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SCC0602 - Algoritmos e 
Estruturas de Dados I

Graphs

Professor: André C. P. L. F. de Carvalho, ICMC-USP 
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

 Abstract data types

 Queues

 Graphs

 Graph representations

 Traversing graphs

 Breadth-First Search

 Depth-First Search

 Topological sort
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Abstract Data Types (ADTs)

 Mathematical entity that defines data 
structures separating:

 Specification

 What are the values the data structure can 
assume and the possible operations on these 
values

 Implementation

 How the values and operations are 
implemented
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Abstract Data Types (ADTs)

 Examples of ADTs

 Vector 

 List (Sequence)

 Doubly linked list implementation

 Dynamic set ADTs

 Stack

 Queue

 Deque

 Priority Queue
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Queue ADT

 Insertion and removal of elements follows the 
first-in-first-out (FIFO) principle

 Elements may be inserted at any time
 But only the oldest element in the queue can be removed

 Elements are inserted at the rear (enqueued) and 
removed from the front (dequeued)

Front Rear

Queue
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Queue ADT

 Constructor: 
 make ():Queue - Creates an empty queue

 Access functions:
 size (S:Queue):integer - returns size of the queue

 isEmpty (S:Queue):Boolean - tells if queue is empty
 front (S:Queue):element - return element at the front

 Manipulation procedures:
 Enqueue(S:Queue, o:element):Queue - Inserts object 

o at the rear of the queue

 Dequeue (S:Queue):Queue - Removes the object 
from the front of the queue
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Array Implementation

 Create a queue using an array in a circular 
fashion

 A maximum size N is specified

 The queue has an N-element array Q and two 
integer variables:

 f, index of the front element (head, for dequeue)

 r, index of the element after the rear element (tail, for 
enqueue)
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Array Implementation

 “wrapped around” configuration

 what does f=r mean?

André de Carvalho - ICMC/USP 8

An Array Implementation

 Pseudo code

Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return size()=0  

Algorithm front()
if isEmpty() then

return Error
return Q[f]

Algorithm dequeue()
if isEmpty() then

return Error
Q[f]=null
f=(f+1)modN

Algorithm enqueue(o)
if size = N - 1 then

return Error
Q[r]=o
r=(r +1)mod N
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 List ADT implemented as a singly linked list 
can be used

 Dequeue(S): S.remove(S.first()) 

Using List ADT
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 Enqueue(S, e): S.insertLast(e)

Using List ADT
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 Used in many applications

 Electronic circuits

 Energy distribution

 Transport between places

 Communication networks

 Relationtions between

 Components

 People

 Proteins

Graphs
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Food Chain
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Brain neural connections

k-core: maximal subgraph with minimum degree ≥ k
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Protein interaction network
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Home network
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Social network
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Corruption network
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Corruption network
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Graphs

 A graph G = (V,E) is composed of:

 V: set of vertices

 E V V: set of edges connecting graph vertices
 Each edge e = (u,v), e  E, connects a pair of vertices

 A graph can be directed or undirected

 In a undirected graph an edge between u and v is 
represented by both (u,v)  E and (v,u)  E

A B

C D

A B

C D

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
(C,D), (D,C), (B,C), (C,B)}
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In either case

 May think of vertices storing other information

 Attributes (name, IP address, …)

 Information for algorithms that will be performed 
on the graph

 We will want to be able to do the following 
operations:

 Edge Membership: Is edge e in E?

 Neighbor Query: Who are the neighbors of vertex 
v?
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Graph terminology

 A vertex v is adjacent to a vertex u iff (u,v)  E 

 Degree of a vertex: # of adjacent vertices

 Path: a sequence of vertices v1 ,v2 ,. . .vk , such 
that vi+1 is adjacent to vi  for i = 1 .. k – 1 
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Graph terminology

 Simple path: a path with no repeated vertices

 Cycle: a simple path in which the last vertex is 
the same as the first vertex

 Connected graph: any two vertices are 
connected by some path
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Graph terminology

 Subgraph: a subset of vertices and edges 
forming a graph

 Connected component: a maximal  
connected subgraph

 Ex.: graph with 3 connected components
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Graph terminology

 (free) tree: connected graph without 
cycles

 forest: collection of trees
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Data structures for graphs

 Adjacency matrix

 Adjacency list

0   1   2   3   4
0   0   1   0   1   1
1   1   0   1   0   1
2   0   1   0   0   1
3   1   0   0   0   1
4   1   1   1   1   0
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3

2

1

0

4

 Matrix M with entries for all pairs of vertices

 M[i,j] = true if there is an edge (i,j) in the graph

 M[i,j] = false if there is no edge (i,j) in the graph

 Space = O(|V|2)

Adjacency matrix

a   b   c   d   e
a    0   1   1   1   0
b 1   0   0   0   1
c 1   0   0   1   1
d 1   0   1   0   1
e   0   1   1   1   0
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Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

 

1         2          3          4

1
      2

       3
       4
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Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

1         2          3          4

1
      2

       3
       4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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Adjacency matrix

Destination
1          2         3         4

1
     2

     3
     4

S
o
u
rce

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

 

1

2

3

4

André de Carvalho - ICMC/USP 30

 Option 1: adjacency matrix
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Adjacency list

 Option 2: linked lists

1

2

3

4

How would you modify 
this for directed graphs?

1 2 3 4

3 4 1 2

2
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3 4 3

Graph representation

Edge membership
Is e = {u,v} in E?

Neighbor query
Give me v’s neighbors

Suppose there are n 
vertices and m edges

Space requirements

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

 

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or 
O(deg(u))

O(deg(v))

O(n2) O(n + m)

We’ll assume this 
representation for the 
rest of the class

Generally better for 
sparse graphs
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Pseudocode assumptions

 Graph ADT with an operation
 V():VertexSet

 A looping construct “for each v V ”, where V is 
of a type VertexSet, and v is of a type Vertex

 Vertex ADT with operations:
 adjacent():VertexSet

 d():int and  setd(d:int)
 f():int and  setf(f:int)
 parent() (ou ()):Vertex  and  setparent(p:Vertex)

 color():{white, gray, black} and setcolor(c:{white, 
gray, black})

André de Carvalho - ICMC/USP 33

Graph searching algorithms

 Systematic search of every edge and vertex of 
the graph

 Graph G = (V,E) is either directed or undirected

 Applications

 Compilers

 Computer Graphics

 Maze-solving

 Mapping

 Networks: routing, searching, clustering, etc.
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Graph search algorithms

 Searching a graph:

 Systematically follow the edges of a graph 
to visit all the vertices of the graph

 Used to discover the structure of a graph

 Standard graph-searching algorithms

 Breadth-First Search (BFS)

 Depth-First Search (DFS)

André de Carvalho - ICMC/USP 35 36

Breadth-First Search (BFS)

 Traverses a connected component of a graph, 
defining a spanning tree with useful properties

 In undirected graphs, similar to walk in a 
labyrinth with a string

 The starting vertex s, it is assigned a distance 0

 In the first round, the string is unrolled the size 
of 1 edge
 All of the edges that are only one edge                 

away from the starting vertex are visited 
(discovered) and assigned distances of 1

André de Carvalho - ICMC/USP
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Breadth-First Search (BFS)

 In the second round, all new edges that can be
reached by unrolling the string 2 edges are 
visited and assigned a distance of 2

 The walking continues until every vertex has 
been assigned a level

 The label of any vertex v corresponds to the 
length of the shortest path from s to v
 In terms of the number of edges
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Breadth-First Search (BFS)

 Input: Graph G = (V, E), directed or 
undirected, and source vertex s V

 Output:
 d[v]: distance (smallest # of edges or shortest 

path) from s to v, for all v V
 d[v] =  if v is not reachable from s

 [v]: u, parent (predecessor) of v where (u, v)
is the last edge on the shortest path s      v

 Builds a breadth-first tree with root s and all 
reachable vertices
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Breadth-First Search (BFS)

 Definitions

 Path between vertices u and v : 
 Sequence of vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1)  E, for all 1 i  k-1

 Length of the path: 

 Number of  edges in the path

 Path is simple if no vertex is repeated
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Breadth-First Search (BFS)

 Expands the frontier between discovered and 
undiscovered vertices uniformly across its breadth
 A vertex is “discovered” the first time it is encountered 

during the search

 A vertex is “finished” if all vertices adjacent to it have 
been discovered

 Colors the vertices to keep track of progress
 White – Undiscovered

 Gray – Discovered but not finished

 Black – Finished
 Colors are required only to reason about the algorithm

 Can be implemented without colors

André de Carvalho - ICMC/USP 40

Breadth-First Search (BFS)

Finished

Discovered

Undiscovered

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3
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BFS(G,s)

1 for each vertex u in V[G] – {s} do

2 color[u]  WHITE

3 d[u]  

4 [u]  NIL

5 color[s]  GRAY

6 d[s]  0

7 [s]  NIL

8 Q  

9 ENQUEUE (Q,s)

10 while Q   do

11 u  DEQUEUE (Q)

12 for each v in Adj[u] do

13 if color[v] = WHITE

14 then color[v]  GRAY

15 d[v]  d[u] + 1

16 [v]  u
17 ENQUEUE (Q,v)

18 color[u]  BLACK

WHITE: undiscovered
GRAY: discovered
BLACK: finished

Q: queue of discovered vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of u

André de Carvalho - ICMC/USP 42

Breadth-First Search algorithm
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Example (BFS)

 0

  

 



r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 43

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w  r
1  1
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Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r   t  x
1  2  2
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Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t  x  v
2  2  2
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Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x  v  u
2  2  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v  u  y
2  3  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u  y
3  3

André de Carvalho - ICMC/USP 49

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree
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BFS running time

 Given a graph G = (V,E)
 Initializing the algorithm takes O(V)

 Vertices are enqueued if their color is white

 Assuming that en- and dequeuing takes O(1) time the 
total cost of this operation is O(V)

 Adjacency list of a vertex is scanned when the vertex 
is dequeued (and only then…)

 The sum of the lengths of all lists is Q(E) 
Consequently, O(E) time is spent on scanning them

 Running time of BFS is O(V+E) 
 Linear in the size of the adjacency list representation 

of G

André de Carvalho - ICMC/USP

BFS properties

 Given a graph G = (V,E), BFS discovers all 
vertices reachable from a source vertex s

 It computes the shortest distance to all 
reachable vertices

 It computes a breadth-first tree that contains 
all such reachable vertices

 For any vertex v reachable from s, the path in the 
breadth first tree from s to v is the shortest 
path in G

André de Carvalho - ICMC/USP 54
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Depth-First Search (DFS)

 In undirected graphs, similar to walk in a 
labyrinth with a string and a can of paint

André de Carvalho - ICMC/USP 55

Using DFS to escape from a Labyritnth
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1 Start at vertex s, tying the end of our string to s and paint s “visited”
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4  If edge (u,v) leads us to an already visited vertex v

Then Return to u
Else  Unroll string and move to v and paint v “visited”

Set v as the current  vertex and go to 3
If gets to a point where all incident edges on u lead to visited vertices

Then Backtrack by rolling the string to a previously visited vertex v
Set v as the current vertex and go to 3

If all incident edges on v lead to visited vertices
Then Backtrack as before

Continue to backtrack along the travelled path, finding and exploring 
unexplored edges, and repeating the procedure

If backtrack to vertex s and there are no more unexplored edges incident on s
Then DFS search is finished

Depth-First Search (DFS)

 Explore edges out of the most recently 
discovered vertex v
 When all edges of v have been explored, backtrack to 

explore other edges leaving the vertex from which v
was discovered (its predecessor)

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original 
source are discovered

 If any undiscovered vertices remain, one of them is 
chosen as a new source and search is repeated from 
this source
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Depth-First Search (DFS)

 Input: G = (V, E), directed or undirected

 No source vertex is given

 Output: 

 2 timestamps on each vertex
 Integers between 1 and 2|V|

 d[v] = discovery time (when v turns from white to gray)

 f [v] = finishing time (when v turns from gray to black)

 [v] : predecessor of v 

 Vertex u ifv was discovered in u adjacency list

 Uses the same coloring scheme used for vertices 
as BFS
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Pseudo-code

DFS(G)

1  for each vertex u  V[G] do

2     color[u]  white

3      [u]  NIL

4  time  0

5  for each vertex u  V[G] do

6      if color[u] = white

7      then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

/* White vertex u has been discovered.

1  color[u]  GRAY 

2  time  time + 1

3 d[u]  time

4  for each v  Adj[u] do

5      if color[v] = WHITE

6 then [v]  u

7               DFS-Visit(v)

/* Blacken u;  it visited all its adj list

8  color[u]  BLACK

9  time  time + 1

10  f[u]  time
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DFS Algorithm

 Initialize: color all vertices white

 Visit each and every white vertex using 
DFS-Visit

 Call from DFS to DFS-Visit(u) roots a new 
tree of the depth-first forest at vertex u

 When DFS finishes, every vertex has:

 A discovery time d

 A finishing time f

André de Carvalho - ICMC/USP 60
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DFS Timestamping

 Vertex u is
 White before time d[u]

 Gray between time d[u] and time f[u]

 Black after f[u]

 Structure throughout the search:
 Gray vertices form a linear chain

 Chain corresponds to a stack of vertices that 
were not exhaustively explored 

 DFS-Visit started but did not finished
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Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)
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Example (DFS)

1/ 2/

u v w

x y z
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Example (DFS)

1/

3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 66

Non tree edges:
B: back edge
C: cross edge
F: forward edge
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Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

André de Carvalho - ICMC/USP 77

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

78

DFS Algorithm running time

 Running time

 The loops in DFS take time Q(V) each

 Excluding the time to execute DFS-Visit

 DFS-Visit is called once for every vertex
 It is only called for white vertices, when it immediately 

paints the vertex with gray 

 For each DFS-visit, a loop interates over all v.adjacent()

 Total cost for DFS-Visit is Q(E)

 Running time of DFS is Q(V+E) 

. () ( )
v V

v adjacent E


 Q

André de Carvalho - ICMC/USP
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Generic Graph Search

 BFS, when GrayVertices is a Queue

 DFS, when GrayVertices is a Stack

GenericGraphSearch(G,s)
01 for each vertex u  G.V()
02 u.setcolor(white)
03 u.setparent(NIL)
04 s.setcolor(gray)
05 GrayVertices.init()
06 GrayVertices.add(s)
07 while not GrayVertices.isEmpty()
08 u  GrayVertices.remove()
09 for each v  u.adjacent() do
10 if v.color() = white then
11 v.setcolor(gray)
12 v.setparent(u)
13 GrayVertices.add(v)
14 u.setcolor(black)
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BFS versus DFS

 BFS

 Search wider

 Find shortest-path 
distances to a given 
source

 Forms a tree

 One source

 FIFO (queue)

 DFS

 Search deeper

 It is often a 
subroutine in 
another algorithm

 Forms a tree forest

 One or more sources

 LIFO (stack)
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DFS Parenthesis Theorem

 Discovery and finish times have a 
parenthesis structure
 Represents discovery of u with left parenthesis

 "(u"

 Represents finishing of u with right parenthesis 
 "u)"

 History of discoveries and finishings makes a 
well-formed expression 

 Parenthesis are properly nested

 Example: (s (a (b b) a) s)
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DFS Parenthesis Theorem
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Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 For all u, v, one of the following holds:

 d[u] < f [u] < d[v] < f [v] or 
d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other

 d[u] < d[v] < f [v] < f [u] and 
v is a descendant of u

 d[v] < d[u] < f [u] < f [v] and 
u is a descendant of v
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DFS Parenthesis Theorem
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DFS Parenthesis Theorem

 Intuition for proof: 
 Any two intervals are either disjoint or 

enclosed (one inside the other)

 Overlapping intervals would mean:
 Finishing ancestor, before finishing descendant or 

 Starting descendant without starting ancestor 
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DFS Edge Classification

 DFS can be used to classify the edges of the 
graph G = (V,E)

 Tree (T) edges

 Back (B) edges

 Forward (F) edges

 Cross (C) edges

 Edge classification can provide important 
information about the graph

 E.g. a direct graph is acyclic if and only if DFS 
produces no back edges
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DFS Edge Classification

 Tree edge (from gray to white) 

 Edges in depth-first forest

 Back edge (from gray to gray)

 From descendant to ancestor in depth-first 
tree
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 Forward edge (from gray to black) 

 Non-tree edge from ancestor to descendant in 
depth-first tree 

 Cross edge (from gray to black)

 Remainder: between trees or subtrees
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DFS Edge Classification

DFS Edge Classification

 Edge type for edge (u, v) can be identified when 
it is first explored by DFS 

 Tree and back edges are the most important

 Most algorithms do not distinguish between 
forward and cross edges

 Undirected graphs:

 Classification is difficult , since (u,v) = (v,u)
 Edge is classified according to the vertex encountered first

 Forward and cross edges never occur
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Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedence among events
 Event a must happen before event b

 Example: parallel code execution

 Total order can be introduced using Topological 
Sorting

André de Carvalho - ICMC/USP 90



CHOROCHRONOS Midter Review

Timos Sellis 16

Topological Sort (TS)

 TS of a DAG G = (V,E) is a linear ordering 
of all its vertices, such that:

 If G contains an edge (u,v), u must appear 
before v in the ordering

 No ordering is possible in a cyclic graph

 Like ordering all vertices in a horizontal line so 
that all directed edges go from left to right

 First vertex always has in-degree equal to 0 

 Vertex with no incoming edges
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Topological Sort Example

 Precedence relations: an edge from u to v means 
that u must be finished before start v

 Intuition: conclude a task when all necessary 
previous tasks are concluded
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DAG

TS

Topological Sort Algorithm

Topological-Sort(G)
1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices
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The linked lists has a total ordering

Topological Sort Running Time

 Running time

 DFS: O(V+E) time

 insert each of the |V| vertices to the front of 
the linked list: O(1) per insertion

 The total running time is O(V+E) 
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Next Lecture

 Strongly connected components

 Transpose of directed graphs

 Algorithm to find strongly connected 
components
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Questions
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