
A Systematic Review of the Application and
Empirical Investigation of

Search-Based Test Case Generation
Shaukat Ali, Student Member, IEEE, Lionel C. Briand, Fellow, IEEE,

Hadi Hemmati, Student Member, IEEE, and

Rajwinder K. Panesar-Walawege, Student Member, IEEE

Abstract—Metaheuristic search techniques have been extensively used to automate the process of generating test cases, and thus

providing solutions for a more cost-effective testing process. This approach to test automation, often coined “Search-based Software

Testing” (SBST), has been used for a wide variety of test case generation purposes. Since SBST techniques are heuristic by nature,

they must be empirically investigated in terms of how costly and effective they are at reaching their test objectives and whether they

scale up to realistic development artifacts. However, approaches to empirically study SBST techniques have shown wide variation in

the literature. This paper presents the results of a systematic, comprehensive review that aims at characterizing how empirical studies

have been designed to investigate SBST cost-effectiveness and what empirical evidence is available in the literature regarding SBST

cost-effectiveness and scalability. We also provide a framework that drives the data collection process of this systematic review and

can be the starting point of guidelines on how SBST techniques can be empirically assessed. The intent is to aid future researchers

doing empirical studies in SBST by providing an unbiased view of the body of empirical evidence and by guiding them in performing

well-designed and executed empirical studies.

Index Terms—Evolutionary computing and genetic algorithms, frameworks, heuristics design, review and evaluation, test generation,

testing strategies, validation.

Ç

1 INTRODUCTION

SOFTWARE is being incorporated into an ever-increasing

number of systems, and hence it is becoming increas-

ingly important to thoroughly test these systems. One
challenge to testing software systems is the effort involved

in creating test cases that will systematically test the system

and reveal faults in an effective manner. The overall testing

cost has been estimated at being almost 50 percent of the

entire development cost [6], if not more. Thus, a logical

response is to automate the testing process as much as

possible, and test case generation is naturally a key part of

this automation. A possible strategy which has drawn great
interest in the automation of test case generation is the

application and tailoring of metaheuristic search (MHS)

algorithms [41]. The main reason for such an interest is that

test case generation problems can often be reexpressed as

optimization or search problems.
There has been a tremendous amount of research in

applying MHS algorithms to test case generation and a large

body of research exists: A search of the most relevant

databases (as detailed in Section 4.2.1) found 450 articles

which, after reading abstracts, resulted in 122 relevant articles
published over the years 1996-2007 on this specific topic,
often referred to as search-based software testing (SBST) [4].

Seeing the amount of research activity in this field, it is, at
this point in time, highly important to characterize what type
of research has been performed and how it has been
conducted. Among other things, it is crucial to appraise
how much empirical evidence there is regarding the cost-
effectiveness of SBST and to determine whether there is room
for improvement in the way studies are performed and
reported. The ultimate goal is to improve the quality of future
research in this important, emerging field of research. In
order to assess the current state of the art in SBST, we decided
to conduct a comprehensive systematic review of the current
literature, as this is commonly done in other scientific fields of
research such as medicine [25] and social science [29]. The
purpose of this systematic review is to collect, classify, and
assess the empirical studies on SBST in order to assess the
current body of evidence regarding the cost and effectiveness
of SBST. By identifying the strengths and weaknesses of the
current literature, we hope to suggest improved research
practices and relevant future research directions.

This paper is organized as follows: In Section 2, we
provide the background relevant to the material presented
in this paper. Section 3 suggests a framework used to assess
the empirical studies in SBST, and Section 4 presents the
method used to conduct this systematic review. In Section 5,
we present the results of our review, while Section 6 outlines
its validity threats. The final conclusions that we can draw
from this systematic review are presented in Section 7.

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

. The authors are with the Simula Research Laboratory, PO Box 134, 1325
Lysaker, Norway, and the University of Oslo, Norway.
E-mail: {shaukat, briand, hemmati, rpanesar}@simula.no.

Manuscript received 6 Sept. 2008; revised 27 Apr. 2009; accepted 7 Aug.
2010; published online 14 Aug. 2009.
Recommended for acceptance by M. Harman and A. Mansouri.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-09-0283.
Digital Object Identifier no. 10.1109/TSE.2009.52.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

2 BACKGROUND

In this systematic review, we are analyzing which MHS
algorithms have been used to address test case generation
and what body of evidence exists regarding their cost-
effectiveness. As a preliminary to the review itself, we
introduce here the three main components involved in this
paper: search-based software testing, systematic reviews,
and empirical studies.

2.1 Search-Based Software Testing

The main aim of software testing is to detect as many faults
as possible, especially the most critical ones, in the system
under test (SUT). To gain sufficient confidence that most
faults are detected, testing should ideally be exhaustive.
Since, in practice, this is not possible, testers resort to test
models and coverage/adequacy criteria to define systema-
tic and effective test strategies that are fault revealing. A test
case normally consists of test data and the expected output
[36]. The test data can take various forms, such as values for
input parameters of a function, values of input parameters
for a sequence of method calls, or seeding times to trigger
task executions. In the context of this review, we are not
dealing with the expected outputs, but focus exclusively on
the generation of test data, as this has been the objective of
papers making use of SBST. In order to perform test case
generation systematically and efficiently, automated test
case generation strategies are employed. Bertolino [7]
addresses the need for 100 percent automatic testing as a
means to improve the quality of the complex software
systems that are becoming the norm of modern society. A
comprehensive testing strategy must address many activ-
ities that should ideally be automated: the generation of test
requirements, test case generation, test oracle generation,
test case selection, or test case prioritization. In our current
review, we are only dealing with test case generation. A
promising strategy for tackling this challenge comes from
the field of search-based software engineering [23].

Search-based software engineering attempts to solve a
variety of software engineering problems by reformulating
them as search problems [15]. A major research area in this
domain is the application of MHS algorithms to test case
generation. MHS algorithms are a set of generic algorithms
that are used to find optimal or near-optimal solutions to
problems that have large complex search spaces [15]. There
is a natural match between MHS algorithms and software
test case generation. The process of generating test cases can
be seen as a search or optimization process: There are
possibly hundreds of thousands of test cases that could be
generated for a particular SUT and, from this pool, we need
to select, systematically and at a reasonable cost, those that
comply with certain coverage criteria and are expected to be
fault revealing, at least for certain types of faults. Hence, we
can reformulate the generation of test cases as a search that
aims at finding the required or optimal set of test cases from
the space of all possible test cases. When software testing
problems are reformulated into search problems, the
resulting search spaces are usually very complex, especially
for realistic or real-world SUTs. For example, in the case of
white-box testing, this is due to the nonlinear nature of
software resulting from control structures such as

if-statements and loops [17]. In such cases, simple search
strategies may not be sufficient and global MHS algorithms1

may, as a result, become a necessity, as they implement
global search and are less likely to be trapped into local
optima [16]. The use of MHS algorithms for test case
generation is referred to as search-based software testing
[4]. Mantere and Alander [35] discuss the use of MHS
algorithms for software testing in general and McMinn [37]
provides a survey of some of the MHS algorithms that have
been used for test data generation. The most common MHS
algorithms that have been employed for search-based
software testing are evolutionary algorithms, simulated
annealing, hill climbing, ant colony optimization, and
particle swarm optimization [12]. Among these algorithms,
hill climbing (HC) [12] is a simpler, local search algorithm.
The SBST techniques using more complex global MHS
algorithms are often compared with test case generation
based on HC and random search to determine whether their
complexity is warranted to address a specific test case
generation problem. The use of the more complex MHS
algorithm may only be justified if it performs significantly
better than HC.

2.2 Systematic Reviews

Systematic reviews are a means of synthesizing existing
research regarding a specific research question [29]. They
are usually performed to summarize the existing evidence
for a particular topic and aid in the identification of gaps in
the current research, and thus can form the basis of new
research activity. A review protocol is created at the
beginning of the review which lays out the research
questions being answered and the methodology that will
be used to answer these questions. The protocol specifies a
specific search strategy that is used to select as much of the
relevant literature as possible and provides justification for
why studies are included or excluded from the systematic
review. The data to be collected to answer the research
questions are also presented in the protocol. All of this
information is published so that readers can judge the
completeness of the systematic review and, if necessary,
replicate it. These features distinguish the systematic
review from the usual literature review or survey that is
usually conducted at the beginning of a research activity. A
systematic review synthesizes the existing work in a
systematic, comprehensive, and unbiased manner.

2.3 Empirical Studies for Search-Based Software
Testing

Kitchenham et al. [19], [31] make the case for evidence-based
software engineering that seeks to help practitioners make
informed decisions related to software development and
maintenance by integrating current best evidence from
research with practical experience. Thus, to determine if
SBST techniques can be applied in practice, we need to
conduct empirical studies to assess their cost-effectiveness
and scalability. The cost-effectiveness of an SBST technique is
normally measured in terms of the ability of the technique to

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 743

1. Global MHS algorithms are often contrasted with local MHS
algorithms. The former are based on strategies for the search to avoid
being stuck in local minima, thus being more effective in situations with
complex search landscapes [12].

generate test cases that achieve a certain testing objective at a
reasonable cost. The testing objective, as is the case with any
test case generation technique, is to detect faults of a type that
is explicitly defined or implicitly determined by the test
model (e.g., state transition faults for a state machine model).
In this review, we have focused on empirical studies of SBST
techniques in order to assess whether convincing evidence
exists to show their cost-effectiveness and scalability. For this
purpose, it was necessary to define what we mean by an
empirical study in this context and what constitutes a well-
designed and reported empirical study. Empirical studies
are usually divided into three different types: surveys, case
studies, or experiments [52]. For this review, we have used a
broad definition of empirical study, to include any kind of
empirical evaluation that has been done in the field of SBST
in order to be comprehensive in our investigation.

In order to determine what constitutes a proper empiri-
cal study in SBST, we looked at existing guidelines [27],
[32], [52] for conducting empirical studies in software
engineering and those for evaluating SBST techniques in
other fields. Wohlin et al. [52] and Kitchenham et al. [32]
present guidelines on how to conduct experimentation and
empirical research in the specific context of software
engineering, whereas Johnson [27] presents a general guide
for experimental analysis of algorithms. We have tailored
and augmented some of these guidelines to create a specific
framework for conducting and reporting empirical studies
in the domain of SBST. This was necessary as SBST studies
involve the analysis of automation techniques in which no
human subjects are involved and present many specific
challenges. In addition, the fact that SBST techniques are
based on MHS algorithms makes it important to account for
the inherent random variation that exists in their results.
Furthermore, there should also be some means to show that
an SBST technique is really necessary for the context that it
is being applied in. This can be done, for example, by
showing that other simpler search techniques do not
perform as well. The reason for doing this is that we want
to ensure that the problems being tackled by the SBST
techniques do warrant their use.

The framework was created for a dual purpose. First, it
was used in this systematic review to direct the collection of
data that was used to assess the current state of empirical
research in SBST. Second, it can also be used as a set of
guidelines for conducting and reporting future research in
the field or at least as a starting point in the development of
such guidelines. The next section will present the framework.

3 FRAMEWORK

As presented here, this framework is not intended to
provide complete operational guidelines, but rather to
justify the data collection that took place to perform the
systematic review presented in the next sections and to
highlight some of the most important concepts and issues.
The framework is divided into four parts. First, the test
problem addressed must be clearly specified. Second, the
MHS algorithms adopted must be clearly defined. Third,
since any SBST research should always include empirical
studies aiming at assessing the cost and effectiveness of the
proposed approaches, the design of such studies must be

carefully described so that its validity can be assessed. Last,
results must be carefully reported so as to be clearly
interpretable and reproducible. Whenever relevant, we will
refer to Johnson’s general guidelines on the experimental
analysis of algorithms [27], either to point the reader to
further, more general considerations, or to show that our
more specific guidelines are a specialization of these more
general ones.

3.1 Test Problem Specification

The test problem specification includes two main parts: the
purpose of testing and the test strategy that will be
employed. Each of these parts directly affects the form that
the search-based software testing strategy will take. Fig. 1
outlines the constituent parts of a test problem specification.
The general purpose of software testing is to gain sufficient
confidence in the dependability of a software artifact.
Explicitly, this is usually done by targeting specific types
of faults at different levels (such as unit, integration, and
system testing). The targeted faults can be categorized in
many ways, depending on the view one takes of a system.
At the highest level, one differentiates functional from
nonfunctional faults, e.g., faults related to performance,
security, robustness, and safety requirements.

A testing strategy is defined by a model of the SUT and
some specific coverage criteria defined on that model. Such a
model is typically referred to as a test model and the coverage
criteria aim at systematically exercising the SUT based on the
test model. This test model may be characterized by its source
and representation (i.e., notation and semantics). Coverage
criteria definitions depend on the test model representation.
The source of the model implies constraints on the application
of the test strategy as it depends on the availability and
reliability of precise information in a specific form. As
discussed in [5], possible sources for a test model can be the
SUT specification, design artifacts, or the source code itself.
Based on the model source (specification, design, or source
code), different types of test models can be constructed.
Typical examples of models derived from source code
include control and data flow graphs, whereas test models
based on SUT design include state machines or Markov usage
models. To be systematic, a test strategy generates test cases to
cover certain features of the test model. For instance, in the
case of state machines, typical coverage criteria include the
coverage of all states or all transitions, the latter being a

744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

Fig. 1. Concept diagram of test problem specification.

stronger requirement, while in the case of control flow
graphs, a typical coverage criterion is branch coverage. It is
important to clearly specify the coverage criteria as it is often
used to measure the effectiveness of SBST techniques
regarding test case generation.

3.2 Metaheuristic Search Algorithm Specification

MHS algorithms are general strategies that need to be
adapted to the problem at hand. When reporting a study,
this implies describing and justifying the customizations and
parameter settings for each specific algorithm. This will be
required for replicating the study and also for comparisons
with other SBST techniques and future studies. Each type of
MHS algorithm has specific parameter settings to be
reported, but the general idea is to report all settings and
adjustments that may have an effect on the performance of the
algorithm or are needed for replicating the study. In Fig. 2, we
show how a typical genetic algorithm can be used for test case
generation. The important parameters to report for a genetic
algorithm would be the encoding of the chromosomes, the
fitness function created to guide the search, the strategy for
creating the initial population, the selection strategy for
selecting parents for the next generation, the various
recombination operators, such as crossover and mutation
operators and their values, the reinsertion strategy, and the
stopping criteria. We discuss in [5] how these parameters
affect the results of empirical studies involving the use of
genetic algorithms for test case generation.

3.3 Empirical Study Design

This section will define the most important items that
should be reported about the study definition (through its
objectives and hypotheses), design, and results.

3.3.1 Objectives and Experimental Hypotheses

One must define what is going to be empirically assessed
and compared. The objective is usually to compare various
SBST techniques and alternatives in terms of code coverage,
fault detection, test suite size, or test case generation time.
The empirical study can be an assessment of a single SBST
technique, a comparison of two or more SBST techniques, or
a comparison of SBST techniques versus non-SBST techni-
ques (i.e., not relying on metaheuristic search algorithms).
The latter includes, for example, random search, static
analysis, greedy algorithms, or some other specific techni-
que for the test problem under consideration, e.g., schedul-
ability analysis in the case of real-time systems. In any case,
what is going to be compared should be precisely specified
through formal test hypotheses, thus leading to appropriate
statistical significance testing. One notion important here is
to state the kind of hypothesis that will be used: either a

one-tailed hypothesis or a two-tailed hypothesis [14]. This
has an impact on how we interpret the results in terms of
p-values (probability of type I errors). In the context of
SBST, a one-tailed hypothesis would be used in the case
when, based on the properties of the fitness function, we
have a theoretical basis to assert the direction of the
expected outcome. For example, when comparing a guided
search algorithm such as a genetic algorithm with random
search, we may, based on an analysis of the fitness function,
expect the genetic algorithm to be equally or more effective
at hitting the search target—but not worse—and as such we
would use a one-tailed hypothesis. However, as an
example, when comparing two genetic algorithms with
different fitness functions, where we cannot state upfront
which one would fare better in terms of cost or effective-
ness, we would use a two-tailed hypothesis. In other words,
when the theory regarding the search algorithms under
study allows us to be a priori confident regarding the
possible direction of differences in cost or effectiveness,
then we should use a one-tailed test as this will increase our
chances to uncover a statistically significant difference.

3.3.2 Target Application Domain

Empirical studies should specify a target application
domain in which their results are intended to be general-
ized. Example application domains are: real-time, concur-
rent, distributed, embedded, and safety-critical. Testing
techniques typically target specific faults that are more
relevant in certain application domains, e.g., slow response
time in real-time systems. Moreover, assumptions are
typically made regarding the availability of information
required to build the test model. Such assumptions tend to
be more or less realistic, depending on the application
domain. For example, if one assumes the use of the MARTE
UML profile [3] to design a system and then derive a test
model, this is, of course, more realistic in the context of
embedded, real-time applications. Further, the selection of
subject systems for empirical studies will then be partly
determined by the target application domain.

3.3.3 Subject Systems (Software under Test or SUT)

Specification

After identifying the target application domain, specific SUTs
fitting that domain are selected. It is important to carefully
select SUTs and precisely justify why the selected SUTs are
adequate matches for the target application domain as this
will help the reader determine the extent to which the
experimental results will generalize to this domain. This
discussion should be in terms of the inherent properties of the
SUT such as its size, complexity, or structure. This is
particularly important when one is creating artificial SUTs

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 745

Fig. 2. Test case generation using genetic algorithms.

specifically for the experiment, a common situation when one
is trying to account for SUTs of varying size and complexity.
For each SUT in the empirical study, the function of the SUT
together with relevant properties affecting its representa-
tiveness of the domain should be carefully reported in order
to ensure the reproducibility of the experiment and help
future comparisons of cost-effectiveness results. Johnson [27]
discusses the general problem of instance selection (i.e., SUTs
here) in experiments (Principle 3: Use instance testbeds that
can support general conclusions) and defines reproducibility
(Principle 6: Ensure Reproducibility) when experimenting
with algorithms as the capacity to “perform similar experi-
ments that would lead to the same basic conclusions.” The
goal is to make it possible to confirm the results of an original
experiment independently from the precise settings and
details of the experiment. In addition to SUT properties, the
hardware platform that the SUT executes on is also important
to specify. Johnson [27] provides an in-depth discussion of
the latter issue (Principle 7: Ensuring Comparability), which
is not specific to SBST, and suggestions to address it. In his
Principle 9, about well-justified conclusions, Johnson [27]
also discusses the danger of drawing conclusions from small
instances that are then generalized to much larger instances,
as the former do not always predict the latter well, and
recommends using instances that are as large as possible.

3.3.4 Measures of Cost and Effectiveness for SBST

Techniques

Measuring effectiveness and, more particularly, cost in our
context is inherently difficult and the validity of measures is
very often context-dependent. As discussed by Johnson in
[27] (Principle 6: Ensure Reproducibility), just reporting
effectiveness and cost values is not very informative as it does
not provide direct insights into what these values actually
imply. It is nevertheless crucial in order to draw useful
conclusions from studies involving SBST techniques to be
able to use appropriate comparison baselines. In our context,
one usually resorts to comparing the investigated technique
to simpler, existing techniques (see Section 3.3.6 on baselines
of comparisons) in order to assess the relative goodness of a
search. The measures should be relevant for the particular
study and comparable across the different techniques being
investigated. Studies may use slight variations of an existing
measure or introduce new ones; hence, it is important to
explain the reasoning behind the effectiveness and cost
measures and justify why they are applicable in the context
they are being used. Along with the measure, the method
used to collect the data related to the measures should be
thoroughly explained. In the context of SBST, the effective-
ness of a test case generation technique is closely related to
the “quality” of the test suite generated by the technique. A
good test suite can be characterized by its ability to uncover
faults or to give confidence in the SUT by fulfilling a certain
coverage criterion. Thus, we can say that, in practice, there
are two main categories of measures of effectiveness, which
can be referred to as coverage-based measures and fault-
based measures. In the former category, there may be many
different types of measures, depending on the adequacy
criteria being used, for example, control-flow coverage
criteria such as branch or path coverage may be used. The
fault-based measures are typically fault detection scores.
They can be computed based on real known faults or are

estimated through mutation analysis [48]. In the latter case,
the program is seeded with faults based on mutation
operators and depending on the number of faults caught, a
so-called mutation score is calculated. The techniques are
assessed upon how successful they are at detecting the
seeded faults.

Cost measures are generally related to the speed of the
technique to converge toward the test objective (in some
cases, it is referred to as the search technique’s “efficiency”).
Some common cost measures used in the SBST domain are:

1. The number of iterations, which shows how many
times an SBST technique needed to iterate in order to
find its best solution, e.g., the number of generations
in genetic algorithms, or cycles in ant colony
optimization algorithms.

2. The cumulative number of individuals in all itera-
tions (usually, each individual represents a test case
in SBST).

3. The number of fitness evaluations an algorithm
needs to find the final solution, which depends on
the number of newly generated individuals (usually,
each new population is made up of some individuals
from the previous iteration and some newly gener-
ated ones).

4. The time spent by an MHS algorithm to find test cases
meeting the targeted test objective, which is some-
times referred to as “test case generation time.” This
time can be either measured using clock time or CPU
cycles. Clock time is the time from the “wall” clock
and not easily comparable across different hardware
architectures. However, it is a practical measure that
can be used to assess if a technique can be used in
practice. CPU cycles, on the other hand, is a measure
that can be used across techniques for comparison on
other hardware architectures as well.

5. The size of the resulting test suite, which is a
surrogate measure for the cost of the time it would
take to execute the resulting test suite since a larger
test suite would require more resources to execute.

Among the first three cost measures, the number of
iterations is a very coarse-grained measure and is not as
precise as the number of individuals, which, in turn, is not as
precise as the number of fitness evaluations. The number of
fitness evaluations is more precise than the number of
individuals because, in each iteration, there are some
individuals that are kept from the previous population and
there is no cost for generating them. Therefore, the number of
evaluations can more precisely estimate the real cost of an
SBST technique. All three of these measures are surrogate
measures for the time used to generate the final test suite, but
none is perfect because different search techniques may
require a different amount of time per iteration, per creation
of an individual (test case), or per fitness evaluation. For
instance, it would not be a good idea to compare simulated
annealing (SA) and genetic algorithms (GAs) based on the
number of iterations because the amount of time required for
each iteration in GA and SA is likely to differ significantly.

The cost of a technique is generally measured for one of
two purposes: either to compare two techniques to assess
which one will cost less for the same effectiveness or to assess

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

whether a technique can be used in practice given expected
time constraints. From the measures discussed above, “test
case generation time,” if it has been measured under similar
conditions, is the only measure that can give users an
intuitive idea of whether they can apply a particular
technique to their situation within the time constraints that
they have. When comparing the cost of different techniques,
it is also necessary to make sure that any other required
resources are kept equal among the techniques. The fact that
two techniques require the same amount of time does not
mean that they have the same cost if one technique consumes
much more memory than the other. Therefore, all relevant
types of resources must be accounted for when comparing
the cost of SBST techniques.

3.3.5 Measures for Scalability Assessment

Scalability assessment is the process of assessing how the
cost-effectiveness of an SBST technique evolves as a
function of the size of the test case generation problem to
be addressed. This involves one or more measures of SUT
size and the analysis of their relationships with the cost or
effectiveness of the SBST techniques under investigation.
Some examples of measures that can be scaled up include
the size of the SUT in terms of lines of code or the size of
search space in terms of number and range of input data
parameters. The effect of this scaling is then observed on
different cost and effectiveness measures to see if the SBST
technique is still cost-effective as the SUT gets larger and
more complex.

3.3.6 Baselines for Comparison

An SBST technique can only be assessed if it is compared
with a carefully selected, meaningful baseline since the
optimal solution is normally not known. Since it is difficult
to assess SBST techniques in absolute terms, it is therefore
important to show, at a minimum, that the problem at hand
could not be addressed by some simpler means. In other
words, every study should have one or more baselines of
comparison when assessing SBST techniques and the
minimum to be expected is a comparison with random
search. The SUT investigated may, for example, be small
and simple, and the fact that an SBST technique performs
well may not mean much. Random search can then serve as
a basic verification that the search problem cannot be
addressed by a simple random search and warrants the use
of an SBST technique. It is also preferable to use other
simple SBST techniques, such as HC, as a comparison
baseline for other more expensive SBST techniques. This
further demonstrates that the use of an SBST technique is
justified given the test case generation problem at hand. In
addition—but this is context-dependent—other SBST tech-
niques, previously published or considered plausible
alternatives, can also be used as baselines of comparisons
for the proposed SBST techniques.

As discussed in [27], once baseline techniques are selected,
one must ensure that reasonably efficient implementations
are used for all techniques in order for cost and effectiveness
to be comparable. Documentation, source code, and URLs for
downloadable tools or, at the very least, a careful description
of the implementation, should be provided.

3.3.7 Parameter Settings

Most SBST techniques require parameter settings which
tend to have a significant impact on their performance. In
many studies, alternative parameter settings are investi-
gated and compared. It is therefore highly important, to
make any study reproducible, to specify these parameters
in a precise manner. It is also interesting to justify their
values based on existing studies when possible, as this
provides insights into how cost and effectiveness could be
affected if they were changed or if a different SUT with
different properties was used. One particularly important
parameter in our context is the stopping criterion of the
search (Principle 6: Ensure Reproducibility). It can be based
on whether the search objective has been reached (or one is
sufficiently close), execution time or a surrogate measure
(due to practical constraints), or any significant progress is
observed over a period of time.

3.3.8 Accounting for Random Variation in SBST Results

Since SBST techniques use MHS algorithms, their results can
vary from one execution to another. So, it is important to
ensure that we run the algorithms a sufficient number of
times to capture the random variation of results and be able
to perform statistical comparisons with other search techni-
ques. It is difficult to precisely specify the number of runs
required in general, but as a ballpark number, it should
probably be above 10, so as to allow the use of basic statistical
hypothesis testing and obtain a reasonable statistical power
to detect large differences [52]. Based on the expected
(minimum) difference between techniques (if this can be
estimated) and the statistical tests used to compare cost and
effectiveness across techniques, the minimum required
number of runs can be estimated using power analysis [18].

When dealing with multiple runs, in our context we are
often interested in the best run yielding the best test suite or
test case according to some fitness function (e.g., bringing
the execution time of a task as close as possible to its
deadline). Another frequent case is when we are interested
in the frequency with which a certain target was reached
across runs (e.g., test input data satisfying certain con-
straints). In both cases, it is important to report the execution
time and other cost measures of all runs and, when relevant,
information about their fitness distribution. The basic
principle is that it should be possible to estimate the total
cost of achieving the best solution or, depending on what is
relevant, the expected cost to achieve the search target. From
a more general standpoint, Johnson (Principle 6: Ensure
Reproducibility) [27] warns against reporting only effec-
tiveness and cost data for the best run.

3.3.9 Data Analysis

During the design of an empirical study, it is important to
decide about the data analysis methods that will be applied
to cost-effectiveness and scalability results.

Data analysis methods for comparing cost-effectiveness.
Performance in the case of SBST usually relates to measuring
the cost-effectiveness of the various search techniques. The
cost and effectiveness of an SBST technique are used together
for assessing its performance. For example, a technique that
has higher coverage than another technique may not be
considered to have better performance because it uses
significantly more fitness evaluations (higher cost) to achieve

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 747

that effectiveness, thus making it impractical for larger SUTs.
Any claims of better performance should be backed by
empirical evidence demonstrating lower cost or higher
effectiveness when compared to the baseline and alternative
techniques. In the ideal case, a study that is concentrating on
measuring cost should keep the effectiveness measures
constant. For example, the study may measure the number of
fitness evaluations needed to achieve 100 percent branch
coverage. If, however, the aim is to measure effectiveness,
then this can be done by keeping the cost constant, for
example, by measuring how much branch coverage is
achieved in some constant amount of time or number of
fitness evaluations. The reported performance results should
include the results of the comparison baselines. At a high
level, reported results should follow the structure below:

Reporting descriptive statistics. Both cost and effectiveness
distributions should be reported (e.g., as a table with
descriptive statistics) and analyzed. Looking at their
standard deviation may indicate the level of uncertainty
in terms of cost and effectiveness associated with an SBST
technique. This, in turn, may help determine how many
runs would, in practice, be necessary to guarantee that we
obtain a satisfactory result, i.e., achieve the objective.

Results of hypothesis testing. The purpose of statistical
testing is to determine whether differences across SBST
techniques in terms of central tendencies for cost and
effectiveness can be attributed to chance or whether they
really capture a trend. Statistical hypothesis testing is
necessary as SBST techniques are always associated with a
certain level of random variation in terms of cost or
effectiveness. Because statistical testing is a standard
practice, we will not detail it further here and interested
readers may consult [40] for more details.

Statistical hypothesis testing should be used to accept/
reject research hypotheses related to the cost-effectiveness
analysis of SBST techniques and comparison baselines. The
choice of a specific statistical test depends on the specific
objective of SBST. In our context, hypothesis testing falls
into three broad categories: 1) Comparing samples of runs
in terms of effectiveness and cost. For example, comparing
average or maximum branch coverage achieved across runs
of alternative SBST techniques and baselines of comparison.
2) Comparing samples of runs in terms of “successful” runs.

For example, comparing the proportion of runs that find a
deadlock across alternative SBST techniques and baselines
of comparison. 3) Comparing samples of targets (e.g.,
control flow branches) in terms of cost (e.g., iterations) or
effectiveness (e.g., percentage of runs reaching that branch).
In this last case, the samples are not independent, because
observations in each sample are paired (identical targets).
This leads to the application of specific statistical tests for
paired samples. Moreover, though this is a standard issue,
there can be two or more samples, and this will also affect
the specific statistical test to be used. Moreover, as usual in
other contexts, specific statistical tests have to be selected
and justified based on the data distributions of the samples
being compared to avoid drawing incorrect conclusions
from the analysis. Statistical tests are usually classified as
parametric and nonparametric [52]. When the sample
follows a specific distribution (e.g., normal), certain para-
metric tests are applicable (e.g., t-test). Alternatively,
nonparametric statistical tests are used when no appro-
priate assumptions can be made about the sample distribu-
tions. The issues related to selecting appropriate tests are,
however, discussed in standard textbooks and will not be
further addressed here. In Table 1, as a guideline, we
provide a mapping between the analysis situations we have
encountered in SBST studies and the type of statistical tests
that are suitable (for the sake of simplicity, we are assuming
two samples, that is, the comparison of two techniques).
This mapping is illustrated with examples.

Data analysis should address both the statistical and the
practical significance of differences among alternative search
techniques. The former assesses whether differences among
search techniques can be due to chance. The latter assesses
whether the difference can be considered of practical
significance, that is, whether they would make any difference
in the day-to-day practice of test case generation given the
specific test objectives being considered. For example, if
statistical testing based on a large number of runs shows that
there is a significant difference between the cost of two search
techniques in terms of time required for finding the best test
suite, the actual difference may not be of practical importance
if it is in the range of a few minutes. On the other hand, a lack
of statistical significance despite a visible difference may be
due to small samples, and therefore, a lack of statistical

748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 1
Mapping of SBST Problems to Statistical Tests

power, which, in our context, means that the number of runs
for each compared search technique may be too small. The
larger the number of runs, the more likely one is to obtain
statistical significance when observing differences.

Data analysis methods for scalability. Scalability is used
to assess whether an SBST technique can be applied to
either larger or more complex SUTs and still have
satisfactory effectiveness and cost. If the aim of the
empirical study is to show the scalability of an SBST
technique, then appropriate measures of size and complex-
ity should be clearly defined. There will be at least two
measures involved—one size measure that will be scaled up
through successive SUTs and the other that will measure
the corresponding performance (cost and effectiveness).
Then, the effect of scaling up a particular measure can be
reported in terms of a statistical relationship (recall the
unavoidable random variation). For example, we may
investigate several SUTs of variable sizes in terms of lines
of code, and then assess whether an SBST technique can still
reach a certain level of coverage at acceptable cost (e.g.,
measured as the number of generations) for larger SUTs
and analyze how this cost evolves with the size of the SUT.
A positive exponential relationship between size and cost
might then be problematic, for example, as it would
undermine the applicability of the technique for large-scale
test models and systems. Similarly, if effectiveness (e.g., in
terms of achieved coverage) is strongly decreasing as a
function of SUT size, we also have a scalability problem.

As for scalability analysis, we need to characterize
relationships between SUT size variables and measures of
the SBST technique’s cost and effectiveness. Such techni-
ques are typically analyzed through regression analysis,
though, in practice, because the number of SUTs under
study is likely to be small, such analysis is more likely to be
qualitative, that is simply based on observing scatter plots
in the cost-effectiveness and size space.

3.3.10 Discussion on Validity Threats

Validity threats should be considered throughout any
empirical study, right from the study definition and design
up to the analysis and interpretation of results [52]. The
following types of threats can be discussed:

Construct validity threats. Measures of cost, effective-
ness, and SUT size should be appropriate and justified given
the context and objectives of investigation. No measure is
expected to be perfect, as the above concepts are usually not
readily measurable. But, in practice, by using several
complementary measures of cost, effectiveness, and SUT
size, one is in a position to compare the cost-effectiveness
and scalability of alternative search techniques.

Internal validity threats. If an SBST technique performs
better than another one, whether regarding effectiveness or
cost, can it be due to something other than the SBST
technique? This could possibly be due to the following:
1) poor parameter settings of one or more of the SBST
techniques and 2) the biased selection of SUTs that have
certain characteristics that can favor a certain SBST technique.

Conclusion validity threats

. Has random variation been properly accounted
for? Since SBST techniques use MHS algorithms,

randomness in results (inherent to metaheuristic
approaches) should be accounted for, as discussed
above. Has it been done in such a way as to enable
statistical comparisons? It implies that a sufficient
number of independent runs be performed to
obtain a sufficient number of observations.

. Was the right statistical test employed? Statistical
test procedures should be carefully selected given
the hypothesis method (e.g., one-tailed versus two-
tailed hypothesis) and the data collected (distribu-
tions of cost and effectiveness). Otherwise, certain
required properties of a particular statistical test
could be inadvertently violated leading to incorrect
conclusions. For example, many statistical tests
assume that data distributions be normal [52].

. Is there any practically significant difference? To
answer this question, the magnitude of the differences
must be reported—this is known as the effect size and
determines the practical significance of the results.

External validity threats. This is a difficult issue, as
whether results can be generalized depends on whether the
SUTs under investigation are representative of the targeted
application domain and whether the faults considered (if
used to assess test effectiveness) are representative of real
faults. Ideally, SBST empirical studies should also be run on
many different SUTs of the target type, but every research
endeavor faces limitations in terms of time and resources.
At the very least, the issue should be carefully discussed
and a good case should be made as to why one should be
able to trust that the observed results can be generalized.

4 RESEARCH METHOD

In this section, we will explain our review protocol. We
define the research questions that this review attempts to
answer, along with how we selected papers for inclusion
and the data that we extracted.

4.1 Research Questions

The most important stage of any systematic review is to
precisely define the research questions. Once the research
questions have been specified, the systematic review can
then proceed with the search strategy to identify relevant
studies and extract the data required to answer the
questions [13]. In this paper, we are interested in investigat-
ing empirical studies in the domain of SBST. To proceed
with our investigation, we defined the following three
research questions:

RQ1: What is the research space of search-based soft-
ware testing?

The objective of this question is to characterize the
research that has been undertaken so far. Though the
research space can be identified from different angles,
because our systematic review is about SBST, basic features
of software testing (such as test level, targeted faults, test
model, type of test cases, and application domain) and the
type of MHS algorithms seem relevant characteristics to
define the research space. Because of size constraints, RQ1
will not be addressed in detail in this paper and the results
will simply be summarized to provide context information
to the reader and facilitate the interpretation of subsequent

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 749

research results. Interested readers may consult the techni-
cal report [5] corresponding to this paper for a detailed
discussion of the results.

RQ2: How are the empirical studies in search-based

software testing designed and reported?
A study that has been properly designed and reported

(as discussed in Section 3) is easy to assess and replicate.
The following subquestions aim at characterizing some of
the most important aspects of the study design and how
well studies are designed and reported:

. RQ2.1: How well is the random variation inherent in
search-based software testing, accounted for in the
design of empirical studies?

. RQ2.2: What are the most common alternatives to
which SBST techniques are compared?

. RQ2.3: What are the measures used for assessing cost
and effectiveness of search-based software testing?

. RQ2.4: What are the main threats to the validity of
empirical studies in the domain of search-based
software testing?

. RQ2.5: What are the most frequently omitted aspects
in the reporting of empirical studies in search-based
software testing?

RQ3: How convincing are the reported results regarding
the cost, effectiveness, and scalability of search-based
software testing techniques?

This research question attempts to synthesize the actual
results reported in the studies in order to assess how much
empirical evidence we currently have. To answer this
question, we address the following subquestions:

. RQ3.1: For which metaheuristic search algorithms,
test levels, and fault types is there credible evidence
for the study of cost-effectiveness?

. RQ3.2: How convincing is the evidence of cost and
effectiveness of search-based software testing tech-
niques, based on empirical studies that report
credible results?

. RQ3.3: Is there any evidence regarding the scal-
ability of the metaheuristic search algorithms for test
case generation?

4.2 Study Selection Strategy

This is the step of a systematic review that aims at
ensuring the completeness of the selection of papers on
which the review is based. Study selection involves two
main steps: 1) selection of the source repositories and
identification of the search keywords and 2) inclusion or
exclusion of studies based on certain inclusion and
exclusion criteria.

4.2.1 Source Selection and Search Keywords

The process of selecting papers is started by executing a
search query on the source repositories, which provides a
set of papers. Since this set of papers is then subsequently
used for all manual inclusions and exclusions, the selection
of appropriate repositories and search strings is of utmost
importance as it directly affects the completeness of the
systematic review. The repositories that we used are: IEEE
Xplore, The ACM Digital Library, Science Direct (including
Elsevier Science), Wiley Interscience, Springer, and MIT Press.

The first two repositories covered almost all important
conferences, workshops, and journal papers which are
published by either the IEEE or the ACM. The next four
repositories were mostly used for finding papers that are
published in leading software engineering journals.

We selected the following journals based on [13]: IEEE
Transactions on Software Engineering (TSE), ACM Transactions
on Software Engineering and Methodologies (TOSEM), IEEE
Software (SW), Springer: Software Testing Verification and
Reliability (STVR), Springer: Empirical Software Engineering,
Elsevier Science: Information and Software Technology (IST),
and Elsevier Science: Journal of Systems and Software (JSS).
Since our review is about SBST, we also included journals
relating to software quality assurance and evolutionary
computing: Springer: Software Quality Journal, Springer:
Genetic Programming and Evolvable Machines, IEEE: Transac-
tions on Evolutionary Computation, and MIT Press: Evolu-
tionary Computation. Another important source of
publications that we included was the Genetic and
Evolutionary Computation Conference (GECCO). Based on
the impact factor, GECCO is one of the top conferences in
the fields of artificial intelligence, machine learning,
robotics, and human-computer interaction [1] and is
directly related to the field of genetic and evolutionary
computation. GECCO’s proceedings were published by
Springer in 2003 and 2004 and afterward by ACM.

A systematic way of formulating the search string
includes: 1) identifying the major search keywords based
on the research questions, 2) finding alternative words and
synonyms for the major keywords, and 3) creating a search
string by joining major keywords with Boolean AND
operators, and the alternative words and synonyms with
Boolean OR operators.

Based on our main research focus, which is investigating
empirical studies in the domain of SBST, the following
major search keywords are used in this paper: software
testing and metaheuristic search algorithm.

We did not use empirical study as a keyword because we
realized that not all papers that perform an empirical study,
in the broad sense that we have defined it, use this keyword.

To formulate our search query, we tried a number of search
strings and came to the conclusion that “software testing” as an
expression is not a good keyword because there are many
papers which don’t use these two words together but are
nevertheless related to software testing. These papers may
use terms such as testing, test case, test data, and so on. On the
other hand, if we used the term testing alone, we would find
too many unrelated papers. So, we decided to use the terms
software and test linked together with a Boolean AND instead
of using “software testing” as an expression. Using “software”
and “test” will find almost all related papers to software
testing, but to make sure that we do not miss any interesting
papers in test case generation, we used the expression of “test
case generation” as an alternative for software testing.

Metaheuristic search algorithm is the second major term
and also has many alternatives. We used general terms such
as “evolutionary algorithm,” “metaheuristic,” and “search
based” to explore the domain. Also, names of different
MHS algorithms were used to make sure that no related
papers were missed.

We also wanted to make sure that we do not miss any
papers that have explicitly used the widely used term

750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

“evolutionary testing,” and thus included the expression of
“evolutionary testing” as a separate search string joined with
the main string by an OR Boolean operator. The above
decisions led to the search string shown in Fig 3.

The whole string is searched in each repository in all
titles, keywords, and abstracts. The expression “evolutionary
testing” is searched in the entire contents of all papers in the
repositories as well.

One problem that we realized after some manual checking
of the results of the search query was the fact that some search
engines, such as IEEE Xplore, differentiate between the
singular and plural form of words. To deal with this, we had
to add some more alternative words and expressions to the
search string by adding an “s” to the end of all the words we
already had. For example, we added “evolutionary algo-
rithms,” “metaheuristics,” “genetic algorithms,” and so on.

After finalizing the search string, the search query was
run on the search engines of different repositories.

4.2.2 Study Selection Based on Inclusion and Exclusion

Criteria

Metaheuristic search algorithms have been used to automate
a variety of software testing activities such as test case
generation, test case selection, test case prioritization, and
optimum allocation of testing resources. Since the focus of
this systematic review is on test case generation, it is
therefore necessary to define suitable inclusion and exclu-
sion criteria for selecting relevant papers. In this section, we
will discuss and justify the inclusion and exclusion criteria
that were used.

We executed our search query on all selected databases
and found 450 (after removing duplicates from different
repositories) research papers in total. We only included
papers up to the year 2007. In order to select the relevant
papers to answer our research questions, we applied a two-
stage selection process. At the first stage, we excluded papers
based on abstracts and titles. All of the papers were divided
into three sets and each set was read by a researcher. We
applied the following exclusion criteria:

. Abstracts or titles that do not discuss test case
generation or any of the alternate terms that we used
were excluded.

. Abstracts or titles that do not discuss the application
of any MHS algorithm to automate test case
generation were excluded.

If a researcher was unsure about a paper after reading its
title and abstract, then the paper was included for the
second phase of selection. After applying the inclusion
criteria for the first phase, we were left with 122 papers.

At the second stage, we again divided the papers into
three equal sets and divided them among three researchers

to check the contents of each paper. We excluded papers
based on the following exclusion criteria:

. Posters, extended abstracts, technical reports, PhD
dissertations, and papers with less than three pages
were excluded. Our goal was to account only for
peer-reviewed, published papers that presented
sufficient technical details.

. The papers that do not automate test case generation
were excluded because this is the scope of our review.

. The papers that do not report any empirical study
(see Section 2.3 for details on what we mean by
empirical studies) were excluded.

In the cases where a researcher could not decide whether to
keep or exclude a paper, then the paper was discussed with
other researchers and a decision was made by consensus. It is
important to mention that we didn’t exclude papers based on
the realism of SUTs used in their case studies. The reason is
that exclusion would then be subjective, as no precise
criterion can be defined, and would probably lead to a very
small number of selected papers. After applying the second
phase of selection, we had 68 papers remaining that
contained empirical studies about test case generation using
MHS algorithms. However, four of these 68 papers presented
empirical studies that had already been reported in some
other paper. This occurred, for example, when the journal
version of a conference paper was found. In these cases, we
extracted data about the study from both the conference and
journal versions of the paper and reported them as one study.
Thus, in the rest of the review, we mention only 64 papers in
total, even though we did analyze 68 papers. Details on the
number of papers found in each database and number of
papers included after applying inclusion and exclusion
criteria are listed in Table 2.

4.2.3 Data Extraction

We designed a data extraction form in Microsoft Excel to
gather data from the research papers. We collected two sets
of information from each paper. The first set included
standard information [30] such as name of the paper,
authors’ names, a brief summary, researcher’s name, and

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 751

Fig 3. The search string used for selecting the papers from repositories.

TABLE 2
Distribution of Papers after Applying

Inclusion and Exclusion Criteria

additional comments by the researcher. The second set
included the information directly related to answering the
research questions (see Table 3 for a summary list and [5]
and Section 3 for details on each data item). To assess and
improve the consistency of data extraction among the
researchers, a sample of papers was selected and read by all
researchers and the relevant data extracted. The extracted
data were then discussed by the researchers to ensure a
common understanding of all data items being extracted
and, where necessary, the data collection procedure was
refined. The final set of selected papers from each
repository was then divided among three researchers. Each
researcher read the allocated papers and extracted the data
from the papers. In order to mitigate data collection errors,
the data extraction forms of each researcher were read and
discussed by two others. All ambiguities were clarified by
discussion among the researchers.

5 RESULTS

The following section outlines the results related to the
research questions. No formal meta-analysis of the results
of the empirical studies could be performed because of the
variations in the way empirical studies are conducted and
reported, and as such, results are compiled in structured
tabular form.

5.1 RQ1: What Is the Research Space of
Search-Based Software Testing?

As previously mentioned, we provide here only the most
salient results to the research question. The reader is invited
to read the technical report [5] corresponding to this paper to
obtain detailed results. The results show that in the majority
of the papers, SBST techniques have been applied at the unit
testing level (75 percent). Moreover, most papers (78 percent)
do not target any specific faults, but rather focus on structural
coverage of different test models. The most commonly used
algorithm is the GA and its extensions (73 percent), followed

by a more limited use of simulated annealing and its
extensions (14 percent). There could be several reasons for
this frequent use of genetic algorithms. First, there are
numerous publications on the application of GA to various
problems [21]. Furthermore, substantial empirical data are
available for the different parameter settings required by GAs
and this greatly helps the choice of appropriate parameters
for a specific problem to be solved [46]. This, together with the
many books [16], [26] that exist on genetic algorithms, makes
it easier for researchers to learn how to adapt genetic
algorithms to their context. Second, being a global search
algorithm, GAs have been shown to usually perform better
than local search algorithms [53], though there is no evidence
showing that GA is better than other global search algorithm
[21]. Last, GAs have many well-known implementations in
the form of commercial tools [42] and frameworks [2], [34],
which greatly facilitate their practical application.

5.2 RQ2: How Are the Empirical Studies in
Search-Based Software Testing Designed and
Reported?

The purpose of this research question is to investigate and
assess the design and reporting of empirical studies in the
domain of search-based software testing. To answer this
question, we further divided this question into five
subquestions. By answering each subquestion individually,
we will answer the main research question. Though the
results are presented in tables that summarize the main
findings, the reader can obtain a breakdown of which papers
led to these findings in the technical report [5] corresponding
to this paper.

5.2.1 RQ2.1: How Well Is the Random Variation

Inherent in Search-Based Software Testing,

Accounted for in the Design of Empirical Studies?

We discussed the necessity and importance of accounting
for random variation and using appropriate data analysis
methods in Section 3.3. To assess whether random variation
has been accounted for, we classified the papers into two
main categories: 1) papers which accounted for random
variation in their design and reported this information and
2) papers which either did not account for random
variation or did not report it well. To be classified in the
first category, the study in the paper had to report the
number of times the MHS algorithm was executed,
sufficient information to determine whether the runs were
independent, and report the data analysis methods used to
compare alternative algorithms and baseline solutions. The
independence of different runs can be determined in
different ways in different MHS algorithms. For instance,
in the case of the HC algorithm, if it is started from the
same starting point in each run using the same strategy to
select neighbors, then all of the runs will not be
independent, and hence, the algorithm will find the same
solution every time. Different runs in HC are normally
made independent by choosing different starting points in
each run or by using a random strategy to select neighbors.
Additionally, the number of runs for each MHS algorithm
had to be at least 10, a ballpark figure to enable the
application of statistical hypothesis testing with minimal

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 3
Research Questions and Type of Data Collected

statistical power. Papers that did not report the number of
runs or were executed less than 10 times were placed in the
second category (Random Variation Not Accounted).

Within the first category, we further divided the papers
according to the type of data analysis that had been
performed. If only the average of the results or the percentage
of successful runs over all runs was reported, then these
papers were classified as having “poor” descriptive statistics.
(The definition of successful run varies across papers, but
generally speaking, if the test target to be covered is found,
then the run is considered successful. A test target, for
example, could be a branch to cover.) This is because the
average does not convey any information about the disper-
sion of the results being examined. Papers which report the
level of variation as well as the measures of central tendency
are counted in the subcategory “good” descriptive statistics.
The final category is the set of papers that, in addition to
reporting “good” descriptive statistics, also reported the
results of statistical hypothesis tests comparing MHS algo-
rithms and baselines and establishing the statistical signifi-
cance of differences. However, most of the papers did not
have detailed information on sample distributions and the
validity of statistical test assumptions. It was therefore
usually not possible to determine if a paper used the correct
statistical procedure for a particular problem and data set.

The results in Table 4 show that 25 papers did not
account for random variation. Most of these, 20 papers,
either did not provide any information about the number of
runs or just reported the result of one unknown run (the
best or the only run). In five papers, the study was repeated
less than 10 times.

Among 39 papers which accounted for random variation,
24 papers reported only the average of the cost or
effectiveness results across all runs, for example, the
average number of killed mutants as an effectiveness result
or the average number of iterations as a cost result. In some
cases, the percentage of successful runs among all runs is
reported instead of, or along with, the average of the
effectiveness results (e.g., average coverage or average
mutation score). At least one measure of dispersion, like
standard deviation, variance, or the variation interval ([Min,
Max]), was reported for eight papers. These papers are
categorized as having “good” descriptive statistics. There
were seven papers that reported statistical tests as well as
good descriptive statistics. One or more of the following
statistical tests was used: t-test, paired t-test, Mann-Whitney
test, F-test, ANOVA, and Tukey test [40], [44]. There was

one paper in this subcategory which reported the use of
statistical tests, but did not specify the specific test being
used and did not provide any descriptive statistics. From
the results, we can see that 39 percent of the papers did not
account for random variation at all, and 38 percent of the
papers only had “poor” descriptive statistics, so, in total,
77 percent of papers either did not account for random
variation or reported it poorly. The remaining 23 percent of
papers are divided between 12 percent providing only good
descriptive statistics and just 11 percent performing some
kind of statistical hypothesis testing to assess the statistical
significance of differences that is whether they can be due to
chance. To answer RQ2.1, this review suggests that SBST
would greatly benefit from paying more attention to
accounting for random variation in search heuristics and
applying more rigor in analyzing and reporting cost and
effectiveness results.

5.2.2 RQ2.2: What Are the Most Common Alternatives

to Which SBST Techniques Are Compared?

In assessing the cost-effectiveness of any technique, the
comparison baseline is an important factor. In order to
classify the papers, we defined four categories of compar-
ison baselines:

1. “Global SBST,” where the baseline of comparison is
an SBST technique using a global MHS algorithm.

2. “Local SBST” includes the techniques that use a local
MHS algorithm such as HC.

3. “Non-SBST” baselines do not use an SBST technique
and feature baselines such as random search.

4. “Not discussed” addresses papers that do not report
any comparison baseline.

The comparison to non-SBST techniques or local SBST
techniques serves a dual purpose: It helps determine if the
problem at hand is simple enough to be satisfactorily solved
by a simple search algorithm; otherwise, it provides justifica-
tion for why a more complex SBST technique is necessary. In
addition, a simple baseline of comparison is necessary to
assess the benefits of using complex SBST techniques.

As shown in Table 5, 16 studies did not discuss the
comparison baseline at all. These studies did not include any
kind of comparison; they usually introduced the use of an
MHS algorithm for test case generation and performed an
empirical study to show that the technique does, indeed,
generate satisfactory test cases. These papers are missing the
justification for why the SBST technique was necessary to
address the test case generation problem at hand and how
much better it actually is compared to other existing, simpler
techniques that are available to solve the problem at hand.

There were 34 studies that reported “Non-SBST” base-
lines within which random search is used in 24 studies,
static analysis in three, greedy algorithm in three, constraint
solving in one study, and three studies used some other
technique specific to their context. We see that random
search is the most commonly used comparison baseline
among Non-SBST techniques. There is limited use of “Local
SBST” baselines with only three studies using HC. There are
many studies (33) that used Global SBST techniques as
comparison baselines. This is usually done when investi-
gating the effects of different parameter settings of MHS

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 753

TABLE 4
Results of How Random Variation Is Accounted for

in Empirical Studies

algorithms. This is most evident within GA and SA, where
22 studies used either GA or its extensions as baselines and
six studies used SA and its extensions.

5.2.3 RQ2.3: What Are the Measures Used

for Assessing Cost and Effectiveness

of Search-Based Software Testing?

Assessing the cost-effectiveness of SBST techniques for test
case generation is the main objective of empirical studies in
our context. Therefore, measuring cost and effectiveness in a
valid manner is a basic requirement for all empirical studies.

Effectiveness measures. As is discussed in Section 3,
effectiveness measures are categorized into two main
classes: coverage-based and fault-based measures. Under
the coverage-based category, we found three main sub-
categories: 1) control-flow-based coverage criteria such as
branch, statement, path, condition, and condition-decision
coverage, 2) data-flow-based coverage criteria such as all-
DU coverage, and 3) N-wise coverage criteria, when SBST
techniques are used for testing combinatorial designs [36].
In the category of fault-based measures, mutation analysis
is the core strategy and mutation score and the number of
mutants killed are measures that were found in this review.

We found some other measures for effectiveness which
are still related to the quality of the generated test cases but
do not fit into any of the above categories. In this review,
these measures are labeled “Others.” Based on the papers
included in this review, we identified two subclasses
among them and labeled the rest as miscellaneous. Papers
in the first subcategory use different kinds of measures
related to the execution time of test cases and we called
these time-based measures. The second subcategory ad-
dresses the distribution of fitness values of individuals
(solutions) as the measure of effectiveness (e.g., average and
maximum fitness). Such a measure is usually used when the
goal of a search algorithm is not finding a targeted solution,
but the goal is to be as close as possible to the targeted
solution. An example of such papers is in [8], [9], where the
goal was stressing the real-time systems by scheduling
input sequences to maximize delays in the execution of
targeted aperiodic tasks. In this study, the cost is measured
by fitness values, which shows how close the completion

time of a specific task is to its deadline. Table 6 presents the
number of papers in our review per the category of
effectiveness measures.

The data we collected revealed 61 papers using one or
more effectiveness measures in a total of 72 different
effectiveness measurements across reported studies. There
were three papers that did not discuss the effectiveness of the
SBST technique at all. There were 47 instances (65 percent)
that used some type of coverage criterion as the measure of
effectiveness. The most often used criteria were control-flow-
based criteria, with 43 instances (60 percent). Among them,
23 instances (32 percent) used branch coverage, which is the
most frequently used effectiveness measure. All-DU cover-
age, which is based on data flow analysis, was used in two
instances and two instances used N-wise coverage as the
coverage criterion.

There were 11 instances (15 percent) that used fault
detection rate as the measure of effectiveness, where
mutation analysis is used so as to report the mutation score
or the number of killed mutants. In some cases, the fault-
based measures are reported along with other effectiveness
measures. Among the 14 instances (19 percent) which used
the other measures for the quality of test cases, five papers
used the fitness value of individuals and six papers used
different kinds of execution-time-based measures. Most of
the time-based measures were related to CPU cycles spent
for test case execution. They are used in studies which try to
use SBST techniques to generate test cases that will find the
best/worst-case execution time of a program.

Looking at the results in Table 6, we can see that control-
flow-based coverage criteria targeted at white-box testing
are the most often used effectiveness measures and, as we
mentioned in the above discussion, branch coverage is the
criterion that has received the most attention. As a result,
this problem is now pretty well understood and there is a
widely accepted standard way of calculating fitness values
based on approximation level and branch distance [37] on
control flow graphs. Fault-based effectiveness measures
received relatively little attention in the literature reporting
SBST studies as compared to coverage-based measures.
Similarly, the applications of SBST techniques to artifacts
other than code are rare as white-box testing seems to have
been by far the main focus.

754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 6
Distribution of Effectiveness Measures across Empirical Studies

TABLE 5
Comparison Baselines Used in SBST in Terms of Number of Papers

Cost measures. Based on the definition of cost measures
in Section 3 and what we found in this review, we
categorized cost measures into two main classes: 1) “cost of
finding the target,” which is related to the cost of automating
test case generation, and 2) “cost of executing the generated
test suite,” which is related to the cost of test case execution.
These are both relevant and complementary. Based on the
measures found in the studies, the first category is classified
into four subcategories:

1. The number of iterations.
2. The cumulative number of individuals in all

iterations.
3. The number of fitness evaluations an algorithm

needs to find the final solution.
4. Test case generation time.

The only measure for the category of “the cost of executing
generated test suite” that we found in the papers was the
size of the test suite, which is a surrogate measure for test
execution time.

Table 7 shows that among 64 papers, seven papers did not
perform any cost analysis and, in the remaining 57 papers,
most empirical studies reported at least one cost measure in
70 different cost measurements reported across studies.

Based on the aforementioned classification, 62 instances
(86 percent) used measures in the category “cost of finding
the target.” The most often used measure among them was
the number of iterations, which is used in 27 instances
(39 percent). A total of six instances (4 percent) used the
number of individuals (test cases) and the number of fitness
evaluations is used by 14 instances (20 percent) as the
measure of cost. Finally, there were 15 instances (21 percent)
that used the “test case generation time” measure.

In the second main category, “cost of executing the final
test suite,” the size of the test suite was the only measure
that we found and it was used in eight instances. Some of
these instances which report the number of test cases in the
final solution reported the cost of finding the target as well.
In some of these instances, the target of the SBST technique
was actually creating test suites with minimum size for
covering a specific criterion such as a minimal test suite that
exhibits pairwise coverage [20].

Summarizing the results of cost measures, we can see that
the most commonly used measure is the number of iterations.
This measure is, however, the least precise measure based on
the discussion in the framework in Section 3. Another
conclusion is that most studies use cost measures only for
comparison purposes with other alternative techniques.
There are just 15 instances (21 percent) that used measures
such as test case generation time, which conveys whether a
particular technique is likely to be practical and scale up.

5.2.4 RQ2.4: What Are the Main Threats to the Validity

of Empirical Studies in the Domain of

Search-Based Software Testing?

In order to answer this question, we carefully assessed the
studies using the proposed framework in Section 3. For the
construct validity threats, we looked at the validity of the
cost and effectiveness measures. The most frequently
observed threat was using some measures of cost that
have severe limitations as they are not precise. As
discussed in the framework, the imprecision of cost
measures such as “the number of iterations” makes the
comparison between different SBST techniques very coarse
grained. In addition, measures such as the number of
iterations, the number of individuals, and the number of
fitness evaluations can only be used for comparison across
SBST techniques and cannot demonstrate the practicality of
SBST techniques. On the other hand, cost measures such as
“test case generation time,” if measured as clock time, are
suitable for showing the practicality of a technique under
time constraints. Such measures are, however, platform-
dependent, and therefore not easy to use for comparisons
across techniques and studies.

The most frequently encountered conclusion validity
threat is related to accounting for the random variation
that exists in the results obtained from SBST techniques.
As discussed in RQ2.1, 39 percent of the papers did not
take the random variation of results into account and
38 percent did not analyze or report it properly. This leads
to a frequent threat regarding the statistical significance of
the results. Therefore, not accounting for randomness and
not applying proper data analysis (Section 3.3 and RQ 2.1)
make it very difficult to confidently draw practical
conclusions from the results reported in most studies.
Moreover, among the 11 percent of papers that discussed
statistical hypothesis tests, just one paper has discussed
the practical significance of differences, which is whether
differences among techniques justify the use of more
complex techniques.

Regarding internal validity threats, the most important
concern is the instrumentation of code and the use of
different tools for data collection without reporting sufficient
information about them. If the data collection and code
instrumentation are not done through a well-identified and
available tool, then detailed information about the process of
data collection should be reported. An example of this would
be the use of a tool that instruments the code to collect, for
instance, branch coverage information. If the tool is devel-
oped for experimentation purposes only and has not been
thoroughly tested, then the coverage information generated
by the tool might not be reliable, and hence might lead to an
internal validity threat. A possible way to deal with this

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 755

TABLE 7
Distribution of Cost Measures across Empirical Studies

validity threat is to use readily available (open source,
downloadable, or commercial) tools for this purpose.

The lack of clearly defining the target SUTs and having a
clear object selection strategy are the most common threats
to external validity. Usually, the algorithms are executed on
very small programs and no clear justification is provided
for their choice and why they may be representative of the
target domain, if specified. This can result in invalid
generalization of the results.

5.2.5 RQ2.5: What Are the Most Frequently Omitted

Aspects in the Reporting of Empirical Studies in

Search-Based Software Testing?

In the previous sections, we have discussed the lack of
properly reported descriptive statistics and statistical hy-
pothesis testing (statistical significance) as the most com-
monly missing aspects in many empirical studies. Only
23 percent of the reviewed papers reported proper descrip-
tive statistics or statistical significance results. In addition to
this aspect, as discussed in the framework, there are other
aspects that are also important and should be reported. These
aspects are: discussion of validity threats, specification of
formal test hypotheses, object selection strategy, parameter
settings, and data collection method. For validity threats,
10 percent discussed conclusion validity, 6 percent discussed
external validity, 3 percent discussed construct validity, and
only 3 percent of the papers discussed internal validity
threats. We found that only two papers out of 64 specified
formal hypotheses, 44 percent of the papers discussed object
selection strategies, and 39 percent of the papers described
their data collection methods. Parameter settings (see [5])
were discussed by most, but not all of the papers (88 percent).
However, all papers did not discuss all parameters required
for their study; usually, there was only a partial discussion. In
some cases, the authors provided justification of why they
chose particular values for the parameters, but this was rare.

Summarizing the above information, Table 8 depicts the
most frequently omitted aspects in the reporting of empiri-
cal studies. Not reporting this information makes the full
interpretation of the results very difficult. For example, poor
reporting may make it difficult to determine whether
differences are statistically significant, and whether

differences are expected to matter in practice. It is also
usually difficult to determine if results can be generalized
and to what domain.

5.2.6 Conclusion

In our context, defining good and relevant cost and
effectiveness measures is a prerequisite for a useful
empirical study. Almost all of the papers use appropriate
(though not perfect) cost and effectiveness measures to
perform empirical studies. However, there were two major
problems in the majority of the papers. First, most of the
papers do not account for the random variation in the cost
and effectiveness of SBST techniques. Even the majority of
the papers that did account for the random variation didn’t
use proper data analysis and reporting methods (descrip-
tive statistics and statistical hypothesis testing). Thus, there
is a general lack of rigor in the statistical analysis and
reporting of results in most empirical studies assessing the
use of MHS algorithms for test case generation. Second,
most of the papers didn’t demonstrate the benefits of SBST
by comparing it with simpler techniques such as random
search or HC. These two factors are highly important for
yielding interpretable empirical studies in the context of test
case generation using SBST techniques. Furthermore, many
other relevant aspects of empirical studies, such as the
reporting of validity threats, the definition of formal
hypotheses, the object selection strategy, and data collection
methods, are not reported by most of the papers. We can
therefore conclude that most empirical studies in the
context of test case generation using SBST techniques are
still not properly conducted and reported and that improv-
ing this situation should be an important objective of the
research community for future studies.

5.3 RQ3: How Convincing Are the Reported Results
Regarding the Cost, Effectiveness, and
Scalability of Search-Based Software Testing
Techniques?

There is a lot of research being conducted on test case
generation based on MHS algorithms. In order to draw
general conclusions from the current body of work, we need
to assess how convincing the evidence regarding the cost,
effectiveness, and scalability of SBST techniques is. The first
step is to clearly identify studies that provide complete and
credible evidence from an empirical standpoint. Credible
results are the consequence of a well-designed and con-
ducted empirical study. Based on the discussions in Section 3,
a well-designed study in the context of SBST should account
for the random variation present in the results and have a
meaningful comparison baseline to show that the targeted
test problem benefits from an MHS approach. Therefore, in
order to answer this research question, we first selected
papers that, at a minimum, account for the random variation
of results and compare their technique with the results of a
simpler, non-SBST technique (such as random search, static
source code analysis, or some other technique applicable to
the test problem under consideration) or with HC. The first
subquestion, RQ3.1, will provide an overview of these
papers. The second step to answer RQ3 is to select those
papers that performed and reported proper data analysis. To
satisfy this criterion, we expect papers to report descriptive
statistics on the variation in the results (cost, effectiveness),

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 8
The Most Omitted Aspects of Empirical Studies

where relevant, or results of statistical hypothesis testing

comparing alternative test case generation algorithms, and in

particular MHS algorithms with simpler baseline alterna-

tives. We deemed this set of papers as having credible

evidence regarding the cost, effectiveness, and scalability of

SBST. In subquestion RQ3.2, we provide detailed information

about the cost and effectiveness results presented in these

papers along with a short description of the test problem that

they tackled.

5.3.1 RQ3.1: For Which Metaheuristic Search

Algorithms, Test Levels, and Fault Types Is There

Credible Evidence for the Study of

Cost-Effectiveness?

This subquestion provides a summary of the research

papers that met the minimum criteria of accounting for

random variation in results and performing comparisons

with a simpler non-SBST or local SBST techniques. Out of

the 64 papers that we analyzed, we found 39 that accounted

for random variation of results. This number was reduced

to 18 after selection of only those papers that also had either

a non-SBST or a simple, local MHS comparison baseline.

Thus, based on the criteria that we used, we had to exclude

46 papers as not being applicable for answering our

research question. It is worth mentioning that there were

14 papers among those 46 discounted papers that had the

minimum requirement of accounting for random variation,

but did not have a non-SBST or local MHS comparison

baseline. For example, they may have proposed an

extension to a genetic algorithm that would possibly

enhance its capacity for test case generation and compared

their results to a genetic algorithm not having this

extension. In this review, these studies are not considered

as credible evidence since they do not show, in any way,

that a simple non-SBST technique such as random search or

a local MHS such as HC could not, in this particular context,

equal or outperform their technique. This is an important

consideration since there is no a priori reason to believe that

an MHS algorithm is more cost-effective and efficient than

simpler algorithms in all test case generation contexts. The

size of the search space is only a weak indicator of the

extent of the search challenge as the search difficulty also

depends on the search space landscape and distribution of

satisfactory solutions across this space. Table 9 summarizes

this set of 18 papers in terms of the MHS algorithms used,

the testing levels, and the fault types targeted in the

empirical studies. These papers are referred to as “mini-

mum criteria papers” in Table 9.
As can be seen in Table 9, among the 18 papers that

report credible evidence, most papers (13 out of 18)

applied an SBST technique at the unit testing level. The

most commonly investigated MHS algorithm is the

genetic algorithm with 12 papers out of 18, followed by

simulated annealing with just four papers. This trend is

the same as that observed in the full set of 64 papers in

Section 5.1. There are also only two papers that target

specific faults: one targeting functional faults and the

other nonfunctional faults.

5.3.2 RQ3.2: How Convincing Is the Evidence of Cost

and Effectiveness of Search-Based Software

Testing Techniques, Based on Empirical Studies

That Report Credible Results?

Along with accounting for random variation in the results
and having a non-SBST or local MHS comparison baseline,
studies must also report proper descriptive statistics or
statistical hypothesis testing results in order to present
credible and interpretable evidence. After the application of
these criteria, there were just eight papers left and the
results of these papers, referred to as “sufficient criteria
papers,” are summarized in Table 10.

Based on the information presented in Table 10, it is
apparent that there is a scarcity of convincing evidence
regarding the cost-effectiveness of SBST techniques. Never-
theless, these papers are a representative sample from the
different types of investigations that are performed with
MHS algorithms for test case generation. MHS algorithms
have been recently applied to increasingly diverse types of
problems and this is seen in this sample of papers by
comparing the content of the “test purpose” column across
papers. This ranges from specialized purposes such as
testing the performance of real-time systems to more general
purposes such as testing nonpublic methods in object-
oriented programs. Despite the diversity of objectives, we
can see that in most of these papers, MHS algorithms, mostly
GA, were compared with random search and the results
show that GA outperformed random search for the test case
generation problems at hand. This suggests that this type of
problem indeed requires guided search algorithms. It would
also be interesting to see how the quality of the empirical
studies that have been performed in this field have improved
over the years. In order to investigate this, we compare three
series, as shown in Fig. 4.

The “All Papers” series shows the number of papers per
year expressed as a percentage of the total number of
papers (64 papers). The “Minimum Criteria Papers” series
shows the percentage per year of the papers satisfying our
minimum criterion of accounting for random variation (as
reported in Table 9) and the “Sufficient Criteria Papers”
series shows the percentage per year of papers satisfying
our secondary criteria of having an appropriate baseline
and proper descriptive statistics or results of statistical
hypothesis testing (as reported in Table 10). From Fig. 4, we
can see that 40 percent of all papers, 55 percent of all
minimum criteria papers, and 88 percent of all sufficient
criteria papers were published in recent years (2006 and
2007). The trends that become apparent are that, first, the
number of SBST publications has been steadily growing
over the years, and second, the quality of empirical studies
has increased dramatically in recent years.

5.3.3 RQ3.3: Is There Any Evidence Regarding the

Scalability of Metaheuristic Search Algorithms for

Test Case Generation?

During our systematic review, we did not find any paper
specifically targeting the scalability of the MHS algorithm in
the context of SBST. However, there was one paper where
the authors performed a small-scale scalability analysis [53].
The study was conducted on five small test objects written
in C/C++. There were 36-87 test requirements to achieve
full condition-decision coverage for all test objects and the

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 757

size of the search space ranged from 26 to 232. The study

was performed using different algorithms including GA,

SA, Genetic Simulating Annealing (GSA), SA with Ad-

vanced Adaptive Neighbors (SA/AAN), and random

search. In two of the SUTs used for the study, two different

search spaces (one small and one large) were used to

measure the performance (condition-decision coverage

versus the number of SUT iterations) of different MHS

algorithms and random search. Based on the empirical

evaluation, it was concluded that GA performed well for

both the small and the large search space. SA/ANN was the

second best. SA and GSA performed well only for the small

search space. All MHS algorithms performed better than

random search. As a result, we can say that scalability

analyses of SBST techniques in the domain of test case

generation are very rare and there is a need to focus more

on scalability analysis in future studies.

5.3.4 Conclusion

Based on the discussions in the three subquestions above, the
number of papers which contain well-designed and reported
empirical studies in the domain of test case generation using
SBST is very small. As a result, there is a limited body of
credible evidence that demonstrates the usefulness of SBST
techniques for test case generation. This evidence is, in
addition, very partial as it mostly focuses on the use of genetic
algorithms at the unit testing level. This evidence, however,
consistently shows that the genetic algorithms outperform
random search in terms of structural coverage. However, this
evidence is just based on eight papers and cannot be
generalized to state that genetic algorithms at the unit testing
level will always outperform random search, regardless of
the test objectives. More empirical studies must be conducted
to provide strong and generalizable evidence about the
suitability and applicability of different MHS algorithms for
test case generation at different testing levels and for test
objectives other than structural coverage.

758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 9
Test Levels, Fault Types, and the Type of Metaheuristic Algorithms Used by “Minimum Criteria Papers”

6 THREATS TO THE VALIDITY OF THIS REVIEW

The main validity threats to our review are related to the

possible incomplete selection of publications, inaccuracy of

data extraction, and bias in quality assessment of studies.

6.1 Incomplete Selection of Publications

In Section 4.2, we have discussed and justified the
systematic and unbiased selection strategy of publications.

However, it is still possible to miss some relevant literature.

One such instance is the existence of gray literature such as

technical reports and PhD theses. In our case, this literature

can be important if the authors report the complete study

which is briefly reported in the corresponding published

paper. In this review, we did not include such information.
Another instance that may lead to an incomplete

selection of publications is the difficulty of finding an

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 759

TABLE 10
Test Purposes, Comparison Baselines, and Result Highlights for the “Sufficient Criteria Papers”

appropriate search string. In Section 4.2, we provide
justification for the repositories that we selected and the
search string that we used. However, there may still be
some papers which have used some other related terms
other than our keywords. We refined our search string
several times because we found a paper missing from our
selected papers which was in the reference list of another
paper. In order to deal with this problem, we refined our
search string until it included all such papers and we were
sure that our set of selected papers did not miss any paper
that is referred to and relevant for this review.

6.2 Inaccuracy in Data Extraction

Inaccurate data can be the result of subjective and
unsystematic data extraction or invalid classification of
data items. In our review, we tried to deal with this problem
by two means. First, we defined a framework, which clearly
identified the data items that should be extracted. Second,
all of the data extracted were reviewed by three researchers
and all discrepancies were settled by discussion to make
sure that the extraction was as objective as possible.
Therefore, the remaining problem is the validity of the
framework itself. We have defined the framework based on
the current guidelines for empirical studies in software
engineering and adapted them to our domain of interest
based on experience. Hence, we believe that it is a good
starting point, but it can be further improved by feedback
and discussion from other researchers in the domain.

6.3 Unbiased Quality Assessment

Assessing the quality of the papers for answering RQ3 was
a challenging issue. Even though the data extracted from
the papers to judge their quality were detailed and based on
a well-thought-out framework, the criteria used to select the
papers themselves could be thought of as subjective. Our
justification for the validity of this criterion is discussed in
Section 5.3, and we reemphasize the fact that this is the
minimum requirement for having a valid empirical study in
the domain of SBST.

7 CONCLUSION

The automation of test case generation has been a long-
standing problem in software engineering. Search-based

software testing, or, in other words, the application of MHS
algorithms for test case generation, has been shown to be a
very promising approach for solving this problem by
reexpressing test case generation problems as search pro-
blems. As a result, a great deal of research has been
conducted and published. The time was therefore ripe to
perform a systematic review of the state of the art and
appraise the evidence regarding the cost-effectiveness of
such an approach. A systematic review is very different from
more informal, traditional surveys in the sense that it aims at
being comprehensive in its coverage and repeatability by
relying on well-defined paper selection and analysis proce-
dures. This systematic review focuses, due to space con-
straints, on one specific but crucial aspect: The way in which
SBST techniques have been empirically assessed. This aspect
is highly important as all MHS algorithms are heuristics, and
therefore, cannot guarantee their success in solving a test case
generation problem or any other problem for that matter.
Only an empirical investigation can provide the necessary
confidence that a specific MHS algorithm is appropriate for a
given test case generation problem.

In addition to a large-scale systematic review, our
contribution also includes guidelines in the form of a
framework on how to conduct empirical studies in search-
based software testing. Results of our review have shown
that the research reported so far has mostly focused on
structural coverage and unit testing. However, the research
is increasingly more diversified in the types of topics being
tackled. Results also show that empirical studies in this field
would benefit from more standardized and rigorous ways
to perform and report studies. More specifically, three
important empirical issues stand out from our analysis.
Studies need to more systematically and rigorously account
for the random variation in the results generated by any
MHS algorithm. Such random variation implies that
alternative techniques can only be compared by statistical
means, that is, statistical hypothesis testing. This, unfortu-
nately, is not performed well in most published papers and
our framework provides guidelines about which statistical
test to perform in which circumstance. Last, another
important issue is that it is impossible to assess how an
MHS technique performs in absolute terms: To be able to
conclude on its usefulness to tackle a specific test case
generation problem, a proposed technique needs to be
compared with simpler and existing alternatives to deter-
mine whether it brings any advantage. This is again missing
in an important number of papers and needs to be carefully
addressed by all studies in the future.

Despite the above limitations, credible results are
available and existing results confirm that MHS algorithms
are indeed promising for solving a wide variety of test case
generation problems. Future research work will have to
better establish their limitations and the types of problems
for which they are applicable and required.

ACKNOWLEDGMENTS

The authors wish to thank the Simula School of Research
and Innovation (SSRI) for funding this work.

REFERENCES

[1] “Computer Science Conference Ranking,” http://www.cs-
conference-ranking.org/conferencerankings/topicsii.html., 2008.

760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

Fig. 4. Quality trends of SBST empirical studies based on the publication
year.

[2] “Genetic Algorithms Framework,” Rubicite Interactive, http://
sourceforge.net/projects/ga-fwork, 2004.

[3] “UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE),” Object Management Group
(OMG), http://www.omg.org/cgi-bin/doc?ptc/2008-06-08, 2008.

[4] W. Afzal, R. Torkar, and R. Feldt, “A Systematic Review of Search-
Based Testing for Non-Functional System Properties,” Information
and Software Technology, vol. 51, pp. 957-976, 2009.

[5] S. Ali, L.C. Briand, H. Hemmati, and R.K. Panesar-Walawege, “A
Systematic Review of the Application and Empirical Investigation
of Evolutionary Testing,” Technical Report Simula.SE.293, Simula
Research Laboratory, 2008.

[6] B. Beizer, Software Testing Techniques. Van Nostrand Reinhold Co.,
1990.

[7] A. Bertolino, “Software Testing Research: Achievements, Chal-
lenges, Dreams,” Proc. 2007 Int’l Conf. Future of Software Eng., 2007.

[8] L.C. Briand, Y. Labiche, and M. Shousha, “Stress Testing Real-
Time Systems with Genetic Algorithms,” Proc. Genetic and
Evolutionary Computation Conf., 2005.

[9] L.C. Briand, Y. Labiche, and M. Shousha, “Using Genetic
Algorithms for Early Schedulability Analysis and Stress Testing
in Real-Time Systems,” Genetic Programming and Evolvable Ma-
chines, vol. 7, pp. 145-170, 2006.

[10] P.M.S. Bueno and M. Jino, “Identification of Potentially Infeasible
Program Paths by Monitoring the Search for Test Data,” Proc. 15th
IEEE Int’l Conf. Automated Software Eng., pp. 209-218, 2000.

[11] P.M.S. Bueno, W.E. Wong, and M. Jino, “Improving Random Test
Sets Using the Diversity Oriented Test Data Generation,” Proc.
Second Int’l Workshop Random Testing: Co-Located with the 22nd
IEEE/ACM Int’l Conf. Automated Software Eng., 2007.

[12] E.K. Burke and G. Kendall, Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques. Springer
2006.

[13] K.Y. Cai and D. Card, “An Analysis of Research Topics in
Software Engineering—2006,” J. Systems and Software, vol. 81,
pp. 1051-1058, 2008.

[14] J.A. Capon, Elementary Statistics for the Social Sciences. Wadsworth
Publishing Co., Inc., 1988.

[15] J. Clarke, J.J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating Software Engineering as a Search Problem,” IEE
Software, vol. 150, pp. 161-175, 2003.

[16] D.A. Coley, An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific Publishing Company, 1997.

[17] R. Drechsler and N. Drechsler, Evolutionary Algorithms for
Embedded System Design. Kluwer Academic Publishers, 2002.

[18] T. Dyba, V.B. Kampenes, and D.I.K. Sjoberg, “A Systematic
Review of Statistical Power in Software Engineering Experi-
ments,” Information and Software Technology, vol. 48, pp. 745-755,
2006.

[19] T. Dyba, B.A. Kitchenham, and M. Jorgensen, “Evidence-Based
Software Engineering for Practitioners,” IEEE Software, vol. 22,
no. 1, pp. 58-65, Jan./Feb. 2005.

[20] S.A. Ghazi and M.A. Ahmed, “Pair-Wise Test Coverage Using
Genetic Algorithms,” Proc. 2003 Congress on Evolutionary Computa-
tion, pp. 1420-1424, 2003.

[21] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. 2007 Int’l Conf. Future of Software
Eng., 2007.

[22] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener,
“The Impact of Input Domain Reduction on Search-Based Test
Data Generation,” Proc. Sixth Joint Meeting of the European Software
Eng. Conf. and the ACM SIGSOFT Symp. Foundations of Software
Eng., 2007.

[23] M. Harman and B.F. Jones, “Search-Based Software Engineering,”
Information and Software Technology, vol. 43, pp. 833-839, 2001.

[24] M. Harman and P. McMinn, “A Theoretical Empirical Analysis of
Evolutionary Testing and Hill Climbing for Structural Test Data
Generation,” Proc. 2007 Int’l Symp. Software Testing and Analysis,
2007.

[25] C. Hart, Doing a Literature Review: Releasing the Social Science
Research Imagination. Sage Publications, Ltd., 1999.

[26] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms. Wiley-
Interscience, 1997.

[27] D. Johnson, “A Theoretician’s Guide to the Experimental Analysis
of Algorithms,” Proc. Data Structures, Near Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Challenges,
pp. 215-250, 2002.

[28] B.F. Jones, H.H. Sthamer, and D.E. Eyres, “Automatic Structural
Testing Using Genetic Algorithms,” Software Eng. J., vol. 11,
pp. 299-306, 1996.

[29] K.S. Khan, R. Kunz, J. Kleijnen, and G. Antes, Systematic Review to
Support Evidence-Based Medicine: How to Review and Apply Findings
of Healthcare Research. Royal Soc. of Medicine Press, Ltd., 2003.

[30] B.A. Kitchenham, “Guidelines for Performing Systematic Litera-
ture Reviews in Software Engineering,” Technical Report EBSE-
2007-01, 2007.

[31] B.A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-Based
Software Engineering,” Proc. 26th Int’l Conf. Software Eng.,
2004.

[32] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary Guidelines
for Empirical Research in Software Engineering,” IEEE Trans.
Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.

[33] K. Lakhotia, M. Harman, and P. McMinn, “A Multi-Objective
Approach to Search-Based Test Data Generation,” Proc. Genetic
and Evolutionary Computation Conf., 2007.

[34] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici, K.
Sullivan, J. Harrison, J. Bassett, R. Hubley, and A. Chircop, “A
Java-Based Evolutionary Computation Research System,” George
Mason University’s ECLab Evolutionary Computation Labora-
tory, http://www.cs.gmu.edu/~eclab/projects/ecj/, 2007.

[35] T. Mantere and J.T. Alander, “Evolutionary Software Engineering,
a Review,” Applied Soft Computing, vol. 5, pp. 315-331, 2005.

[36] A.P. Mathur, Foundations of Software Testing. Pearson Education,
2008.

[37] P. McMinn, “Search-Based Software Test Data Generation: A
Survey,” Software Testing, Verification and Reliability, vol. 14,
pp. 105-156, 2004.

[38] C.C. Michael, G. McGraw, and M.A. Schatz, “Generating Software
Test Data by Evolution,” IEEE Trans. Software Eng., vol. 27, no. 12,
pp. 1085-1110, Dec. 2001.

[39] J. Miller, M. Reformat, and H. Zhang, “Automatic Test Data
Generation Using Genetic Algorithm and Program Dependence
Graphs,” Information and Software Technology, vol. 48, pp. 586-605,
2006.

[40] D.S. Moore and G.P. McCabe, Introduction to the Practice of
Statistics, fourth ed. W.H. Freeman, 2002.

[41] H. Osman and J.P. Kelly, Metaheuristics: Theory and Applications.
Kluwer Academic Publishers, 1996.

[42] H. Pohlheim, “GEATbx—The Genetic and Evolutionary Algo-
rithm Toolbox for Matlab,” 2007.

[43] P. Puschner and R. Nossal, “Testing the Results of Static Worst-
Case Execution-Time Analysis,” Proc. 19th IEEE Real-Time Systems
Symp., pp. 134-143, 1998.

[44] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, third ed. Chapman & Hall/CRC, 2003.

[45] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using Artificial Life
Techniques to Generate Test Cases for Combinatorial Testing,”
Proc. 28th Ann. Int’l Computer Software and Applications Conf.,
pp. 72-77, 2004.

[46] M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A Survey,”
Computer, vol. 27, no. 6, pp. 17-26, June 1994.

[47] N. Tracey, J. Clark, and K. Mander, “Automated Program Flaw
Finding Using Simulated Annealing,” Proc. ACM SIGSOFT Int’l
Symp. Software Testing and Analysis, 1998.

[48] R.H. Untch, A.J. Offutt, and M.J. Harrold, “Mutation Analysis
Using Mutant Schemata,” Proc. 1993 ACM SIGSOFT Int’l Symp.
Software Testing and Analysis, 1993.

[49] S. Wappler and I. Schieferdecker, “Improving Evolutionary Class
Testing in the Presence of Non-Public Methods,” Proc. 22nd IEEE/
ACM Int’l Conf. Automated Software Eng., 2007.

[50] A. Watkins and E.M. Hufnagel, “Evolutionary Test Data Genera-
tion: A Comparison of Fitness Functions,” Software: Practice and
Experience, vol. 36, pp. 95-116, 2006.

[51] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary Test
Environment for Automatic Structural Testing,” Information and
Software Technology, vol. 43, pp. 841-854, 2001.

[52] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell,
and A. Wesslen, Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, 2000.

ALI ET AL.: A SYSTEMATIC REVIEW OF THE APPLICATION AND EMPIRICAL INVESTIGATION OF SEARCH-BASED TEST CASE GENERATION 761

[53] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, “Empirical
Evaluation of Optimization Algorithms When Used in Goal-
Oriented Automated Test Data Generation Techniques,” Empirical
Software Eng., vol. 12, pp. 183-239, 2007.

[54] Y. Zhan and J.A. Clark, “Search-Based Mutation Testing for
Simulink Models,” Proc. Genetic and Evolutionary Computation
Conf., 2005.

[55] Y. Zhan and J.A. Clark, “The State Problem for Test Generation in
Simulink,” Proc. Genetic and Evolutionary Computation Conf., 2006.

Shaukat Ali received the master’s degree in
systems and software engineering from Moham-
mad Ali Jinnah University, Islamabad, Pakistan.
He is currently working toward the PhD degree at
the Simula Research Laboratory and the Depart-
ment of Informatics, University of Oslo, Norway.
He is a former member of the following research
groups: Center for Software Dependability
(CSD), Islamabad, Pakistan; Verification and
Testing (VT) group, the University of Sheffield,

United Kingdom; Software Quality Engineering Laboratory (SQUALL),
Carleton University, Canada. His research interests include modeling
software systems using UML and its various extensions and model-
based testing of software systems. He is a student member of the IEEE.

Lionel C. Briand is a professor of software
engineering at the Simula Research Laboratory
and University of Oslo, leading the project on
software verification and validation. Before that,
he was on the faculty of the Department of
Systems and Computer Engineering, Carleton
University, Ottawa, Canada, where he was a full
professor and held the Canada Research Chair
in Software Quality Engineering. He has also
been the Software Quality Engineering Depart-

ment head at the Fraunhofer Institute for Experimental Software
Engineering, Germany, and worked as a research scientist for the
Software Engineering Laboratory, a consortium of the NASA Goddard
Space Flight Center, CSC, and the University of Maryland. He has been
on the program, steering, or organization committees of many
international IEEE and ACM conferences. He is the editor-in-chief of
the Empirical Software Engineering (Springer) and is a member of the
editorial boards of Systems and Software Modeling (Springer) and
Software Testing, Verification, and Reliability (Wiley). He was on the
board of the IEEE Transactions on Software Engineering from 2000 to
2004. His research interests include: model-driven development, testing
and quality assurance, and empirical software engineering. He is a
fellow of the IEEE.

Hadi Hemmati received the MEng degree in
software engineering from Sharif University of
Technology, Tehran, Iran. He is currently work-
ing toward the PhD degree at the Simula
Research Laboratory and the Department of
Informatics, University of Oslo, Norway. He has
some years of industrial experience as a system
analyst and software engineer in the telecom-
munication domain. His research interests in-
clude model-driven development, search-based

software engineering, testing and quality assurance, ubiquities, and
autonomic systems. He is a student member of the IEEE.

Rajwinder K. Panesar-Walawege received the
MSc degree in computer science from the
University of Victoria, British Columbia, Canada.
She is currently working toward the PhD degree
in software engineering at the Simula Research
Laboratory and the Department of Informatics,
University of Oslo, Norway. She has many years
of industrial experience as a software engineer in
the air traffic management domain, working for
companies such as Raytheon Systems Limited

and NAVCanada. Her research interests include model-driven develop-
ment, testing and quality assurance of safety-critical systems, and
empirical software engineering. She is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

762 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

