 i  k-1

 Length of the path:

 Number of edges in the path

 Path is simple if no vertex is repeated

André de Carvalho - ICMC/USP 39

Breadth-First Search (BFS)

 Expands the frontier between discovered and
undiscovered vertices uniformly across its breadth
 A vertex is “discovered” the first time it is encountered

during the search

 A vertex is “finished” if all vertices adjacent to it have
been discovered

 Colors the vertices to keep track of progress
 White – Undiscovered

 Gray – Discovered but not finished

 Black – Finished
 Colors are required only to reason about the algorithm

 Can be implemented without colors

André de Carvalho - ICMC/USP 40

Breadth-First Search (BFS)

Finished

Discovered

Undiscovered

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3

André de Carvalho - ICMC/USP 41

BFS(G,s)

1 for each vertex u in V[G] – {s} do

2 color[u]  WHITE

3 d[u]  

4 [u]  NIL

5 color[s]  GRAY

6 d[s]  0

7 [s]  NIL

8 Q  

9 ENQUEUE (Q,s)

10 while Q   do

11 u  DEQUEUE (Q)

12 for each v in Adj[u] do

13 if color[v] = WHITE

14 then color[v]  GRAY

15 d[v]  d[u] + 1

16 [v]  u
17 ENQUEUE (Q,v)

18 color[u]  BLACK

WHITE: undiscovered
GRAY: discovered
BLACK: finished

Q: queue of discovered vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of u

André de Carvalho - ICMC/USP 42

Breadth-First Search algorithm

CHOROCHRONOS Midter Review

Timos Sellis 8

Example (BFS)

 0

  

 



r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 43

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w r
1 1

André de Carvalho - ICMC/USP 44

Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r t x
1 2 2

André de Carvalho - ICMC/USP 45

Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t x v
2 2 2

André de Carvalho - ICMC/USP 46

Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x v u
2 2 3

André de Carvalho - ICMC/USP 47

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y
2 3 3

André de Carvalho - ICMC/USP 48

CHOROCHRONOS Midter Review

Timos Sellis 9

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y
3 3

André de Carvalho - ICMC/USP 49

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3

André de Carvalho - ICMC/USP 50

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

André de Carvalho - ICMC/USP 51

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

André de Carvalho - ICMC/USP 52

53

BFS running time

 Given a graph G = (V,E)
 Initializing the algorithm takes O(V)

 Vertices are enqueued if their color is white

 Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(V)

 Adjacency list of a vertex is scanned when the vertex
is dequeued (and only then…)

 The sum of the lengths of all lists is Q(E)
Consequently, O(E) time is spent on scanning them

 Running time of BFS is O(V+E)
 Linear in the size of the adjacency list representation

of G

André de Carvalho - ICMC/USP

BFS properties

 Given a graph G = (V,E), BFS discovers all
vertices reachable from a source vertex s

 It computes the shortest distance to all
reachable vertices

 It computes a breadth-first tree that contains
all such reachable vertices

 For any vertex v reachable from s, the path in the
breadth first tree from s to v is the shortest
path in G

André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

Depth-First Search (DFS)

 In undirected graphs, similar to walk in a
labyrinth with a string and a can of paint

André de Carvalho - ICMC/USP 55

Using DFS to escape from a Labyritnth

André de Carvalho - ICMC/USP 56

1 Start at vertex s, tying the end of our string to s and paint s “visited”
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4 If edge (u,v) leads us to an already visited vertex v

Then Return to u
Else Unroll string and move to v and paint v “visited”

Set v as the current vertex and go to 3
If gets to a point where all incident edges on u lead to visited vertices

Then Backtrack by rolling the string to a previously visited vertex v
Set v as the current vertex and go to 3

If all incident edges on v lead to visited vertices
Then Backtrack as before

Continue to backtrack along the travelled path, finding and exploring
unexplored edges, and repeating the procedure

If backtrack to vertex s and there are no more unexplored edges incident on s
Then DFS search is finished

Depth-First Search (DFS)

 Explore edges out of the most recently
discovered vertex v
 When all edges of v have been explored, backtrack to

explore other edges leaving the vertex from which v
was discovered (its predecessor)

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original
source are discovered

 If any undiscovered vertices remain, one of them is
chosen as a new source and search is repeated from
this source

André de Carvalho - ICMC/USP 57

Depth-First Search (DFS)

 Input: G = (V, E), directed or undirected

 No source vertex is given

 Output:

 2 timestamps on each vertex
 Integers between 1 and 2|V|

 d[v] = discovery time (when v turns from white to gray)

 f [v] = finishing time (when v turns from gray to black)

 [v] : predecessor of v

 Vertex u ifv was discovered in u adjacency list

 Uses the same coloring scheme used for vertices
as BFS

André de Carvalho - ICMC/USP 58

Pseudo-code

DFS(G)

1 for each vertex u  V[G] do

2 color[u]  white

3 [u]  NIL

4 time  0

5 for each vertex u  V[G] do

6 if color[u] = white

7 then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

/* White vertex u has been discovered.

1 color[u]  GRAY

2 time  time + 1

3 d[u]  time

4 for each v  Adj[u] do

5 if color[v] = WHITE

6 then [v]  u

7 DFS-Visit(v)

/* Blacken u; it visited all its adj list

8 color[u]  BLACK

9 time  time + 1

10 f[u]  time

André de Carvalho - ICMC/USP 59

DFS Algorithm

 Initialize: color all vertices white

 Visit each and every white vertex using
DFS-Visit

 Call from DFS to DFS-Visit(u) roots a new
tree of the depth-first forest at vertex u

 When DFS finishes, every vertex has:

 A discovery time d

 A finishing time f

André de Carvalho - ICMC/USP 60

CHOROCHRONOS Midter Review

Timos Sellis 11

DFS Timestamping

 Vertex u is
 White before time d[u]

 Gray between time d[u] and time f[u]

 Black after f[u]

 Structure throughout the search:
 Gray vertices form a linear chain

 Chain corresponds to a stack of vertices that
were not exhaustively explored

 DFS-Visit started but did not finished

André de Carvalho - ICMC/USP 61

Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 62

Example (DFS)

1/ 2/

u v w

x y z

André de Carvalho - ICMC/USP 63

Example (DFS)

1/

3/

2/

u v w

x y z

André de Carvalho - ICMC/USP 64

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

André de Carvalho - ICMC/USP 65

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 66

Non tree edges:
B: back edge
C: cross edge
F: forward edge

CHOROCHRONOS Midter Review

Timos Sellis 12

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 67

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 68

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

André de Carvalho - ICMC/USP 69

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

André de Carvalho - ICMC/USP 70

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

André de Carvalho - ICMC/USP 71

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF

André de Carvalho - ICMC/USP 72

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

CHOROCHRONOS Midter Review

Timos Sellis 13

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

André de Carvalho - ICMC/USP 73

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

André de Carvalho - ICMC/USP 74

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 75

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 76

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 77

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

78

DFS Algorithm running time

 Running time

 The loops in DFS take time Q(V) each

 Excluding the time to execute DFS-Visit

 DFS-Visit is called once for every vertex
 It is only called for white vertices, when it immediately

paints the vertex with gray

 For each DFS-visit, a loop interates over all v.adjacent()

 Total cost for DFS-Visit is Q(E)

 Running time of DFS is Q(V+E)

. () ()
v V

v adjacent E


 Q

André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 14

Generic Graph Search

 BFS, when GrayVertices is a Queue

 DFS, when GrayVertices is a Stack

GenericGraphSearch(G,s)
01 for each vertex u  G.V()
02 u.setcolor(white)
03 u.setparent(NIL)
04 s.setcolor(gray)
05 GrayVertices.init()
06 GrayVertices.add(s)
07 while not GrayVertices.isEmpty()
08 u  GrayVertices.remove()
09 for each v  u.adjacent() do
10 if v.color() = white then
11 v.setcolor(gray)
12 v.setparent(u)
13 GrayVertices.add(v)
14 u.setcolor(black)

André de Carvalho - ICMC/USP 79

BFS versus DFS

 BFS

 Search wider

 Find shortest-path
distances to a given
source

 Forms a tree

 One source

 FIFO (queue)

 DFS

 Search deeper

 It is often a
subroutine in
another algorithm

 Forms a tree forest

 One or more sources

 LIFO (stack)

André de Carvalho - ICMC/USP 80

DFS Parenthesis Theorem

 Discovery and finish times have a
parenthesis structure
 Represents discovery of u with left parenthesis

 "(u"

 Represents finishing of u with right parenthesis
 "u)"

 History of discoveries and finishings makes a
well-formed expression

 Parenthesis are properly nested

 Example: (s (a (b b) a) s)

André de Carvalho - ICMC/USP 81

DFS Parenthesis Theorem

André de Carvalho - ICMC/USP 82

André de Carvalho - ICMC/USP 83

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 For all u, v, one of the following holds:

 d[u] < f [u] < d[v] < f [v] or
d[v] < f [v] < d[u] < f [u] and
neither u nor v is a descendant of the other

 d[u] < d[v] < f [v] < f [u] and
v is a descendant of u

 d[v] < d[u] < f [u] < f [v] and
u is a descendant of v

André de Carvalho - ICMC/USP 84

DFS Parenthesis Theorem

CHOROCHRONOS Midter Review

Timos Sellis 15

DFS Parenthesis Theorem

 Intuition for proof:
 Any two intervals are either disjoint or

enclosed (one inside the other)

 Overlapping intervals would mean:
 Finishing ancestor, before finishing descendant or

 Starting descendant without starting ancestor

André de Carvalho - ICMC/USP 85

DFS Edge Classification

 DFS can be used to classify the edges of the
graph G = (V,E)

 Tree (T) edges

 Back (B) edges

 Forward (F) edges

 Cross (C) edges

 Edge classification can provide important
information about the graph

 E.g. a direct graph is acyclic if and only if DFS
produces no back edges

André de Carvalho - ICMC/USP 86

DFS Edge Classification

 Tree edge (from gray to white)

 Edges in depth-first forest

 Back edge (from gray to gray)

 From descendant to ancestor in depth-first
tree

André de Carvalho - ICMC/USP 87

 Forward edge (from gray to black)

 Non-tree edge from ancestor to descendant in
depth-first tree

 Cross edge (from gray to black)

 Remainder: between trees or subtrees

André de Carvalho - ICMC/USP 88

DFS Edge Classification

DFS Edge Classification

 Edge type for edge (u, v) can be identified when
it is first explored by DFS

 Tree and back edges are the most important

 Most algorithms do not distinguish between
forward and cross edges

 Undirected graphs:

 Classification is difficult , since (u,v) = (v,u)
 Edge is classified according to the vertex encountered first

 Forward and cross edges never occur

André de Carvalho - ICMC/USP 89

Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedence among events
 Event a must happen before event b

 Example: parallel code execution

 Total order can be introduced using Topological
Sorting

André de Carvalho - ICMC/USP 90

CHOROCHRONOS Midter Review

Timos Sellis 16

Topological Sort (TS)

 TS of a DAG G = (V,E) is a linear ordering
of all its vertices, such that:

 If G contains an edge (u,v), u must appear
before v in the ordering

 No ordering is possible in a cyclic graph

 Like ordering all vertices in a horizontal line so
that all directed edges go from left to right

 First vertex always has in-degree equal to 0

 Vertex with no incoming edges

André de Carvalho - ICMC/USP 91

Topological Sort Example

 Precedence relations: an edge from u to v means
that u must be finished before start v

 Intuition: conclude a task when all necessary
previous tasks are concluded

André de Carvalho - ICMC/USP 92

DAG

TS

Topological Sort Algorithm

Topological-Sort(G)
1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

André de Carvalho - ICMC/USP 93

The linked lists has a total ordering

Topological Sort Running Time

 Running time

 DFS: O(V+E) time

 insert each of the |V| vertices to the front of
the linked list: O(1) per insertion

 The total running time is O(V+E)

André de Carvalho - ICMC/USP 94

Next Lecture

 Strongly connected components

 Transpose of directed graphs

 Algorithm to find strongly connected
components

André de Carvalho - ICMC/USP 95

Acknowledgement

 A large part of this material were adapted from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

André de Carvalho - ICMC/USP 96

CHOROCHRONOS Midter Review

Timos Sellis 17

Questions

André de Carvalho - ICMC/USP 97

