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Abstract Data Types (ADTs)

 Mathematical entity that defines data 
structures separating:

 Specification

 What are the values the data structure can 
assume and the possible operations on these 
values

 Implementation

 How the values and operations are 
implemented
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Abstract Data Types (ADTs)

 Examples of ADTs

 Vector 

 List (Sequence)

 Doubly linked list implementation

 Dynamic set ADTs

 Stack

 Queue

 Deque

 Priority Queue
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Queue ADT

 Insertion and removal of elements follows the 
first-in-first-out (FIFO) principle

 Elements may be inserted at any time
 But only the oldest element in the queue can be removed

 Elements are inserted at the rear (enqueued) and 
removed from the front (dequeued)

Front Rear

Queue
André de Carvalho - ICMC/USP 5

Queue ADT

 Constructor: 
 make ():Queue - Creates an empty queue

 Access functions:
 size (S:Queue):integer - returns size of the queue

 isEmpty (S:Queue):Boolean - tells if queue is empty
 front (S:Queue):element - return element at the front

 Manipulation procedures:
 Enqueue(S:Queue, o:element):Queue - Inserts object 

o at the rear of the queue

 Dequeue (S:Queue):Queue - Removes the object 
from the front of the queue
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Array Implementation

 Create a queue using an array in a circular 
fashion

 A maximum size N is specified

 The queue has an N-element array Q and two 
integer variables:

 f, index of the front element (head, for dequeue)

 r, index of the element after the rear element (tail, for 
enqueue)
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Array Implementation

 “wrapped around” configuration

 what does f=r mean?
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An Array Implementation

 Pseudo code

Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return size()=0  

Algorithm front()
if isEmpty() then

return Error
return Q[f]

Algorithm dequeue()
if isEmpty() then

return Error
Q[f]=null
f=(f+1)modN

Algorithm enqueue(o)
if size = N - 1 then

return Error
Q[r]=o
r=(r +1)mod N
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 List ADT implemented as a singly linked list 
can be used

 Dequeue(S): S.remove(S.first()) 

Using List ADT
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 Enqueue(S, e): S.insertLast(e)

Using List ADT
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 Used in many applications

 Electronic circuits

 Energy distribution

 Transport between places

 Communication networks

 Relationtions between

 Components

 People

 Proteins

Graphs
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Food Chain
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Brain neural connections

k-core: maximal subgraph with minimum degree ≥ k
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Protein interaction network
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Home network
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Social network
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Corruption network
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Corruption network
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Graphs

 A graph G = (V,E) is composed of:

 V: set of vertices

 E V V: set of edges connecting graph vertices
 Each edge e = (u,v), e  E, connects a pair of vertices

 A graph can be directed or undirected

 In a undirected graph an edge between u and v is 
represented by both (u,v)  E and (v,u)  E

A B

C D

A B

C D

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
(C,D), (D,C), (B,C), (C,B)}
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In either case

 May think of vertices storing other information

 Attributes (name, IP address, …)

 Information for algorithms that will be performed 
on the graph

 We will want to be able to do the following 
operations:

 Edge Membership: Is edge e in E?

 Neighbor Query: Who are the neighbors of vertex 
v?
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Graph terminology

 A vertex v is adjacent to a vertex u iff (u,v)  E 

 Degree of a vertex: # of adjacent vertices

 Path: a sequence of vertices v1 ,v2 ,. . .vk , such 
that vi+1 is adjacent to vi  for i = 1 .. k – 1 
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Graph terminology

 Simple path: a path with no repeated vertices

 Cycle: a simple path in which the last vertex is 
the same as the first vertex

 Connected graph: any two vertices are 
connected by some path
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Graph terminology

 Subgraph: a subset of vertices and edges 
forming a graph

 Connected component: a maximal  
connected subgraph

 Ex.: graph with 3 connected components
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Graph terminology

 (free) tree: connected graph without 
cycles

 forest: collection of trees
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Data structures for graphs

 Adjacency matrix

 Adjacency list

0   1   2   3   4
0   0   1   0   1   1
1   1   0   1   0   1
2   0   1   0   0   1
3   1   0   0   0   1
4   1   1   1   1   0
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3

2

1

0

4

 Matrix M with entries for all pairs of vertices

 M[i,j] = true if there is an edge (i,j) in the graph

 M[i,j] = false if there is no edge (i,j) in the graph

 Space = O(|V|2)

Adjacency matrix

a   b   c   d   e
a    0   1   1   1   0
b 1   0   0   0   1
c 1   0   0   1   1
d 1   0   1   0   1
e   0   1   1   1   0
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Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

 

1         2          3          4

1
      2

       3
       4
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Adjacency matrix

 Option 1: adjacency matrix

1

2

3

4

1         2          3          4

1
      2

       3
       4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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Adjacency matrix

Destination
1          2         3         4

1
     2

     3
     4

S
o
u
rce

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

 

1

2

3

4
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 Option 1: adjacency matrix
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Adjacency list

 Option 2: linked lists

1

2

3

4

How would you modify 
this for directed graphs?

1 2 3 4

3 4 1 2

2
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3 4 3

Graph representation

Edge membership
Is e = {u,v} in E?

Neighbor query
Give me v’s neighbors

Suppose there are n 
vertices and m edges

Space requirements

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

 

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or 
O(deg(u))

O(deg(v))

O(n2) O(n + m)

We’ll assume this 
representation for the 
rest of the class

Generally better for 
sparse graphs
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Pseudocode assumptions

 Graph ADT with an operation
 V():VertexSet

 A looping construct “for each v V ”, where V is 
of a type VertexSet, and v is of a type Vertex

 Vertex ADT with operations:
 adjacent():VertexSet

 d():int and  setd(d:int)
 f():int and  setf(f:int)
 parent() (ou ()):Vertex  and  setparent(p:Vertex)

 color():{white, gray, black} and setcolor(c:{white, 
gray, black})
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Graph searching algorithms

 Systematic search of every edge and vertex of 
the graph

 Graph G = (V,E) is either directed or undirected

 Applications

 Compilers

 Computer Graphics

 Maze-solving

 Mapping

 Networks: routing, searching, clustering, etc.
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Graph search algorithms

 Searching a graph:

 Systematically follow the edges of a graph 
to visit all the vertices of the graph

 Used to discover the structure of a graph

 Standard graph-searching algorithms

 Breadth-First Search (BFS)

 Depth-First Search (DFS)
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Breadth-First Search (BFS)

 Traverses a connected component of a graph, 
defining a spanning tree with useful properties

 In undirected graphs, similar to walk in a 
labyrinth with a string

 The starting vertex s, it is assigned a distance 0

 In the first round, the string is unrolled the size 
of 1 edge
 All of the edges that are only one edge                 

away from the starting vertex are visited 
(discovered) and assigned distances of 1

André de Carvalho - ICMC/USP
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Breadth-First Search (BFS)

 In the second round, all new edges that can be
reached by unrolling the string 2 edges are 
visited and assigned a distance of 2

 The walking continues until every vertex has 
been assigned a level

 The label of any vertex v corresponds to the 
length of the shortest path from s to v
 In terms of the number of edges
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Breadth-First Search (BFS)

 Input: Graph G = (V, E), directed or 
undirected, and source vertex s V

 Output:
 d[v]: distance (smallest # of edges or shortest 

path) from s to v, for all v V
 d[v] =  if v is not reachable from s

 [v]: u, parent (predecessor) of v where (u, v)
is the last edge on the shortest path s      v

 Builds a breadth-first tree with root s and all 
reachable vertices
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Breadth-First Search (BFS)

 Definitions

 Path between vertices u and v : 
 Sequence of vertices (v1, v2, …, vk) such that u=v1

and v =vk, and (vi,vi+1)  E, for all 1 i  k-1

 Length of the path: 

 Number of  edges in the path

 Path is simple if no vertex is repeated
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Breadth-First Search (BFS)

 Expands the frontier between discovered and 
undiscovered vertices uniformly across its breadth
 A vertex is “discovered” the first time it is encountered 

during the search

 A vertex is “finished” if all vertices adjacent to it have 
been discovered

 Colors the vertices to keep track of progress
 White – Undiscovered

 Gray – Discovered but not finished

 Black – Finished
 Colors are required only to reason about the algorithm

 Can be implemented without colors
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Breadth-First Search (BFS)

Finished

Discovered

Undiscovered

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3
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BFS(G,s)

1 for each vertex u in V[G] – {s} do

2 color[u]  WHITE

3 d[u]  

4 [u]  NIL

5 color[s]  GRAY

6 d[s]  0

7 [s]  NIL

8 Q  

9 ENQUEUE (Q,s)

10 while Q   do

11 u  DEQUEUE (Q)

12 for each v in Adj[u] do

13 if color[v] = WHITE

14 then color[v]  GRAY

15 d[v]  d[u] + 1

16 [v]  u
17 ENQUEUE (Q,v)

18 color[u]  BLACK

WHITE: undiscovered
GRAY: discovered
BLACK: finished

Q: queue of discovered vertices
color[v]: color of v
d[v]: distance from s to v
[u]: predecessor of u
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Breadth-First Search algorithm
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Example (BFS)

 0

  

 



r s t u

v w x y

Q: s
0

(Courtesy of Prof. Jim Anderson)

André de Carvalho - ICMC/USP 43

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w  r
1  1
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Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r   t  x
1  2  2
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Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t  x  v
2  2  2
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Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x  v  u
2  2  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v  u  y
2  3  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u  y
3  3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y
3
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree
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BFS running time

 Given a graph G = (V,E)
 Initializing the algorithm takes O(V)

 Vertices are enqueued if their color is white

 Assuming that en- and dequeuing takes O(1) time the 
total cost of this operation is O(V)

 Adjacency list of a vertex is scanned when the vertex 
is dequeued (and only then…)

 The sum of the lengths of all lists is Q(E) 
Consequently, O(E) time is spent on scanning them

 Running time of BFS is O(V+E) 
 Linear in the size of the adjacency list representation 

of G

André de Carvalho - ICMC/USP

BFS properties

 Given a graph G = (V,E), BFS discovers all 
vertices reachable from a source vertex s

 It computes the shortest distance to all 
reachable vertices

 It computes a breadth-first tree that contains 
all such reachable vertices

 For any vertex v reachable from s, the path in the 
breadth first tree from s to v is the shortest 
path in G

André de Carvalho - ICMC/USP 54
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Depth-First Search (DFS)

 In undirected graphs, similar to walk in a 
labyrinth with a string and a can of paint

André de Carvalho - ICMC/USP 55

Using DFS to escape from a Labyritnth
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1 Start at vertex s, tying the end of our string to s and paint s “visited”
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4  If edge (u,v) leads us to an already visited vertex v

Then Return to u
Else  Unroll string and move to v and paint v “visited”

Set v as the current  vertex and go to 3
If gets to a point where all incident edges on u lead to visited vertices

Then Backtrack by rolling the string to a previously visited vertex v
Set v as the current vertex and go to 3

If all incident edges on v lead to visited vertices
Then Backtrack as before

Continue to backtrack along the travelled path, finding and exploring 
unexplored edges, and repeating the procedure

If backtrack to vertex s and there are no more unexplored edges incident on s
Then DFS search is finished

Depth-First Search (DFS)

 Explore edges out of the most recently 
discovered vertex v
 When all edges of v have been explored, backtrack to 

explore other edges leaving the vertex from which v
was discovered (its predecessor)

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original 
source are discovered

 If any undiscovered vertices remain, one of them is 
chosen as a new source and search is repeated from 
this source
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Depth-First Search (DFS)

 Input: G = (V, E), directed or undirected

 No source vertex is given

 Output: 

 2 timestamps on each vertex
 Integers between 1 and 2|V|

 d[v] = discovery time (when v turns from white to gray)

 f [v] = finishing time (when v turns from gray to black)

 [v] : predecessor of v 

 Vertex u ifv was discovered in u adjacency list

 Uses the same coloring scheme used for vertices 
as BFS
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Pseudo-code

DFS(G)

1  for each vertex u  V[G] do

2     color[u]  white

3      [u]  NIL

4  time  0

5  for each vertex u  V[G] do

6      if color[u] = white

7      then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

/* White vertex u has been discovered.

1  color[u]  GRAY 

2  time  time + 1

3 d[u]  time

4  for each v  Adj[u] do

5      if color[v] = WHITE

6 then [v]  u

7               DFS-Visit(v)

/* Blacken u;  it visited all its adj list

8  color[u]  BLACK

9  time  time + 1

10  f[u]  time
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DFS Algorithm

 Initialize: color all vertices white

 Visit each and every white vertex using 
DFS-Visit

 Call from DFS to DFS-Visit(u) roots a new 
tree of the depth-first forest at vertex u

 When DFS finishes, every vertex has:

 A discovery time d

 A finishing time f

André de Carvalho - ICMC/USP 60
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DFS Timestamping

 Vertex u is
 White before time d[u]

 Gray between time d[u] and time f[u]

 Black after f[u]

 Structure throughout the search:
 Gray vertices form a linear chain

 Chain corresponds to a stack of vertices that 
were not exhaustively explored 

 DFS-Visit started but did not finished
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Example (DFS)

1/

u v w

x y z

(Courtesy of Prof. Jim Anderson)
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Example (DFS)

1/ 2/

u v w

x y z
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Example (DFS)

1/

3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

André de Carvalho - ICMC/USP 66

Non tree edges:
B: back edge
C: cross edge
F: forward edge
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Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

André de Carvalho - ICMC/USP 69

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

André de Carvalho - ICMC/USP 71

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B
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Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

78

DFS Algorithm running time

 Running time

 The loops in DFS take time Q(V) each

 Excluding the time to execute DFS-Visit

 DFS-Visit is called once for every vertex
 It is only called for white vertices, when it immediately 

paints the vertex with gray 

 For each DFS-visit, a loop interates over all v.adjacent()

 Total cost for DFS-Visit is Q(E)

 Running time of DFS is Q(V+E) 

. () ( )
v V

v adjacent E


 Q

André de Carvalho - ICMC/USP
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Generic Graph Search

 BFS, when GrayVertices is a Queue

 DFS, when GrayVertices is a Stack

GenericGraphSearch(G,s)
01 for each vertex u  G.V()
02 u.setcolor(white)
03 u.setparent(NIL)
04 s.setcolor(gray)
05 GrayVertices.init()
06 GrayVertices.add(s)
07 while not GrayVertices.isEmpty()
08 u  GrayVertices.remove()
09 for each v  u.adjacent() do
10 if v.color() = white then
11 v.setcolor(gray)
12 v.setparent(u)
13 GrayVertices.add(v)
14 u.setcolor(black)
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BFS versus DFS

 BFS

 Search wider

 Find shortest-path 
distances to a given 
source

 Forms a tree

 One source

 FIFO (queue)

 DFS

 Search deeper

 It is often a 
subroutine in 
another algorithm

 Forms a tree forest

 One or more sources

 LIFO (stack)
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DFS Parenthesis Theorem

 Discovery and finish times have a 
parenthesis structure
 Represents discovery of u with left parenthesis

 "(u"

 Represents finishing of u with right parenthesis 
 "u)"

 History of discoveries and finishings makes a 
well-formed expression 

 Parenthesis are properly nested

 Example: (s (a (b b) a) s)
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DFS Parenthesis Theorem

André de Carvalho - ICMC/USP 82
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Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 For all u, v, one of the following holds:

 d[u] < f [u] < d[v] < f [v] or 
d[v] < f [v] < d[u] < f [u] and 
neither u nor v is a descendant of the other

 d[u] < d[v] < f [v] < f [u] and 
v is a descendant of u

 d[v] < d[u] < f [u] < f [v] and 
u is a descendant of v

André de Carvalho - ICMC/USP 84

DFS Parenthesis Theorem
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DFS Parenthesis Theorem

 Intuition for proof: 
 Any two intervals are either disjoint or 

enclosed (one inside the other)

 Overlapping intervals would mean:
 Finishing ancestor, before finishing descendant or 

 Starting descendant without starting ancestor 
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DFS Edge Classification

 DFS can be used to classify the edges of the 
graph G = (V,E)

 Tree (T) edges

 Back (B) edges

 Forward (F) edges

 Cross (C) edges

 Edge classification can provide important 
information about the graph

 E.g. a direct graph is acyclic if and only if DFS 
produces no back edges
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DFS Edge Classification

 Tree edge (from gray to white) 

 Edges in depth-first forest

 Back edge (from gray to gray)

 From descendant to ancestor in depth-first 
tree
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 Forward edge (from gray to black) 

 Non-tree edge from ancestor to descendant in 
depth-first tree 

 Cross edge (from gray to black)

 Remainder: between trees or subtrees
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DFS Edge Classification

DFS Edge Classification

 Edge type for edge (u, v) can be identified when 
it is first explored by DFS 

 Tree and back edges are the most important

 Most algorithms do not distinguish between 
forward and cross edges

 Undirected graphs:

 Classification is difficult , since (u,v) = (v,u)
 Edge is classified according to the vertex encountered first

 Forward and cross edges never occur
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Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedence among events
 Event a must happen before event b

 Example: parallel code execution

 Total order can be introduced using Topological 
Sorting
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Topological Sort (TS)

 TS of a DAG G = (V,E) is a linear ordering 
of all its vertices, such that:

 If G contains an edge (u,v), u must appear 
before v in the ordering

 No ordering is possible in a cyclic graph

 Like ordering all vertices in a horizontal line so 
that all directed edges go from left to right

 First vertex always has in-degree equal to 0 

 Vertex with no incoming edges
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Topological Sort Example

 Precedence relations: an edge from u to v means 
that u must be finished before start v

 Intuition: conclude a task when all necessary 
previous tasks are concluded
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DAG

TS

Topological Sort Algorithm

Topological-Sort(G)
1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices
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The linked lists has a total ordering

Topological Sort Running Time

 Running time

 DFS: O(V+E) time

 insert each of the |V| vertices to the front of 
the linked list: O(1) per insertion

 The total running time is O(V+E) 
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Next Lecture

 Strongly connected components

 Transpose of directed graphs

 Algorithm to find strongly connected 
components
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Questions
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