Cálculo II, 27/01/2015, Prof. Juan López Linares

Prova II, Alimentos-Diurno

Nome Completo: ______ N. USP:

- 1) (a) Esboce o gráfico da curva plana com a equação vetorial $\vec{r}(t) = \langle t^2, t^3 \rangle$. (b) Esboce o vetor posição $\vec{r}(t)$ e o vetor tangente $\vec{r'}(t)$ para t = 1.
- 2) Calcule a integral $\int_1^2 \langle 1 + t^2, -4t^4, -t^2 + 1 \rangle dt$.
- 3) Determine o comprimento da curva x = 6t, $y = 3\sqrt{2} t^2$, $z = 2 t^3$, $0 \le t \le 1$.
- 4) Determine o limite, se existir, ou mostre que o limite não existe:

$$\lim_{(x,y)\to(0,0)}[(x+y)^2/(x^2+y^2)]$$

5) Use a derivação implícita para encontrar $\partial z/\partial x$ e $\partial z/\partial y$ da equação xy + yz = xz.