

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" DEPARTAMENTO DE GENÉTICA LGN5825 Genética e Melhoramento de Espécies Alógamas

Genomic Selection

Prof. Roberto Fritsche-Neto

roberto.neto@usp.br

Piracicaba, June 8th, 2018

Early in(direct) selection

- Objectives:
- Reducing the interval between generations
- Using traits more accessible and cheaper evaluation
- Selecting before flowering
- Problems in the traditional selection
- Negative correlations
- Development stage genes differentially expressed

$$ISE = \sqrt{\frac{h_m^2}{h_{trait}^2}} r_{(trait,m)} \qquad ISE = \sqrt{\frac{1}{h_{trait}^2}} r_{(trait,m)} \qquad ISE = \frac{r_{(trait,m)}}{\sqrt{h_{trait}^2}}$$

$$ISE = \frac{r_{(trait,m)}}{\sqrt{h_{trait}^2}}$$

Genomic selection

- Simultaneous prediction (without tests) of the genetic effects of large numbers of markers
- Dispersed on wide genome
- Capture the effects of all loci (small and large)
- Explain much of the genetic variation of a character
- Keeps the "black box" about the genetic control
- Minor "aversion" by breeders
- Limitations
- Loss of genetic variance
- Fast inbreeding

General procedures of GS

Training population

sample from population of selection
Phenotyping and genotyping
> 500 individuals

Application in Selection Schemes

Only genotyping Breeding populations

GEBV = Zh

Y = Xb + Zh + e

Prediction of markers effects Statistical equations and methods

Validation of markers

New and independent population or Statistical methods of cross-validation

Cross-validation methods

Ex. RR-BLUP

Assumes equal variances among markers (VG / Nm)

The characters differ in the number and the markers that maximize the accuracy of prediction

RR-BLUP/GS

- It's a multiple regression
- Each marker is a factor/parameter

5 individuals

7 markers

MM	2
\mathbf{Mm}	I
mm	0

		•	•	•		•	•	•
Individuo	Diâmetro	Marca 1	Marca 2	Marca 3	Marca 4	Marca 5	Marca 6	Marca 7
1	9.87	2	0	0	0	2	0	0
2	14.48	1	1	0	0	1	1	0
3	8.91	0	2	0	0	0	0	2
4	14.64	1	0	1	0	1	0	0
5	9.55	1	0	0	1	1	1	0
	1 2 3 4	2 14.48 3 8.91 4 14.64	1 9.87 2 2 14.48 1 3 8.91 0 4 14.64 1	1 9.87 2 0 2 14.48 1 1 3 8.91 0 2 4 14.64 1 0	1 9.87 2 0 0 2 14.48 1 1 0 3 8.91 0 2 0 4 14.64 1 0 1	1 9.87 2 0 0 0 2 14.48 1 1 0 0 3 8.91 0 2 0 0 4 14.64 1 0 1 0	1 9.87 2 0 0 0 2 2 14.48 1 1 0 0 1 3 8.91 0 2 0 0 0 4 14.64 1 0 1 0 1	1 9.87 2 0 0 0 2 0 2 14.48 1 1 0 0 1 1 3 8.91 0 2 0 0 0 0 4 14.64 1 0 1 0 1 0

$$X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$Y = Xb + Zh + e$$

$$\begin{bmatrix} \hat{b} \\ \hat{h} \end{bmatrix}$$

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + \frac{\sigma_e^2}{\sigma_{Am}^2 / n} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{h} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

RR-BLUP/GS

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \frac{\sigma_{e}^{2}}{\sigma_{Am}^{2} / \mathbf{n}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{h}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix} \longrightarrow \begin{bmatrix} \hat{b} \\ \hat{h} \end{bmatrix} = \begin{bmatrix} \hat{b} \\ \hat{b} \end{bmatrix} =$$

- Genomic estimated breeding values
- h = marker effects

GEBV = Zh

$$\begin{bmatrix} -1.4104 \\ 0.1145 \\ -2.7230 \\ \hline 0.7415 \\ -1.5317 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 2 & X \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0.7415 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0.5436 \\ -1.63765 \end{bmatrix}$$

Cross-validation

- Estimate how accurately a predictive model will perform in practice
- Avoid overfitting
- Partitioning the original sample into a training set to train the model, and a test set to evaluate it
- E.g., partitioning the data set into two sets of 80% for training and 20% for test
- In k-fold cross-validation, the original sample is randomly partitioned into k equal size subsamples
- Multi-environment models Two main schemes (CV1 and CV2)
- k-fold cross-validation vs. Repeated random sub-sampling validation

G-BLUP method

- Equivalent to the RR-BLUP but less computing consuming
- Easy to extend it to other factors or kind of kernels

$$Y = Xb + Za + e$$

$$\begin{bmatrix} X'X & X'Z & X'Z \\ Z'X & Z'Z + G_a^{-1} \frac{\sigma_e^2}{\sigma_a^2} & Z'Z \end{bmatrix} \begin{bmatrix} \hat{u} \\ \tilde{a} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

$$G_a = \frac{WW'}{\sum_{i=1}^{n} (2\mathbf{p}_i q_i)}$$
 Efeitos aditivos: W
$$W = \begin{cases} Se\ MM; & 2 \rightarrow 2-2p = 2q \\ Se\ Mm; & 1 \rightarrow 1-2p = q-p \\ Se\ mm; & 0 \rightarrow 0-2p = -2p \end{cases}$$

$$GEBV = Za$$

$$Y = Xb + Za + Zd + e$$

$$\begin{bmatrix} X'X & X'Z & X'Z \\ Z'X & Z'Z + G_a^{-1} \frac{\sigma_e^2}{\sigma_a^2} & Z'Z \\ Z'X & Z'Z & Z'Z + G_d^{-1} \frac{\sigma_e^2}{\sigma_d^2} \end{bmatrix} \begin{bmatrix} \hat{u} \\ \tilde{a} \\ \tilde{d} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \\ Z'y \end{bmatrix}$$

Efeitos de dominância: S

$$S = \begin{cases} Se \ MM; & 0 \rightarrow -2q^2 \\ Se \ Mm; & 1 \rightarrow 2pq \\ Se \ mm; & 0 \rightarrow -2p^2 \end{cases} \qquad G_d = \frac{SS'}{\sum\limits_{i=1}^{n}(2\mathbf{p}_iq_i)^2}$$

$$GEBV = Za + Zd$$

Factors Affecting Prediction Accuracy

- Marker density and LD decay
- Effective population size diversity
- Training set populations structure, who phenotyping, stage
- Genetic relationship between training population and selection candidates
- Rare alleles (MAF < 5%)
- Missing data and imputation method (*call rate* < 95%)
- Statistical model
- Correlated traits (multi-trait models)
- Progeny size and ploidy
- Crossover GE
- Number of cycles of GS

GS applied to breeding programs

• GS modifies significantly the way to select

- Reducing the time to develop cultivars
- Increasing the effective size and selection intensity
- Increasing the genetic gain per unit time