# Metamorphosis



Laurel Sky Hiebert Postdoc in Federico's Lab June 4, 2015

# **Outline of lecture**

Part 1: What is metamorphosis? An overview of diversity of metamorphic types

Part 2: The mechanisms regulating metamorphosis Focus on frogs and flies

Part 3: The evolution of metamorphosis

Is metamorphosis ancestral to all animals? Or has it evolved many times?

# **Outline of lecture**

Part 1: What is metamorphosis? An overview of diversity of metamorphic types

Part 2: The mechanisms regulating metamorphosis Focus on frogs and flies

Part 3: The evolution of metamorphosis

Is metamorphosis ancestral to all animals? Or has it evolved many times?

# Is this metamorphosis? A challenge!

# **RULES**:

- I will show photos of the life cycle of different organisms
- Raise your hand if you think that the term "metamorphosis" applies











## How do biologists define metamorphosis?

# What is metamorphosis?

K. Tanaka<sup>†</sup> and J. H. Youson<sup>\*\*</sup>

From the symposium "Metamorphosis: A Multikingdom Approach" presented at the annual meeting of the Society for Integrative and Comparative Biology, January 4-8, 2006, at Orlando, Florida.

# C. D. Bishop,<sup>\*</sup> D. F. Erezyilmaz,<sup>†</sup> T. Flatt,<sup>‡</sup> C. D. Georgiou,<sup>§</sup> M. G. Hadfield,<sup>\*</sup> A. Heyland,<sup>¶,\*\*</sup> J. Hodin,<sup>1,††</sup> M. W. Jacobs,<sup>†,\*\*</sup> S. A. Maslakova,<sup>\*\*</sup> A. Pires,<sup>‡‡</sup> A. M. Reitzel,<sup>§§</sup> S. Santagata,<sup>\*\*,¶¶</sup>

## **Biologists have a variety of conceptions of metamorphosis**

| Author             | Habitat<br>shift | Major<br>morphological<br>change | Change in<br>adaptive<br>landscape | Rapid | Change<br>in feeding<br>mode | Pre metamorphic<br>stage is post-<br>embryonic | Usually pre-<br>reproductive<br>to reproductive<br>stage transition | Transition<br>is generally<br>hormone-<br>regulated | h plant<br>flowering<br>metamorphic? |
|--------------------|------------------|----------------------------------|------------------------------------|-------|------------------------------|------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|
| Cory Bishop        |                  |                                  | X                                  |       |                              | ×                                              | X                                                                   |                                                     | Yes                                  |
| Deniz Erezyilmaz   |                  | X                                | 3                                  |       |                              | x                                              | ×                                                                   | ×                                                   | Yes                                  |
| Thomas Flatt       | ×                | ×                                | ×                                  |       | ×                            | x                                              | ×                                                                   |                                                     | No                                   |
| Christos Georgiou  |                  | ×                                | ×                                  |       |                              |                                                |                                                                     | ×                                                   | Yes                                  |
| Michael Hadleld    | x                | ×                                | x                                  |       | ×                            | x                                              |                                                                     |                                                     | No                                   |
| Andreas Heyland    | ×                | x                                | x                                  |       | ×                            | x                                              | ×                                                                   | ×                                                   | No                                   |
| Jason Hodin        | ×                | ×                                | ×                                  |       | ×                            | x                                              | ×                                                                   | ×                                                   | Yes                                  |
| Molly Jacobs       | ×                | ×                                | ×                                  | X     | X                            | Xª                                             |                                                                     |                                                     | No                                   |
| Svetlana Maslakova | ×                | ×                                | x                                  |       | ×                            | x                                              |                                                                     |                                                     | No                                   |
| Tony Pires         |                  | x                                | X3                                 |       |                              | x                                              | ×                                                                   |                                                     | No                                   |
| Adam Reitzel       | ×                |                                  | x                                  |       | ×                            | x                                              | ×                                                                   |                                                     | No                                   |
| Scott Savtagata    | ×                | X*                               | ×                                  |       |                              | x                                              |                                                                     |                                                     | No                                   |
| Kohtaro Tanaka     | ×                | x                                | x                                  |       |                              | x                                              |                                                                     |                                                     | Yes <sup>5</sup>                     |
| John Youson        | ×                | ×                                | x                                  |       | ×                            | x                                              | ×                                                                   | ×                                                   | No <sup>s</sup>                      |

Table 1 Summary of the various conceptions of metamorphosis presented here

So, there is no single definition of metamorphosis

But we call agree that it involves some change in form during development

#### The spectrum of metamorphic life cycles

#### Direct development

# 

Just change in size



Change in *form* 

Let's look at a diversity of metamorphic life cycles and see how they fit on this spectrum...

Insects display three different types of development

hemimetabolous insects

#### ametabolous insects



#### holometabolous insects

#### Holometabolous insect imaginal discs



https://www.youtube.com/watch?v=rcAN4rkTmNU

#### Insect imaginal discs (and cells) are tucked-away structures that form the adult

#### 19 discs and a few other imaginal cells each become part of the adult



DEVELOPMENTAL BIOLOGY, 9e, Figure 15.10

@ 2010 Simauer Associates, Inc.

#### The discs are folded up inside and evert at metamorphosis



#### Fates of imaginal disc cells are driven by transcription factor expression: example: insect leg



DEVELOPMENTAL BIOLOGY, Eighth Edition, Figure 18.13 @ 2008 Sinauer Associates, Inc.

DEVELOPMENTAL BIOLOGY, Eighth Edition, Figure 18.12 (Part 3) @ 2008 Sinauer Associates, Inc.

**Anterior-posterior patterning** 



Patterning in the wing imaginal discs is accomplished by dividing discs into compartments of expression







Patterning in the wing imaginal discs is accomplished by dividing discs into compartments of expression



#### The spectrum of metamorphic life cycles

#### Direct developement



#### ametabolous insects



#### hemimetabolous insects



#### Indirect developement



#### holometabolous insects







#### Metamorphic changes in anurans



| System       | Larva                                                                                        |
|--------------|----------------------------------------------------------------------------------------------|
| Locomotory   | Aquatic; tail fins                                                                           |
| Respiratory  | Gills, skin, lungs; larval hemoglobins                                                       |
| Circulatory  | Aortic arches; aorta; anterior, posterior, and common jugular veins                          |
| Nutritional  | Herbivorous: long spiral gut; intestinal symbionts; small<br>mouth, horny jaws, labial teeth |
| Nervous      | Lack of nictitating membrane; porphyropsin, lateral line system                              |
| Excretory    | Largely ammonia, some urea                                                                   |
| Integumental | Thin, bilayered epidermis with thin dermis;no mucous<br>glands or granular glands            |

# Adult

Terrestrial; tailless tetrapod

Skin, lungs; adult hemoglobins

Carotid arch; systemic arch; cardinal veins

Carnivorous: Short gut; proteases; large mouth with long tongue

Development of ocular muscles, nictitating membrane, rhodopsin; loss of lateral line system

Largely urea; high activity of enzymes of ornithine-urea cycle

Stratified squamous epidermis with adult keratins; well-developed dermis contains mucous glands and granular glands secreting antimicrobial peptides





https://www.youtube.com/watch?v=wAcwjWi6l9Y

#### The spectrum of metamophic life cycles

#### Direct developement



ametabolous insects



#### hemimetabolous insects



#### Indirect developement



#### anurans

#### holometabolous insects







#### Many echinoderms have indirect development with a variety of larval forms





Bruno C. Vellutini. A sea biscuit's life. Banco de imagens Cifonauta. Disponível em: http://cifonauta.cebimar.usp.br/video/282/ Acesso em: 2016-11-27.



#### Fig. 3. The juvenile sea urchin develops from embryonic multipotent cells. (A) Schematic of indirect development in sea urchin. During embryogenesis, cells are set aside for constructing the adult (the rudiment, shown in purple). The lania swims: and feeds, providing protection and nutritional support. to the developing adult structures. A 5. purpuratus laiva is competent to undergo metamorphosis after -6-8 weeks of feeding. (B) In the four-armed pluteus, the small micromere descendents are located in the left. and right coelomic pouches (purple), where the adult rudiment will form. In the eight-armed pluteus, adult structures in the rudiment (purple) begin to form, such as the tube feet and spines. At metamorphosis, the juvenile emerges as an independent entity (purple) and larval tistues are lost.

#### The spectrum of metamorphic life cycles

#### Direct developement



ametabolous insects



#### hemimetabolous insects



anurans

#### Indirect developement



#### many echinoderms

#### holometabolous insects













## Nemerteans are a phylum of mostly marine predators ~ 1500 species



#### The pilidium larva



Coe, 1905



## Pilidial development = indirect



discs fuse

adult separate sexes

"blastosquare"



zygote undergoes spiral cleavage

(not to scale)

### The imaginal discs fuse around the larval gut to form the juvenile





## Pilidial metamorphosis is rapid and catastrophic





#### The spectrum of metamorphic life cycles

#### Direct developement



ametabolous insects

#### hemimetabolous insects

anurans





#### Indirect developement



#### holometabolous insects

many echinoderms









## Veligers - larvae of marine mollusks

2111) Hell





#### The spectrum of metamophic life cycles

#### Direct developement



ametabolous insects



#### hemimetabolous insects

anurans



marine mollusks

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_11.jpeg)

#### holometabolous insects

![](_page_36_Picture_15.jpeg)

![](_page_36_Picture_16.jpeg)

![](_page_36_Picture_17.jpeg)

## The actinotroch larva of a phoronid worm

Telotroch for swimming

G. von Dassow

The tentacles produce a feeding current and particles are flicked into the mouth.

![](_page_38_Picture_0.jpeg)

...a small invagination appears on the ventral side of the actinotroch larva

It grows and grows internally and gets quite huge and wraps around the stomach

![](_page_38_Figure_3.jpeg)

Zimmer '64

![](_page_39_Picture_0.jpeg)

#### S. Maslakova

This invagination, called metasomal sack, has its own musculature.

Eventually, metasomal sack takes up most of the space inside larval trunk. What is this sack for???

## When larva is ready to settle - metasomal sack is suddenly everted, and the gut and trunk coeloms are drawn into it

![](_page_40_Picture_1.jpeg)

Zimmer '64

![](_page_40_Figure_4.jpeg)

Zimmer '91

## **Everted metasomal sack becomes the body of the juvenile!**

#### Metamorphosis is rapid (just minutes) and dramatic

![](_page_41_Picture_1.jpeg)

the larval gut is pulled into the everting metasomal sac and becomes the U-shaped gut of the adult

#### larval tentacles eaten, oral hood resorbed, larval trunk contracted

(in some species, the larval tentacles turn into the adult lophophore)

rudiments of adult tentacles appear and young phoronid starts secreting a tube

adult tentacles elongate, circulatory system established

#### The spectrum of metamophic life cycles

#### Direct developement

![](_page_42_Figure_2.jpeg)

ametabolous insects

![](_page_42_Figure_4.jpeg)

#### hemimetabolous insects

anurans

![](_page_42_Picture_7.jpeg)

#### marine mollusks

![](_page_42_Picture_9.jpeg)

#### Indirect developement

![](_page_42_Picture_11.jpeg)

#### holometabolous insects

many echinoderms

![](_page_42_Picture_15.jpeg)

![](_page_42_Picture_16.jpeg)

![](_page_42_Picture_17.jpeg)

![](_page_42_Picture_18.jpeg)

![](_page_42_Picture_19.jpeg)

# **Outline of lecture**

Part 1: What is metamorphosis? An overview of diversity of metamorphic types

Part 2: The mechanisms regulating metamorphosis Focus on frogs and flies

Part 3: The evolution of metamorphosis

Is metamorphosis ancestral to all animals? Or has it evolved many times?

#### Metamorphosis is generally controlled by hormone signals: Insects

![](_page_44_Figure_1.jpeg)

#### Metamorphosis is generally controlled by hormone signals: Anurans

![](_page_45_Figure_1.jpeg)

#### Most animals use hormones for life history transitions

| Deuterostomes  | ~pf      | F.                        | alta ?      | EX.                       |
|----------------|----------|---------------------------|-------------|---------------------------|
|                | Steroids | Amino Acid<br>Derivatives | Eicosanoids | Peptides<br>&<br>Proteins |
| Porifera       | ?        | ?                         | ?           | ?                         |
| Cnidaria       | ?        | +(92)                     | ?           | +(40)                     |
| Ctenophora     | ?        | ?                         | ?           | ?                         |
| Nematoda       | +(94)    | ?                         | +(95)       | +(96)                     |
| Arthropoda     | +(41)    | +(39)                     | +(97)       | +(96)                     |
| Platyhelminthe | s +(99)  | ?                         | +(93)       | ?                         |
| Nemertea       | ?        | ?                         | ?           | +(3)                      |
| Annelida       | ?        | ?                         | +(44)       | +(100)                    |
| Echiura        | ?        | ?                         | ?           | ?                         |
| Mollusca       | +(101)   | +?(38)                    | +(101)      | +(101)                    |
| Bryozoa        | ?        | ?                         | ?           | ?                         |
| Echinodermata  | +(86)    | +(37)                     | +(93)       | +(86)                     |
| Hemichordata   | ?        | ?                         | ?           | ?                         |
| Urochordata    | +?(102)  | +(102)                    | ?           | +(103)                    |
| Cephalochordat | ta ?     | ?                         | ?           | +?(102)                   |
| Vertebrata     | +(105)   | +(32)                     | +(104)      | +(32)                     |

![](_page_46_Picture_2.jpeg)

#### In Numerous Invertebrates External Cues Often Induce Metamorphosis; Hormones Synchronize the Internal Events

![](_page_47_Figure_1.jpeg)

# **Outline of lecture**

Part 1: What is metamorphosis? An overview of diversity of metamorphic types

Part 2: The mechanisms regulating metamorphosis Focus on frogs and flies

Part 3: The evolution of metamorphosis

Is metamorphosis ancestral to all animals? Or has it evolved many times?

#### The evolution of metamorphosis in insects: ancestral insects were direct developers

![](_page_49_Figure_1.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_50_Figure_1.jpeg)

Hypothesis: pronymph, nymph and adult may be equivalent to the larva, pupa and adult stages of insects with complete metamorphosis

#### The evolution of metamorphosis in anurans: ancestral tetrapods were direct developers

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

#### What about all the marine invertebrate larvae? Did they all evolve metamorphosis independently too?

![](_page_52_Picture_1.jpeg)

# The debate on the origins of larvae and metamorphosis!

#### Larval first

![](_page_53_Figure_2.jpeg)

B Holopelagic neuralian ancestors.: Terminal addition of benthic adult benthic stages two (or three) times (Nielsen 2012)

#### Adult first

![](_page_53_Figure_5.jpeg)

C Holobenthic neuralian ancestors: Repeated intercalation of swimming larval stages; many times in each lineage (Raff 2008)

#### Argument in favor of the "adult-first" hypothesis: patterning genes highly conserved between adult forms

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

#### Argument in favor of the "adult-first" hypothesis: loss and gain of larval forms is common

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

#### Argument in favor of the "larva-first" hypothesis: expression patterns of many genes are shared across distant larval types

Table 2 Homology and homoplasy in protostome (trochophore) and deuterostome (dipleurula) indirect-developing larval

~ \*

.....

| gene expression. |                    |                     |                                                   |  |  |
|------------------|--------------------|---------------------|---------------------------------------------------|--|--|
| gene             | trochophore        | dipleurula          | reference                                         |  |  |
| Brachyury        | foregut            | foregut             | Arendt et al. (2001)                              |  |  |
| Gsc              | foregut            | foregut             | Arendt et al. (2001)                              |  |  |
| Otx              | oral ciliary bands | oral ciliary bands  | Arendt et al. (2001)                              |  |  |
| NK2.1            | not apical plate   | apical plate        | Dunn et al. (2007)                                |  |  |
| HNF6             | not apical plate   | apical plate        | Dunn et al. (2007)                                |  |  |
| NK2.1            | foregut            | foregut             | Dunn et al. (2007)                                |  |  |
| FoxA             | foregut            | foregut             | Dunn et al. (2007)                                |  |  |
| Nodal            | 2                  | right ecto + coelom | Duboc & Lepage (2006)                             |  |  |
| Hox 2-5          | early larval       | adult rudiment      | Arenas-Mena et al. (1998), Kulakova et al. (2007) |  |  |
| Hox 1            | left-right         | aboral (dorsal)     | Ishii et al. (1999), Kulakova et al. (2007)       |  |  |
| Hox 7            | post-gut           | oral (ventral)      | Ishii et al. (1999), Kulakova et al. (2007)       |  |  |

#### More evidence in favor of the "larva-first" hypothesis: shared larval expression patterns

![](_page_57_Figure_1.jpeg)

pictured above larval forms. The activity of Whit signaling on larval body formation is pictured with bars fanking the larvae. Data is compiled from this and previous studies in Cephalochordata [45,59,65-73]. Hernichordata [9,25,41,43,60,74-77], Echinodermata [26,32,36,37,42,48,78-83], Mollusca [24,84] and Chidaria [30,40,44,64.85-90].

#### A third hypothesis: metamorphosis-first: all the data support this hypothesis

![](_page_58_Figure_1.jpeg)

#### Support for metamorphosis-first hypothesis: shared hormonal-control of life history transitions

![](_page_59_Figure_1.jpeg)

|             |       | 5' RxR | NR   | 3'              |
|-------------|-------|--------|------|-----------------|
| ordates     |       | RxR    | TR   |                 |
| nichordates | 5     | RxR    | TR   | tomia           |
| inodermes   |       | RxR    | TR   | Deuteros        |
| hotrochozo  | a     | RxR    | TR ? |                 |
| ysozoa      |       | RxR    | EcR  | Protostomia     |
| nozoa       |       | -      | ?    |                 |
| rozoa       | coa   | RxR    | ?    | .ez             |
| ozoa        | dusoz | RxR    | ?    | Cnidar          |
| phozoa      | Me    | RxR    | NR   | 0               |
| azoa        |       | -      | ?    |                 |
|             |       |        |      | Current Biology |

## Nuclear Hormone Receptor (NR) Nuclear Receptor (RxR)

## **Summary of Part 3:**

# Most current hypothesis is that "minimally-indirect development" is ancestral

![](_page_60_Picture_2.jpeg)

# •Likely, some type of metamorphosis is an ancient trait among marine invertebrates! But a drastic metamorphosis (with feeding larva) is derived in many lineages

![](_page_60_Picture_6.jpeg)