CHOROCHRONOS Midter Review

SCC0602 - Algoritmos e
Estruturas de Dados I

1

Graphs

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

i Today

= Abstract data types
= Queues
= Graphs
= Graph representations

= Traversing graphs
= Breadth-First Search
= Depth-First Search
= Topological sort

André de Carvalho - ICMC/USP 2

i Abstract Data Types (ADTs)

= Mathematical entity that defines data
structures separating:
= Specification
= What are the values the data structure can
assume and the possible operations on these
values
= Implementation
= How the values and operations are
implemented

André de Carvalho - ICMC/USP

i Abstract Data Types (ADTs)

= Examples of ADTs
= Vector
= List (Sequence)
= Doubly linked list implementation
= Dynamic set ADTs
= Stack
= Queue
= Deque
= Priority Queue

André de Carvalho - ICMC/USP 4

i Queue ADT

= Insertion and removal of elements follows the

first-in-first-out (FIFO) principle

= Elements may be inserted at any time 1"” 1 “

= But only the oldest element in the queue can be removed

= Elements are inserted at the rear (enqueued) and
removed from the front (dequeued)

Frolnt Rear

OO0 O

Queue
André de Carvalho - ICMC/USP

i Queue ADT

= Constructor:
= make (): Queue - Creates an empty queue
= Access functions:
= Size (5:Queue):integer - returns size of the queue
= ISEmpty (S:Queue): Boolean - tells if queue is empty
= front (S:Queue): element - return element at the front
= Manipulation procedures:

= Enqueue(S:Queue, o:element): Queue - Inserts object
o at the rear of the queue

= Dequeue (5:Queue): Queue - Removes the object
from the front of the queue

André de Carvalho - ICMC/USP 6

Timos Sellis

CHOROCHRONOS Midter Review

i Array Implementation

= Create a queue using an array in a circular
fashion

= A maximum size Nis specified

= The queue has an N-element array Q and two
integer variables:
= f, index of the front element (head, for dequeue)

= r, index of the element after the rear element (tail, for
enqueue)

ol T T TTTIN-SNETTTTT]
012 f r N1
André de Carvalho - ICMC/USP 7

i Array Implementation

= “wrapped around” configuration

ol ITTTTITTIN ST

012 r [A
= what does f=r mean?

André de Carvalho - ICMC/USP 8

i An Array Implementation

= Pseudo code

Algorithm size() Algorithm dequeue()

return (N-f+r) mod N if isEmpty() then

Algorithm isEmpty() Q}]eyt:lr;grror

return size()=0 F=(f+1)modN

Algorithm front()

ki ien Algorithm enqueue(o)
return Error o = W~ 1}

return Off] Y

return Error
Ofr]=o
r=(r +1)mod N

André de Carvalho - ICMC/USP 9

i Using List ADT

= List ADT implemented as a singly linked list
can be used "\

= Dequeue(S): S.remove(S.first())

head tail

B
-

‘

\ ‘
(imry Crem)

André de Carvalho - ICMC/USP 10

i Using List ADT

= Enqueue(S, e): S.insertLast(e)

head tail

‘ ‘

head tail

E Rome) : Seattle ; (Tuloulo) Zurich

André de Carvalho - ICMC/USP 11

i Graphs

= Used in many applications
= Electronic circuits
= Energy distribution
= Transport between places
= Communication networks

= Relationtions between
= Components
= People
= Proteins

André de Carvalho - ICMC/USP 12

Timos Sellis

CHOROCHRONOS Midter Review

* Food Chain

Mountain lion Hawk
5@ Snake /'

% F\abbl@ g;’ Frog

Deer Mouse %

\] (Cricket
. Shrubs

Lol Grass
e

Trees

(g

André de Carvalho - ICMC/USP

i Brain neural connections

K-core: maximal subgraph with minimum degree >k

André de Carvalho - ICMC/USP 14

* Protein interaction network i Home network
.. o .._:o.'. .
0 Gha
ts Ggge mn (1
. &
e/ W . :.E; . -
e®.n i
i & -
"f.-.-."\é‘
André de Carvalho - ICMC/USP 15 André de Carvalho - ICMC/USP 16
* Social network * Corruption network
. @
a ' 0
o 0 .o
‘e .’
. % .
. _
N
André de Carvalho - ICMC/USP 17 André de Carvalho - ICMC/USP 18

Timos Sellis

CHOROCHRONOS Midter Review

i Corruption network

André de Carvalho - ICMC/USP 19

i Graphs

= A graph G = (V,E) is composed of:
= V: set of vertices

= E < VxV: set of edges connecting graph vertices
« Each edge e = (¢, V), e € E, connects a pair of vertices

= A graph can be directed or undirected

= In a undirected graph an edge between v and vis
represented by both (¢,v) e Eand (yu) € E

André de Carvalho - ICMC/USP 20

V={AB,C D}

E={(AB), (BA), (AC), (CA),
(C,D), (D,C), (B,C), (C,B)}

i In either case

= May think of vertices storing other information
= Attributes (name, IP address, ...)
« Information for algorithms that will be performed
on the graph
= We will want to be able to do the following
operations:
= Edge Membership: Is edge e in E?

= Neighbor Query: Who are the neighbors of vertex
v?

André de Carvalho - ICMC/USP 21

i Graph terminology

= A vertex vis adjacent to a vertex viff (y,V) e E
= Degree of a vertex: # of adjacent vertices

= Path: a sequence of vertices v; , 1 ,. . .1, such
that v, is adjacentto y for i=1.. k-1

André de Carvalho - ICMC/USP 22

i Graph terminology

= Simple path: a path with no repeated vertices
= Cycle: a simple path in which the last vertex is

the same as the first vertex e‘e
0
}A

= Connected graph: any two vertices are
connected by some path

onnected not connected

André de Carvalho - ICMC/USP 23

i Graph terminology

= Subgraph: a subset of vertices and edges
forming a graph

= Connected component: a maximal
connected subgraph

= Ex.: graph with 3 connected components

VAL

André de Carvalho - ICMC/USP

Timos Sellis

CHOROCHRONOS Midter Review

i Graph terminology

= (free) tree: connected graph without
cycles

= forest: collection of trees

> tree "/\}“
("J Wl) S ()fi/,b?
P =N tree
f\(w> g O
. forest
¢ Y

André de Carvalho - ICMC/USP 25

i Data structures for graphs

= Adjacency matrix

01234
0f0 101 1
{10101
20100 1
3[1000 1
411110

= Adjacency list

L e

André de Carvalho - ICMC/USP 26

* Adjacency matrix

= Matrix M with entries for all pairs of vertices
= M[i,j] = true if there is an edge (i,j) in the graph
= M[i,j] = false if there is no edge (i,j) in the graph
= Space = |V|?)

becde

(2) () alo1 110

b|1 0001

d{1 0101

@Ae el01 110
André de Carvalho - ICMC/USP 27

i Adjacency matrix

= Option 1: adjacency matrix

1 2 3 4
-10 0 1 O
~10 0 1 1
-1 1 0 1
=10 1.1 0

* Adjacency matrix

= Option 1: adjacency matrix

1 2 3 4
-11 0 1 0
~10 0 1 1
11 1 0 1
=10 1 1 0

i Adjacency matrix

= Option 1: adjacency matrix

Destination
1 2 3 4
-fo 0o 10
I R
.10 1 0 1
“.lo 0o 10
André de Carvalho - ICMC/USP 30

Timos Sellis

CHOROCHRONOS Midter Review

i Adjacency list

= Option 2: linked lists

1 2 3 4

R

R a4 (1) (O
3) \4) (1) 2)

] |

s
AN

N\ AN A
)) (
(\\3)) \4/ \3//
/I\ How would you modify
(2) this for directed graphs?
2 s graphs?
André de Carvalho - ICMC/USP 31

i Graph representation

Suppose there are n
vertices and m edges

Generally better for
sparse graphs

i

o~

mroo

orro

hor

Edge membe?rship o(1) O(deg(v)) or

Ise={u,v} in E? O(deg(u))

Neighbor query O(n) O(deg(v))

Give me v’s neighbors

Space requirements O(n?) O(n +m)
We’ll assume this
representation for the
rest of the class

André de Carvalho - ICMC/USP 32

i Pseudocode assumptions

= Graph ADT with an operation
» V(): VertexSet
= A looping construct “for each v e /", where Vis
of a type lertexSet, and vis of a type lertex
= Vertex ADT with operations:
« adjacent(): lertexSet
= d():/int and setd(d:/inf)
f():int and setf(f:int)
parent() (ou n()): lVertex and setparent(p: Vertex)

color():{white, gray, black} and setcolor(c:{white,
gray, black})

André de Carvalho - ICMC/USP 33

i Graph searching algorithms

= Systematic search of every edge and vertex of
the graph
= Graph G = (V,E) is either directed or undirected
= Applications
= Compilers
= Computer Graphics
= Maze-solving
= Mapping
= Networks: routing, searching, clustering, etc.

André de Carvalho - ICMC/USP 34

i Graph search algorithms

= Searching a graph:
= Systematically follow the edges of a graph
to visit all the vertices of the graph

= Used to discover the structure of a graph
= Standard graph-searching algorithms

= Breadth-First Search (BFS)

= Depth-First Search (DFS)

André de Carvalho - ICMC/USP 35

i Breadth-First Search (BFS)

= Traverses a connected component of a graph,
defining a spanning tree with useful properties

= In undirected graphs, similar to walk in a

labyrinth with a string
= The starting vertex s, it is assigned a distance 0
= In the first round, the string is unrolled the size

of 1 edge

= All of the edges that are only one edge
away from the starting vertex are visited
(discovered) and assigned distances of 1

André de Carvalho - ICMC/USP 36

Timos Sellis

CHOROCHRONOS Midter Review

i Breadth-First Search (BFS)

= In the second round, all new edges that can be
reached by unrolling the string 2 edges are
visited and assigned a distance of 2

= The walking continues until every vertex has
been assigned a level

= The label of any vertex v corresponds to the
length of the shortest path from sto v
= In terms of the number of edges

André de Carvalho - ICMC/USP 37

i Breadth-First Search (BFS)

= Input: Graph G = (V, £), directed or
undirected, and source vertex s cV/
= Output:
= d[v]: distance (smallest # of edges or shortest
path) from sto v, forall velV/
= dV] = w if vis not reachable from s
= n[V]: u, parent (predecessor) of vwhere (u, V)
is the last edge on the shortest path s ~~ v

= Builds a breadth-first tree with root sand all
reachable vertices

André de Carvalho - ICMC/USP 38

i Breadth-First Search (BFS)

= Definitions

= Path between vertices vand v:

= Sequence of vertices (v, Vv, ..., %) such that v=y;
and v=y, and (V;V;4) € £ forall 1< /< k1

= Length of the path:
= Number of edges in the path

= Path is simple if no vertex is repeated

André de Carvalho - ICMC/USP 39

i Breadth-First Search (BFS)

= Expands the frontier between discovered and
undiscovered vertices uniformly across its breadth

= A vertex is “discovered” the first time it is encountered
during the search

= A vertex is “finished” if all vertices adjacent to it have
been discovered
= Colors the vertices to keep track of progress
= White — Undiscovered
. — Discovered but not finished
= Black — Finished
= Colors are required only to reason about the algorithm
= Can be implemented without colors

André de Carvalho - ICMC/USP 40

i Breadth-First Search (BFS)

2

o— _T 30—@—3

| :

2 | 3

s
2

® Finished
O Undiscovered

André de Carvalho - ICMC/USP 41

i Breadth-First Search algorithm
BFS(G,s)

1 for each vertex u in V[G] — {s} do

2 coloru] < WHITE WHITE: undiscovered

3 du] « o« GRAY: discovered

4 n[u] < NIL BLACK: finished

5 color[s] « GRAY

6 ds]<0

7 wls] « NIL 0: queue of discovered vertices
8 Q<0 color[v]: color of v

9 ENQUEUE (@s) d[v]: distance from s to v

10 while Q = & do n[u]: predecessor of u

11 u« DEQUEUE (Q)
12 for each vin Adj[«¢] do

13 if color[] = WHITE
14 then color[V] « GRAY
15 aql« du+1
16 V] « u
17 ENQUEUE (@)
18 color[¢] < BLACK
André de Carvalho - ICMC/USP 42

Timos Sellis

CHOROCHRONOS Midter Review

Example (BFS)

(Courtesy of Prof. Jim Anderson)

r S t u
Vv w X y
Q: s

0

André de Carvalho - ICMC/USP

43

i Example (BFS)

r- st u
& O 00O

Vv W X y
Q wr
11

André de Carvalho - ICMC/USP 44

* Example (BFS)

r S t u
V w X y
Qr tx

122

André de Carvalho - ICMC/USP

45

i Example (BFS)

r S t u
w X y
Qtxv
222
André de Carvalho - ICMC/USP 46

* Example (BFS)

r S t u
Vv w X y

Q xvu
223

André de Carvalho - ICMC/USP

47

i Example (BFS)

r S t u
Vv w X y
Qvuy
233
André de Carvalho - ICMC/USP 48

Timos Sellis

CHOROCHRONOS Midter Review

i Example (BFS)

r S t u
v w X y
Q uy
33
André de Carvalho - ICMC/USP 49

i Example (BFS)

r S t u
v w X y
Qy
3
André de Carvalho - ICMC/USP 50

* Example (BFS)

r S t u
v w X y
André de Carvalho - ICMC/USP 51

i Example (BFS)
O—0© HO—~0

BF Tree

André de Carvalho - ICMC/USP 52

* BFS running time

= Given a graph G = (V,E)
= Initializing the algorithm takes O(V)
= Vertices are enqueued if their color is white
= Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(V)
= Adjacency list of a vertex is scanned when the vertex
is dequeued (and only then...)
= The sum of the lengths of all lists is ®(E)
Consequently, O(E) time is spent on scanning them
= Running time of BFS is O(V+E)
= Linear in the size of the adjacency list representation
of G

André de Carvalho - ICMC/USP 53

i BFS properties

= Given a graph G = (V,E), BFS discovers all
vertices reachable from a source vertex s

= It computes the shortest distance to all
reachable vertices

= It computes a breadth-first tree that contains
all such reachable vertices

= For any vertex vreachable from s, the path in the
breadth first tree from s to v is the shortest
pathin G

André de Carvalho - ICMC/USP 54

Timos Sellis

CHOROCHRONOS Midter Review

i Depth-First Search (DFS)

= In undirected graphs, similar to walk in a
labyrinth with a string and a can of paint

André de Carvalho - ICMC/USP 55

i Using DFS to escape from a Labyritnth

1 Start at vertex s, tying the end of our string to s and paint s “visited”
2 Label s as the current vertex, named u
3 Travel along an arbitrary edge (u,v)
4 If edge (u,v) leads us to an already visited vertex v
Then Return to u
Else Unroll string and move to v and paint v “visited”
Set v as the current vertex and go to 3
If gets to a point where all incident edges on u lead to visited vertices
Then Backtrack by rolling the string to a previously visited vertex v
Set v as the current vertex and go to 3
If all incident edges on v lead to visited vertices
Then Backtrack as before
Continue to backtrack along the travelled path, finding and exploring
unexplored edges, and repeating the procedure
If backtrack to vertex s and there are no more unexplored edges incident on s
Then DFS search is finished
André de Carvalho - ICMC/USP 56

i Depth-First Search (DFS)

= Explore edges out of the most recently
discovered vertex v
= When all edges of vhave been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor)

“Search as deep as possible first.”

Continue until all vertices reachable from the original
source are discovered

If any undiscovered vertices remain, one of them is
chosen as a new source and search is repeated from
this source

André de Carvalho - ICMC/USP 57

i Depth-First Search (DFS)

= Input: G = (V, £), directed or undirected
= No source vertex is given
= Output:

= 2 timestamps on each vertex

= Integers between 1 and 2|V|
d V] = discovery time (when v turns from white to gray)
f[V] = finishing time (when v turns from gray to black)

= n[V] : predecessor of v
= lertex uifv was discovered in v adjacency list

= Uses the same coloring scheme used for vertices
as BFS

André de Carvalho - ICMC/USP 58

i Pseudo-code

DFS(G) DFS-Visit(u)
1 for each vertex u € V[G] do
2 color[u] < white

/* White vertex u has been discovered.
1 color[u] «- GRAY

3 mlu] < NIL 2 time < time + 1

4 time <0 3 d[u] « time

5 for each vertex u € V[G] do 4 foreachv € Adj[u] do
6 if color[u] = white 5 ifcolor[v] = WHITE
7 then DFS-Visit(u) 6 then n[v] «u

7 DFS-Visit(v)
/* Blacken u; it visited all its adj list
8 color{u] « BLACK

Uses a global timestamp time. ‘ O e =t 1l

10 flu] < time

André de Carvalho - ICMC/USP 59

i DFS Algorithm

= Initialize: color all vertices white

= Visit each and every white vertex using
DFS-Visit

= Call from DFS to DFS-Visit(u) roots a new
tree of the depth-first forest at vertex u

= When DFS finishes, every vertex has:
= A discovery time d
= A finishing time £

André de Carvalho - ICMC/USP 60

Timos Sellis

10

CHOROCHRONOS Midter Review

i DFS Timestamping

= Vertex vis
= White before time d v]
= Gray between time d{v] and time Au]
= Black after fu]

= Structure throughout the search:

= Gray vertices form a linear chain

= Chain corresponds to a stack of vertices that
were not exhaustively explored

=« DFS-Visit started but did not finished ’

André de Carvalho - ICMC/USP 61

i Example (DFS)

(Courtesy of Prof. Jim Anderson)

u v w

©

André de Carvalho - ICMC/USP 62

* Example (DFS)

André de Carvalho - ICMC/USP 63

i Example (DFS)

André de Carvalho - ICMC/USP 64

* Example (DFS)

André de Carvalho - ICMC/USP 65

i Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

André de Carvalho - ICMC/USP 66

Timos Sellis

11

CHOROCHRONOS Midter Review

Example (DFS)

u v w Non tree edges:

0 o . B: back edge
C: cross edge

F: forward edge
Y U

Discovery time / finish time

André de Carvalho - ICMC/USP 67

Example (DFS)

u v w Non tree edges:

0 0 . B: back edge
C: cross edge
F: forward edge
N

Discovery time / finish time

André de Carvalho - ICMC/USP 68

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 69

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 70

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 71

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 72

Timos Sellis

12

CHOROCHRONOS Midter Review

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 73

Example (DFS)

w Non tree edges:
B: back edge
,: C: cross edge
c . F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 74

Example (DFS)

w Non tree edges:
e B: back edge
3 C: cross edge

F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 75

Example (DFS)

Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 76

Example (DFS)

w Non tree edges:
B: back edge
C: cross edge
F: forward edge

Discovery time / finish time

André de Carvalho - ICMC/USP 77

DFS Algorithm running time

= Running time
= The loops in DFS take time ©(V) each
» Excluding the time to execute DFS-Visit
= DFS-Visit is called once for every vertex

= Itis only called for white vertices, when it immediately
paints the vertex with gray
= For each DFS-visit, a loop interates over all v.adjacent()

Z ‘v.aaf/ucent()‘ =0(E)

= Total cost for DFS-Visit is ©(E)
= Running time of DFS is ©(V+E)

André de Carvalho - ICMC/USP 78

Timos Sellis

13

CHOROCHRONOS Midter Review

i Generic Graph Search

GenericGraphSearch (G, s)

01 for each vertex u € G.V()

02 u.setcolor (white)

03 u.setparent (NIL)

04 s.setcolor (gray)

05 GrayVertices.init()

06 GrayVertices.add(s)

07 while not GrayVertices.isEmpty ()
08 u « GrayVertices.remove ()

09 for each v € u.adjacent() do
10 if v.color() = white then
11 v.setcolor (gray)

12 v.setparent (u)

13 GrayVertices.add(v)

14 u.setcolor (black)

= BFS, when Grayvertices is a Queue
= DFS, when GrayVertices is a Stack

André de Carvalho - ICMC/USP 79

i BFS versus DFS

= BFS = DFS
= Search wider = Search deeper

= Find shortest-path = It is often a
distances to a given subroutine in
source another algorithm
= Forms a tree = Forms a tree forest
= One source = One or more sources

= FIFO (queue) = LIFO (stack)

André de Carvalho - ICMC/USP 80

i DFS Parenthesis Theorem

= Discovery and finish times have a

parenthesis structure

= Represents discovery of v with left parenthesis
« (u"

= Represents finishing of v with right parenthesis
. ")

= History of discoveries and finishings makes a

well-formed expression

» Parenthesis are properly nested
= Example: (s (a (b b) a) s)

André de Carvalho - ICMC/USP 81

i DFS Parenthesis Theorem

s t

y z
.
4/ 5
X C

B
7/8

(a8)
c w

1.2 3 4 5 6 7 B 9 10 11 12 13 14 15 16

(s 2 (v x x} y) (ww 2z s {t (v vy (uu
André de Carvalho - ICMC/USP 82

Theorem 22.7
For all ¢, v, exactly one of the following holds:

1. ddl <fld <dvl < f[vlordv] <f[v] <du] <f[u] and
neither v nor vis a descendant of the other.

2. du] <dVv] < f[V] < f[u] and vis a descendant of .
3. dV] <du] < f[4] < f[V] and vis a descendant of v.

André de Carvalho - ICMC/USP 83

i DFS Parenthesis Theorem

= For all ¢, v, one of the following holds:
o gyl <flu <dv] <f[or
avl < f[vl <dd] < f[d] and
neither v nor vis a descendant of the other
= du] <dv] < f[v] <f[d] and
vis a descendant of v
= dV] <du] < f[d] <f[v] and
vis a descendant of v

André de Carvalho - ICMC/USP 84

Timos Sellis

14

CHOROCHRONOS Midter Review

i DFS Parenthesis Theorem

= Intuition for proof:

= Any two intervals are either disjoint or
enclosed (one inside the other)

= Overlapping intervals would mean:
= Finishing ancestor, before finishing descendant or
= Starting descendant without starting ancestor

André de Carvalho - ICMC/USP 85

i DFS Edge Classification

= DFS can be used to classify the edges of the
graph G = (V,E)
= Tree (T) edges
= Back (B) edges
= Forward (F) edges
= Cross (C) edges

= Edge classification can provide important
information about the graph

= E.g. a direct graph is acyclic if and only if DFS
produces no back edges

André de Carvalho - ICMC/USP 86

i DFS Edge Classification

= Tree edge (from gray to white)
= Edges in depth-first forest
= Back edge (from gray to gray)

= From descendant to ancestor in depth-first
tree

André de Carvalho - ICMC/USP 87

i DFS Edge Classification

= Forward edge (from gray to black)
= Non-tree edge from ancestor to descendant in
depth-first tree
= Cross edge (from gray to black)
= Remainder: between trees or subtrees

André de Carvalho - ICMC/USP 88

i DFS Edge Classification

= Edge type for edge (¢, v) can be identified when
it is first explored by DFS
= Tree and back edges are the most important
= Most algorithms do not distinguish between
forward and cross edges
= Undirected graphs:
= Classification is difficult , since (u,v) = (v,u)
« Edge is classified according to the vertex encountered first
= Forward and cross edges never occur

André de Carvalho - ICMC/USP 89

i Directed Acyclic Graphs

= A DAG is a directed graph with no cycles

r// \77 V O

= Often used to indicate precedence among events
= Event @ must happen before event b

= Example: parallel code execution

= Total order can be introduced using Topological
Sorting

André de Carvalho - ICMC/USP 90

Timos Sellis

15

CHOROCHRONOS Midter Review

i Topological Sort (TS)

= TS of a DAG G = (V,E) is a linear ordering
of all its vertices, such that:
=« If G contains an edge (u,v), u must appear
before v in the ordering
» No ordering is possible in a cyclic graph
= Like ordering all vertices in a horizontal line so
that all directed edges go from left to right

= First vertex always has in-degree equal to 0
= Vertex with no incoming edges

André de Carvalho - ICMC/USP 91

i Topological Sort Example

= Precedence relations: an edge from v to vmeans
that & must be finished before start v

= Intuition: conclude a task when all necessary
previous tasks are concluded

11716 deershorté)\ :socka: 1718
T % (watch) o710

DAG [ETEY (TS E—— o R
; G s
oG L

(tie) 25

(jacket) 34

—_—
TS (Gocks) (indershorisy>{(pants F(shoes) (watch) (shir{(helt) (fie }»(jacket
8 25

1718 11116 12/15 1314 910 1 o7 3/4
André de Carvalho - ICMC/USP 92

i Topological Sort Algorithm

Topological-Sort(G)

1 call DFS(G) to compute finishing times f[v] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

The linked lists has a total ordering

André de Carvalho - ICMC/USP 93

i Topological Sort Running Time

= Running time
= DFS: O(WA+E) time

= insert each of the | Y vertices to the front of
the linked list: (1) per insertion

= The total running time is O(V4£)

André de Carvalho - ICMC/USP 94

i Next Lecture

= Strongly connected components
= Transpose of directed graphs

= Algorithm to find strongly connected
components

André de Carvalho - ICMC/USP 95

i Acknowledgement

= A large part of this material were adapted from
Simonas Saltenis, Algorithms and Data Structures,
Aalborg University, Denmark

Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

George Bebis, Analysis of Algorithms

CS 477/677, University of Nevada, Reno

David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

André de Carvalho - ICMC/USP 9

Timos Sellis

16

CHOROCHRONOS Midter Review

i Questions

André de Carvalho - ICMC/USP

97

Timos Sellis

17

