Doença de Chagas

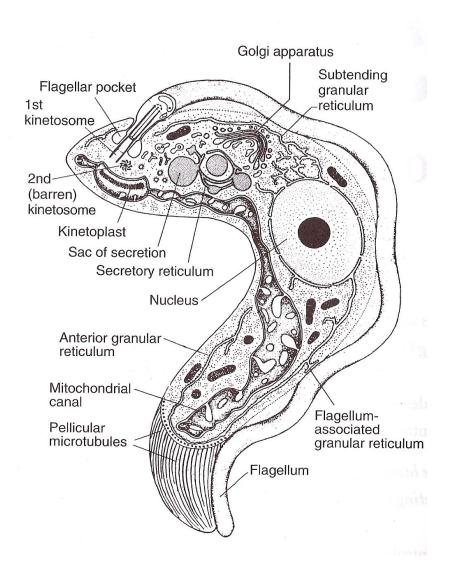
✓ Enfoque desta aula:

- > Agente etiológico
- > Introdução à ordem Kinetoplastida e ao gênero Trypanosoma
- > Epidemiologia
- > Transmissão Vetor
- > Ciclo de vida
- > Diferentes formas do parasita
- > Patogenia e Mecanismos de escape
- > <u>Diagnóstico</u>
- > Tratamento
- > Controle

O que é a Doença de Chagas?

✓ A Doença de Chagas (ou tripanossomíase americana) é uma doença infecciosa causada pelo parasita Trypanosoma cruzi.

✓ Taxonomia

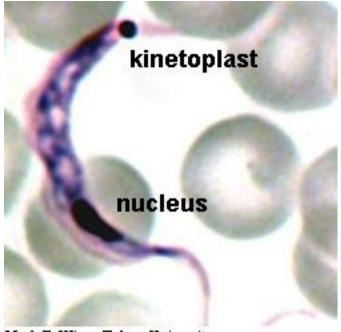

- ·Classe Zoomastigophorea
- ·Ordem Kinetoplastida
- ·Família Trypanosomatidae
- ·Gênero Trypanosoma

✓ Transmitida por insetos triatomíneos.

Ordem Kinetoplastida

- > Todos os membros deste grupo possuem uma mitocôndria grande e única contendo um cinetoplasto localizado na base do flagelo.
- > O DNA do cinetoplasto (kDNA) é organizado em uma rede de círculos ligados entre si:


> minicírculos: 20.000


maxicírculos: 20-50

- > Possuem glicossomos: onde ocorrem as reações de glicólise.
- ➤ Possuem pré-RNA policistrônico e uma sequência líder (spliced leader) que é adicionada na frente de cada RNA maduro (monocistrônico).

Cinetoplasto.

·Compartimento que contém DNA e está localizado dentro da mitocôndria.

Mark F. Wiser, Tulane University
www.tulane.edu/~wiser/protozoology/notes/kinet.html

Gênero Trypanosoma

- > Centenas de espécies em todo o mundo.
- > Grande variabilidade de hospedeiros vertebrados (mamíferos, aves, répteis, peixes e anfíbios).
- > Grande variabilidade de hospedeiros invertebrados (moscas, mosquitos, pulgas, carrapatos).
- > Espécie-especificidade ou não.

Espécies de importância médica Humana Veterinária

T. cruzi

T. brucei gambiense

T. brucei rhodesiense

T. rangeli

T. brucei brucei

T. evansi

T. vivax

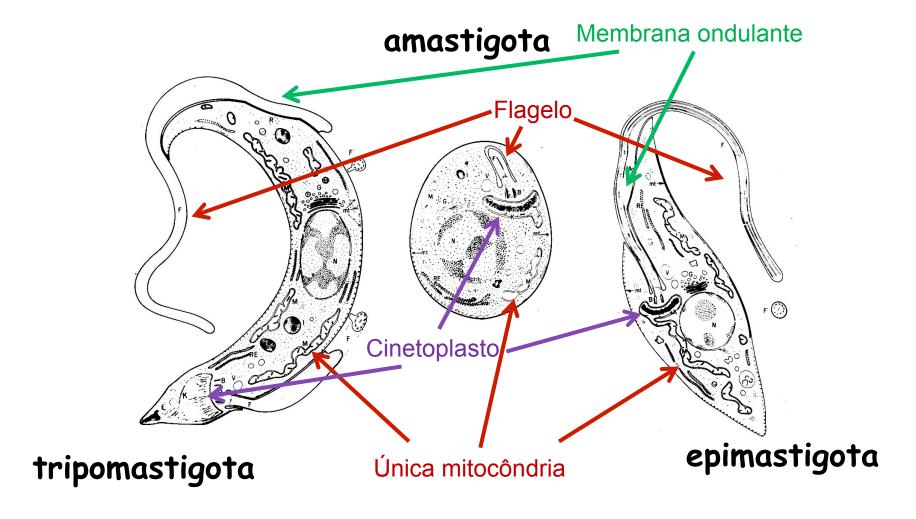
T. congolense

Classificação dos tripanosomas de acordo com sua transmissão.

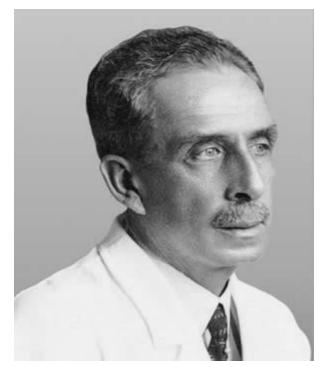
> Dois grupos:

✓ Estercorários: os parasitas desenvolvem-se na porção posterior do inseto vetor e são transmitidos nas fezes

·Ex.: T. cruzi



✓ <u>Salivários</u>: os parasitas desenvolvem-se na porção anterior do inseto vetor e são transmitidos na saliva


• Ex.: T. brucei

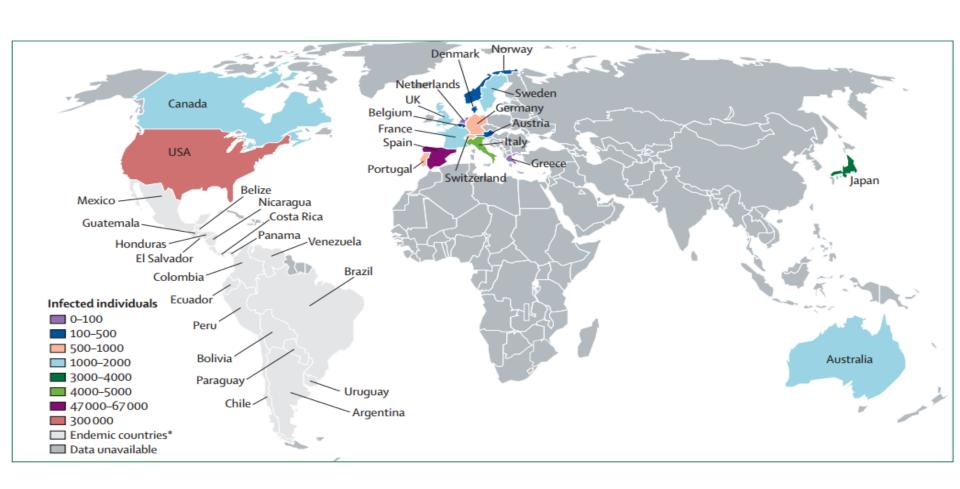
Características morfológicas principais do *Trypanosoma cruzi*.

História da Doença de Chagas

Lassance (MG) em 1909

Carlos Justiniano Ribeiro Chagas

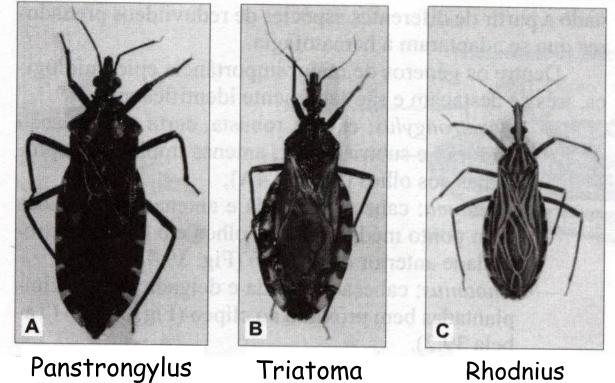
O primeiro caso da Doença de Chagas: Berenice.


Distribuição da Doença de Chagas.

Epidemiologia

- ✓ Endêmica em 21 países da América Latina;
- √ 5,7 milhões de pessoas cronicamente infectadas, sendo cerca de 4 milhões só no Brasil;
- √ 70 milhões de pessoas residem nas áreas de risco;
- √ 100-200 mil novos casos por ano;
- √ Risco de transmissão em áreas não endêmicas.

Estimativa do número de imigrantes infectados pelo *Trypanosoma cruzi* em países não endêmicos



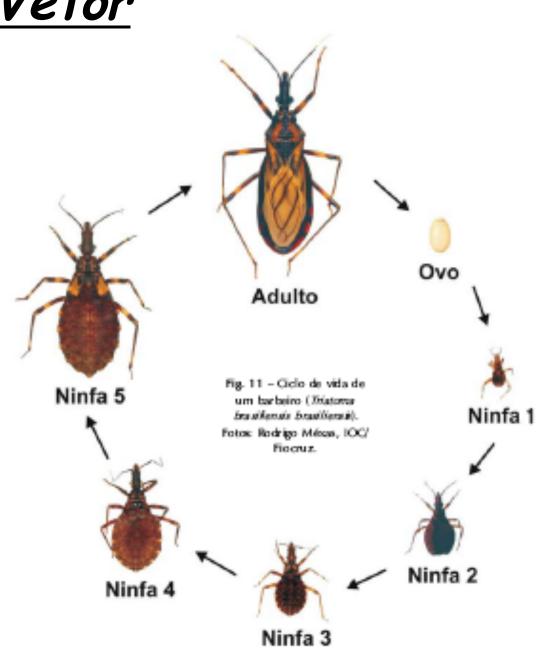
Vetor

✓ A Doença de Chagas é transmitida por insetos hemípteros hematófagos da família Reduviidae e subfamília Triatominae;

✓ Estes insetos são popularmente conhecidos como barbeiros, chupões, procotós (sertão da Paraíba), vum-vum (Bahia), chupança (Mato Grosso), vinchucas (países andinos), chincha voladora (México), kissing bugs (Estados Unidos);

√Gêneros: Panstrongylus, Triatoma e Rhodnius.

Vetor

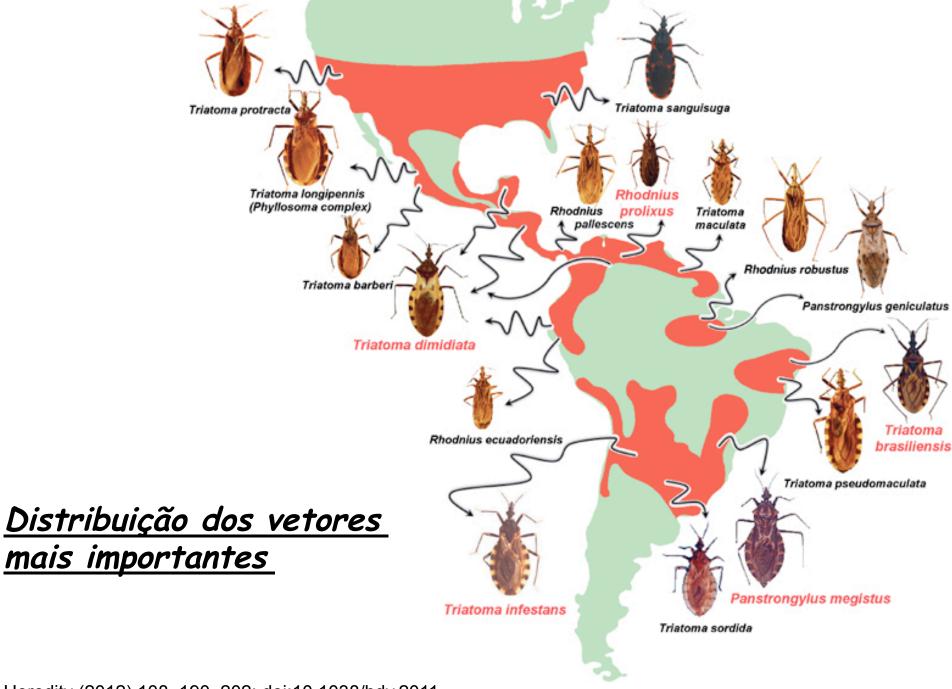

√ 141 espécies conhecidas (da subfamília Triatominae);

√ 63 identificadas no Brasil (30 capturadas em ambiente domiciliar);

- ✓ No Brasil, as espécies mais importantes são:
- 1. Triatoma infestans
- 2. Triatoma brasiliensis
- 3. Panstrongilus megistus
- 4. Triatoma pseudomaculata
- 5. Triatoma sordida.

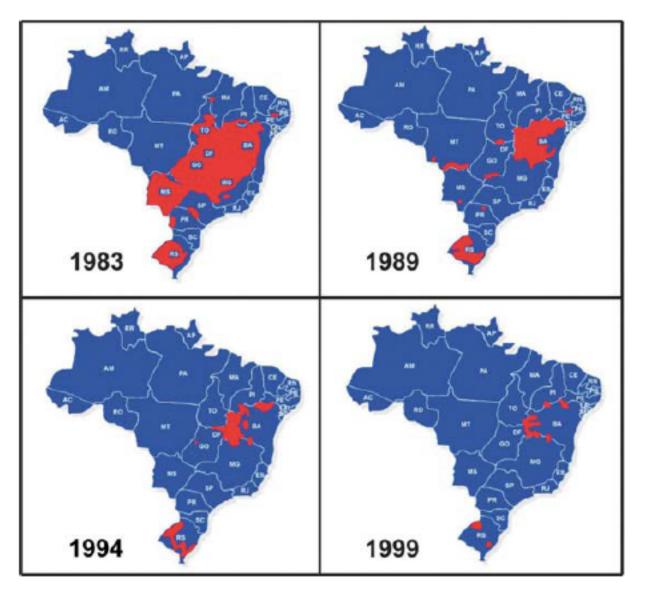
Vetor

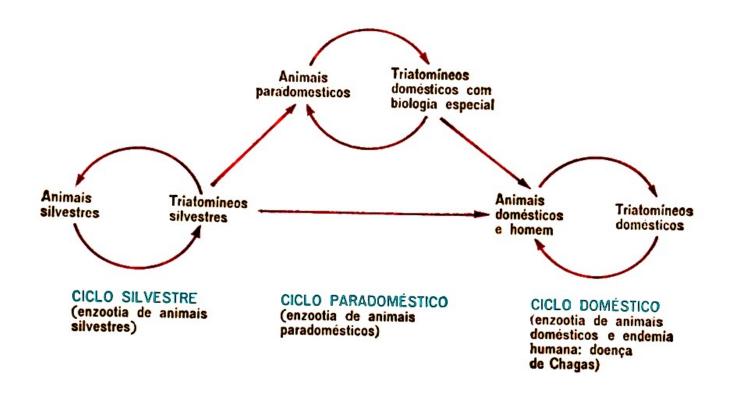
Tanto ninfas como adultos de ambos os sexos são hematófagos.


Fotos: Rodrigo Méxas, IOC/Fiocruz.

<u>Vetor</u>

- √Hábitos noturnos;
- ✓ Durante o dia, são encontrados nas fendas das paredes de casas não rebocadas, telhados de palha;
- √ Vivem no domicílio e região peridomiciliar;
- ✓ Longevidade do adulto: 9 a 20 meses.




Heredity (2012) 108, 190–202; doi:10.1038/hdy.2011.

Área de dispersão do *Triatoma infestans* 1983 a 1999

Ciclos de transmissão

- 1. Ciclo silvestre (zoonose) reservatórios silvestres: só mamíferos (gambá, tatu, roedores, tamanduá, preguiça, morcegos, macacos, etc);
- 2. Ciclo para-doméstico (antropozoonose) animais domésticos (cão, gato, porcos) homem;
- 3. Ciclo doméstico homem triatomíneo doméstico- homem.

Linhagens ou cepas de T. cruzi.

- √ Mais de 60 linhagens ou cepas já foram descritas;
- ✓ Dividem-se em 6 grupos, de acordo com a tabela abaixo:

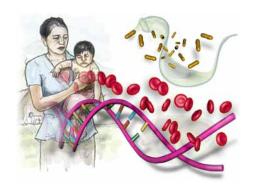
TABLE I

2009 nomenclature for *Trypanosoma cruzi* divisions

DTU designation	Abbreviation	Equivalence to former T. cruzi grouping schemes	
T. cruzi I	TeI	T. cruzi I ^{a, b} and DTU I ^c	
T. cruzi II	TcII	T. cruzi II ^a and DTU IIb ^c	
T. cruzi III	TeIII	Z3/Z1 ASAT ^d , Z3-A ^e , DTU IIc ^e and T. cruzi III ^f	
T. cruzi IV	TcIV	Z3 ^d , Z3-B ^e and DTU IIa ^e	
T. cruzi V	TcV	Bolivian Z2 ^d , rDNA 1/2 ^g , clonet 39 ^h and DTU IId ^c	
T. cruzi VI	TcVI	Paraguayan Z2i, Zymodeme Bi and DTU IIec	

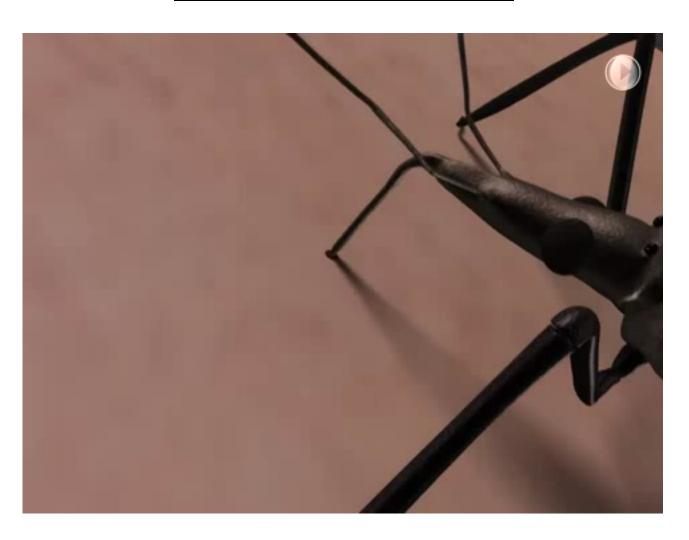
a: Anonymous 1999; b: Falla et al. 2009; c: Brisse et al. 2000; d: Miles et al. 1981; DTU: discrete typing units; e: Mendonça et al. 2002; f: Freitas et al. 2006; g: Souto et al. 1996; h: Tibayrenc and Ayala 1991; i: Chapman et al. 1984; j: Carneiro et al. 1990.

Transmissão

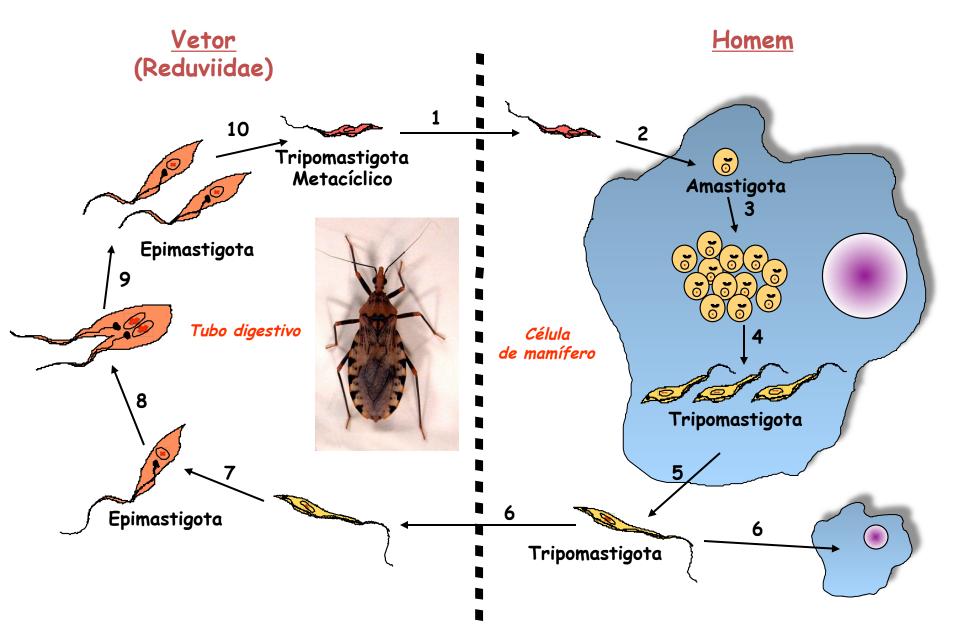

- ✓ Aproximadamente 80% da transmissão é vetorial (há algumas décadas);
- ✓ Durante a picada o inseto alimenta-se do sangue do hospedeiro e defeca próximo ao local da picada;
- ✓ nas fezes do vetor estão presentes as formas infectantes (tripomastigotas metacíclicos).

Outras formas de transmissão

✓ Transfusão sanguínea (~16%) (importante em áreas não endêmicas)


√ Congênita (<1%)
</p>

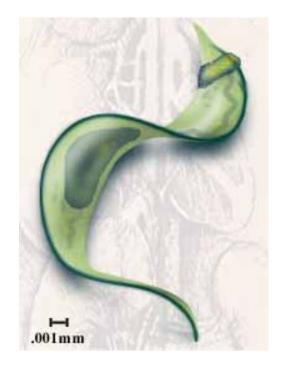
- ✓ Acidentes de laboratório (fezes de triatomíneos, culturas de T. cruzi, manejo de animais em experimentação)
- ✓ Oral (triatomíneos infectados macerados junto com alimentos, p. ex. açaí, caldo de cana): tem adquirido importância epidemiológica devido aos surtos ocorridos nos últimos anos
- √ Transplante de órgãos

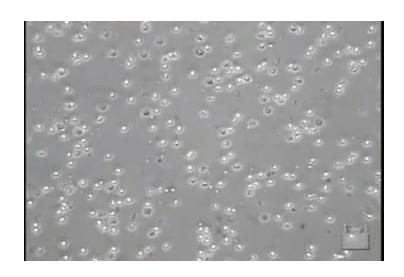

<u>Ciclo evolutivo no hospedeiro</u> vertebrado

Ciclo evolutivo no hospedeiro invertebrado

Ciclo evolutivo

O tripomastigota metacíclico


- √ É a forma infectiva encontrada no intestino posterior do inseto vetor;
- ✓ Mede cerca de 17 µm de comprimento;
- √ É fina e com cinetoplasto grande;
- √ Membrana ondulante estreita;
- √Curto flagelo livre;
- ✓ Tem capacidade invasiva para atravessar mucosas e a conjuntiva, ou penetrar pelas soluções de continuidade da pele.


O tripomastigota sanguíneo

- √ É capaz de infectar diferentes tipos celulares;
- \checkmark Mede cerca de 20 μ m de comprimento por 2 μ m de largura;
- ✓ Apresenta cinetoplasto grande e redondo, bastante saliente;
- ✓O flagelo representa cerca de 1/3 do comprimento total.

Invasão da célula pelo tripomastigota

- ✓ A formas tripomastigotas são capazes de invadir diferentes tipos celulares, especialmente:
 - √ células do sistema fagocítico mononuclear
 - √ fibras musculares estriadas (tanto cardíacas como esqueléticas)
 - √ fibras musculares lisas
 - ✓ células nervosas
 - √ células epiteliais e fibroblatos

Interação T. cruzi-célula hospedeira

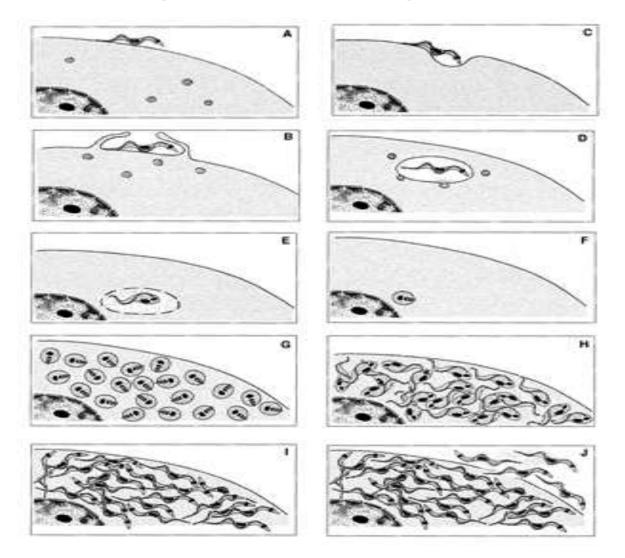
Fagócito

macrófago

penetração passiva

fagocitose clássica

Células não fagocíticas


epiteliais, musculares, nervosas

penetração ativa

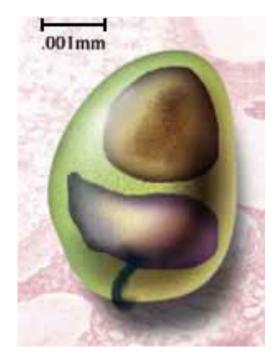
fagocitose induzida

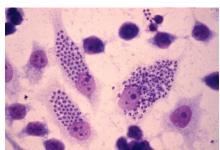
Adesão e invasão de células

1. Células fagocíticas: fagocitose clássica

Adesão e invasão de células

2. Células não fagocíticas

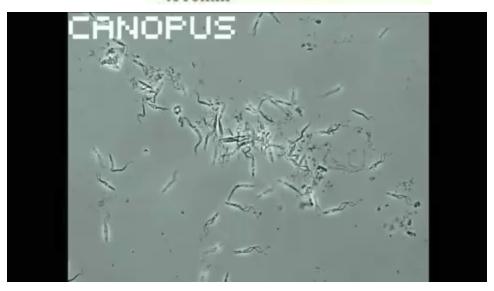

Sinalização



adesão invasão

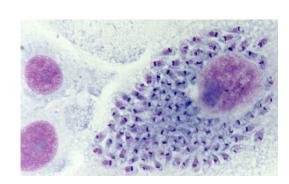
O amastigota

- √ É a forma encontrada dentro da célula parasitada;
- ✓ É ovóide e mede 4 µm no maior diâmetro;
- ✓ Não possui flagelo ou membrana ondulante;
- ✓ Núcleo ovoide e compacto e cinetoplasto com aspecto de disco convexo-côncavo próximo ao núcleo;
- ✓ Multiplica-se por divisão binária simples (12 horas);
- ✓ O ciclo intracelular dura cerca de 5-6 dias e produz cerca de 9 gerações de parasitas.


<u>Tripomastigotas - Amastigotas - Tripomastigotas.</u>

O epimastigota

- ✓ Desenvolve-se na porção posterior do intestino médio do inseto;
- ✓ Dimensões variáveis;
- √Citoplasma abundante;
- ✓ Cinetoplasto situado perto do núcleo;
- √Reproduz-se por divisão binária longitudinal;
- ✓ Muitas vezes os epimastigotas agrupam-se formando rosáceas, com as extremidades flageladas voltadas para o centro.


Forma	Hospedeiro	Multiplicação	Localização
Epimastigotas	Inseto	Divisão binária	Trato digestório anterior e médio
Tripomastigotas Metacíclicos	Inseto	Não se multiplica	Trato digestório posterior
Amastigotas	Mamífero	Divisão binária	Interior de células nucleadas
Tripomastigotas Sanguíneos	Mamífero	Não se multiplica	Sangue

Tripomastigota

Amastigota

Período de incubação.

- ✓ Depende do inóculo, da via de penetração, da cepa do parasita e das condições do paciente;
- ✓ Transmissão vetorial: 5-15 dias;
- ✓ Transmissão oral: 3-22 dias;
- ✓ Transfusão sanguínea: 30-40 dias podendo estender-se por mais de 60 dias.
- ✓ Transmissão vertical: pode ocorrer em qualquer período da gestação ou durante o parto.

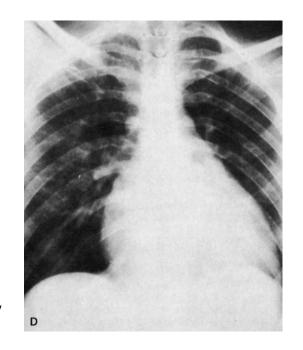
Patogenia

Fase Aguda

duração 3-4 meses

Sintomática ou Assintomática

- ✓ Manifestações locais:
- >Sinal de Romaña (edema na região da pálpebra)
- >Chagoma de inoculação (resposta inflamatória no local da entrada do parasito)
- ✓ Manifestações gerais: Parasitemia patente
- **✓Outros** sintomas
- >Febre, mal estar, cefaléia e anorexia;
- Linfoadenomegalia e hepatoesplenomegalia sutis;
- >Miocardite aguda com alterações eletrocardiográficas (raramente);
- >Meningoencefalite (raramente).



Patogenia

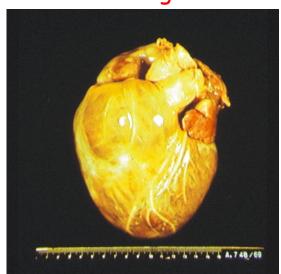
Fase Crônica

Inicia-se após a queda da parasitemia

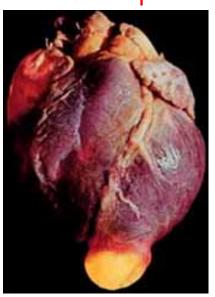
1. Formas indeterminadas;

2. Cardiopatia chagásica crônica;

3. Formas digestivas (megas).

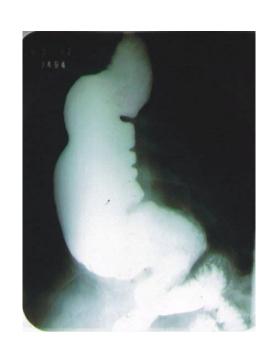

1. Forma indeterminada ou de latência.

- ✓ Ausência de manifestações clínicas, radiográficas e eletrocardiográficas;
- ✓ A maioria dos pacientes permanece na forma indeterminada, sem apresentar sintomatologia, por toda a vida;
- ✓Parasitemia subpatente.

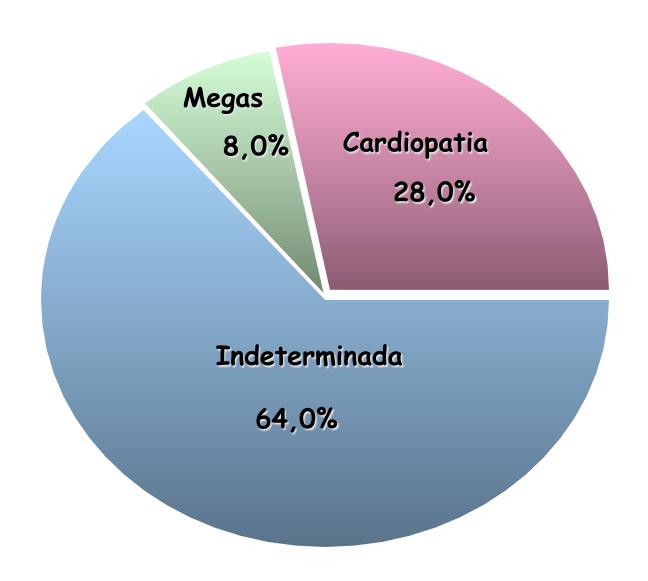

2. Cardiopatia chagásica crônica - CCC.

- ✓ Aparecimento cerca de 15-20 anos após a infecção inicial;
- ✓ É a mais importante forma de limitação ao doente chagásico e principal causa de morte;
- ✓ Pode apresentar-se sem sintomatologia, mas com alterações eletrocardiográficas;
- ✓ Caracterizada por miocardite crônica progressiva, dilatação de cavidades e hipertrofia ventricular, distúrbios de condução elétrica, arritmias e insuficiência cardíaca.

Cardiomegalia



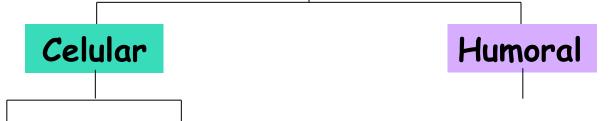
Aneurisma de ponta



3. Formas digestivas (megas).

- > Caracterizam-se por alterações ao longo do trato digestório
- ✓ destruição de neurônios dos plexos mioentéricos (parassimpático)
- ✓ esfíncteres em contração permanente (simpático)
- Dificuldade de trânsito de alimentos/ fezes
- cárdia: acúmulo de alimentos megaesôfago
- reto-sigmóide: acúmulo de fezes megacólon

Fase Crônica



Resposta imune

T. cruzi

Resposta imune do hospedeiro

Inata

Adaptativa

Anticorpos líticos

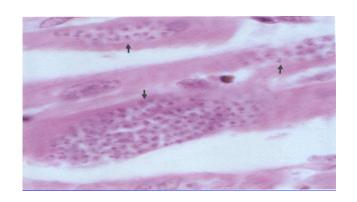
MØs Linfócitos T Células dendríticas Linfócitos B Células NK

Resposta Protetora

Resposta imune

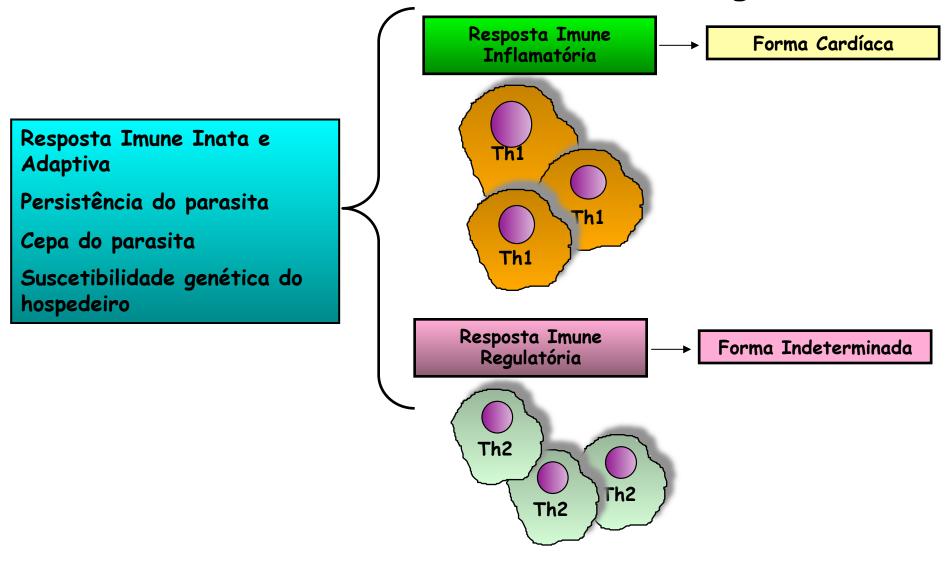
Camundongos KO:

- √ Células B
- √ Células TCD8
- √ Células TCD4
- ✓ IFN-y
- ✓ IL-12
- ✓ TNFa
- ✓ GM-CSF

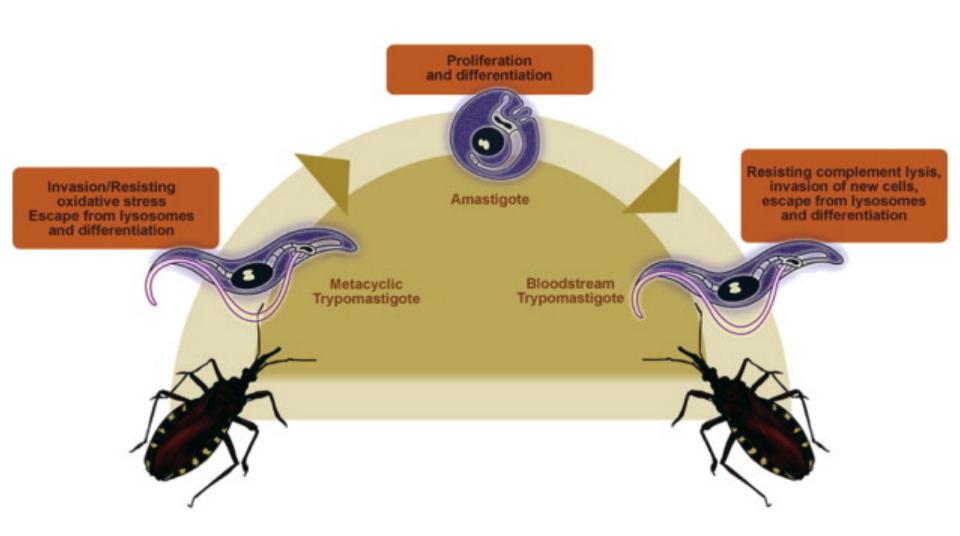


Resposta imune

Equilíbrio relação parasito-hospedeiro


- Parasitemia baixíssima Parasita <u>nunca</u> é totalmente eliminado
- > Resposta Imune Humoral
- √ anticorpos IgG anti-tripomastigotas
- opsonização: macrófagos ativados matam parasita
- bloqueio da penetração
- · lise pelo complemento
- ADCC ("antibody-dependent cell mediated cytotoxicity")
- > Resposta Imune Celular
- √ Células efetoras T, NK, Macrófagos

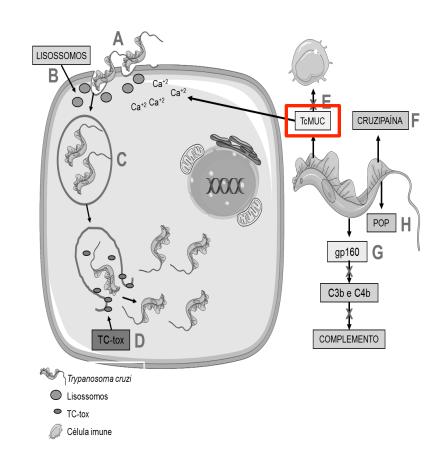
Mecanismos de Patogenicidade



- > Destruição células parasitadas pelo *T. cruzi*.
- ✓ Antígenos de *T. cruzi* expressos na membrana de células do hospedeiro em complexos peptídeo-MHC
- > Destruição células não parasitadas pelo *T. cruzi*.
- ✓ Autoimunidade: Antígenos de *T. cruzi* reagem cruzadamente com antígenos de células hospedeiras reatividade cruzada

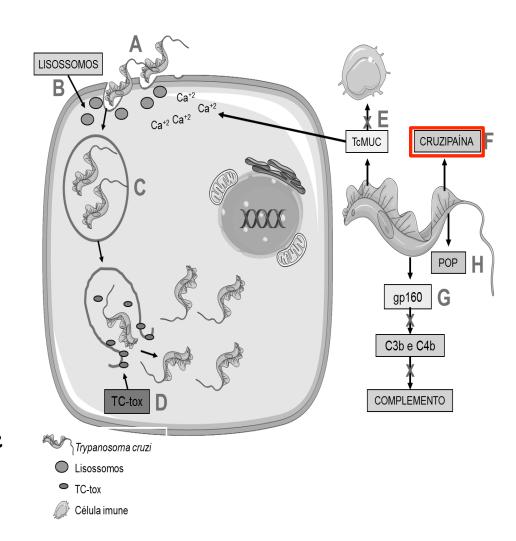
O balanço da resposta imune pode definir o estabelecimento das formas cardíaca ou indeterminada da doença de Chagas.

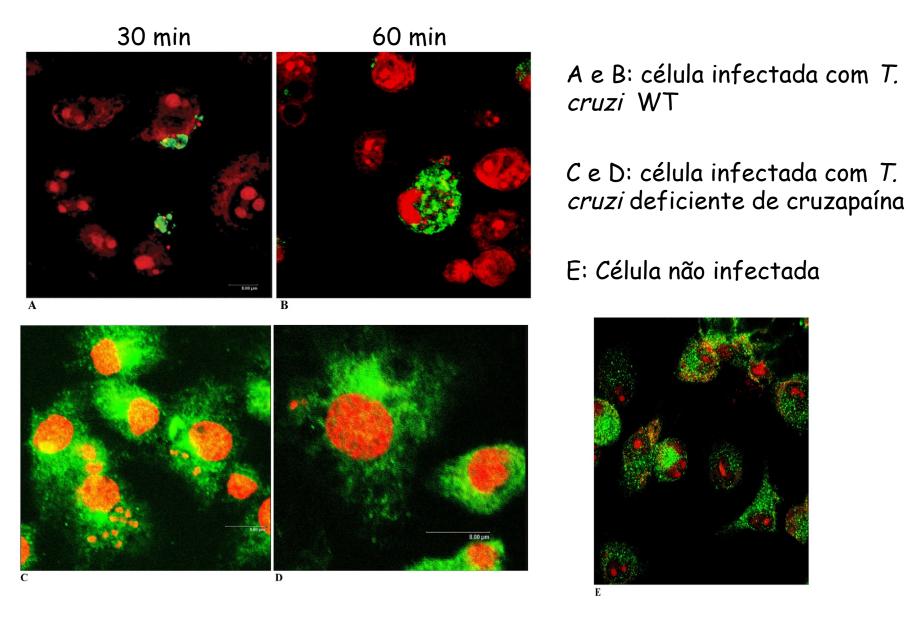
Mecanismos de Escape


Mecanismos de Escape

MECANISMOS PROPOSTOS

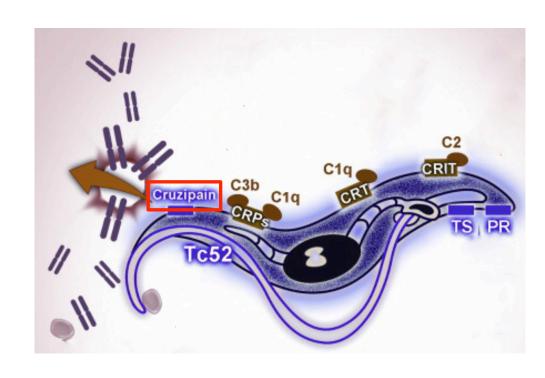
- ✓ Moléculas de superfície
- ✓ Escape do fagolisossomo
- ✓ Supressão do burst oxidativo fagocítico
- ✓ Resistência ao sistema complemento


Mucinas e gp35/50


- ✓ Asseguram a invasão de células e tecidos específicos
- TcMUC (inseto)
- ◆ A gp35/50:
- Liga-se a receptor na célula alvo levando a liberação bidirecional de cálcio
- Capaz de desestabilizar mRNA do TNFalfa e da ciclooxigenase-2

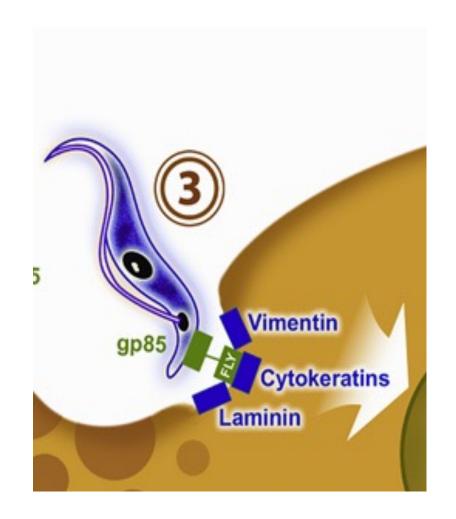
Cruzipaína

- ✓ Cisteínoprotease
- ✓ Expressa em todas as formas de desenvolvimento do parasita
- ✓ Medeia mecanismos antiapoptóticos em células do miocárdio infectadas com T. cruzi
- ✓ Parasitas deficientes de cruzipaína ativam rapidamente os macrófagos do hospedeiro e não sobrevivem
- √ induz proteólise de NF-KB



-Localization of NF-kB P65 (green fluorescence).

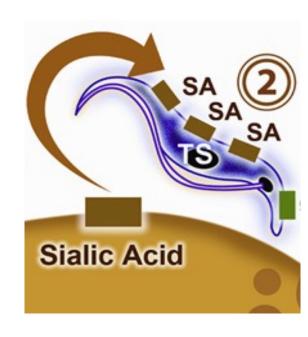
-Parasite and host cell DNA was labeled with PI (red).


Cruzipaína

- Interfere na resposta imune humoral: digestão na dobradiça de todas as subclasses de IgG
- "Fabulação": fragmento Fab2 protegendo o parasita
- Aumento de atividade de arginase-1, secreção de IL-10 e TGF-beta em macrófagos

Gp85

- ✓ Glicoproteína de superfície expressa em tripomastigotas
- ✓ Importante para invasão
- ✓ Contém sítios de ligação para laminina e citoqueratina da célula hospedeira

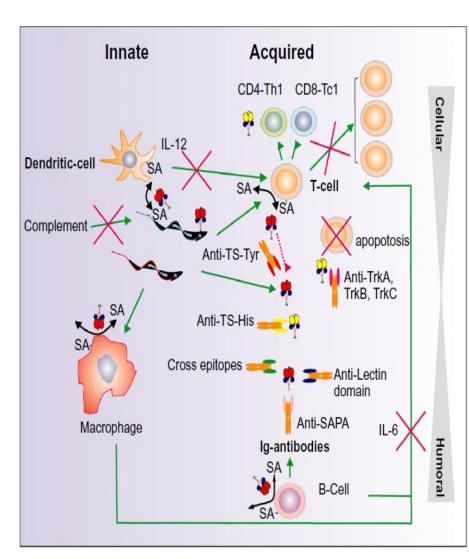

(Tonelli, et al., 2011; Osorio, et al., 2012)

Trans-sialidase (TS)

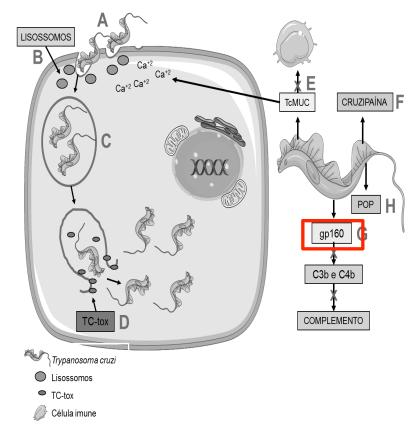
✓ Proteína presente na membrana externa ou na forma livre com propriedade de ligação e função enzimática

T. cruzi:

- ✓ Não sintetiza ácido siálico
- ✓ Adquire o ácido siálico pela TS após sua entrada em um meio rico de doadores da molécula
- ✓ Expressa enzima trans-sialidase (TcTS):
 catalisa reação de transglicosilação

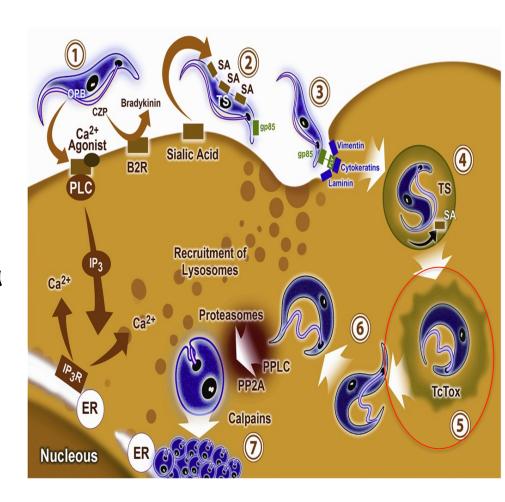


 Gera uma barreira sialilada e carregada negativamente na superfície do parasita


Proteção:

- Via alternativa do complemento
- Opsonização e morte por anticorpos naturais
- Superfície sialilada interage com Siglec-C das células dendríticas suprimindo a produção de IL-12

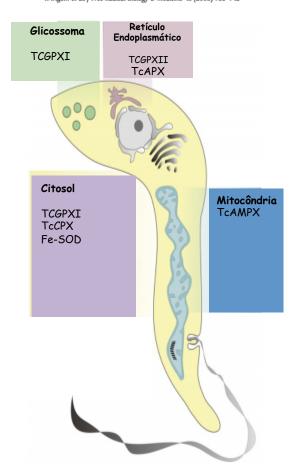
Trombocitopenia: retirada do ácido siálico das plaquetas



- Proteína homóloga a fator de aceleração de decaimento
- Responsável pela resistência da forma tripomastigota metacíclica contra o sistema complemento
- Liga-se às subunidades de C3b e C4b, interferindo na formação da C3 convertase e na ativação das vias clássica e alternativa do complemento.

TcTox

- Proteína secretada pelo parasita
- Atividade lítica e formadora de poros no vacúolo em pH ácido
- T. cruzi rompe o fagolisossomo usando a TcTox



Supressão do burst oxidativo fagocítico

Enzimas antioxidantes estão mais expressas na forma tripomastigota metacíclica

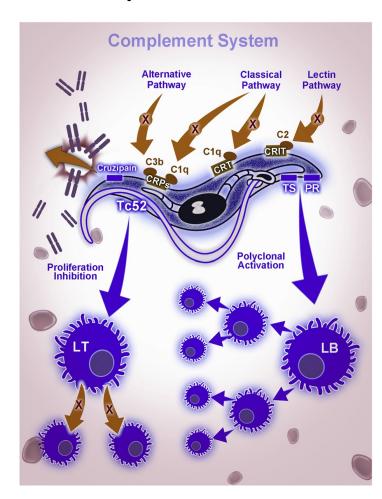
Supressão do burst oxidativo fagocítico

F. Irigoln et al. / Free Radical Biology & Medicine 45 (2008) 733-742

5 PEROXIDASES

- Glutationa peroxidase I (TCGPXI)
- Glutationa peroxidase II (TCGPXII)
- Tripanoredoxina peroxidase citosólica (TcCPX)
- Tripanoredoxina peroxidase mitocondrial (TcAMPX)
- Oxidase dependente de ascorbato (TcAPX)

(Wilkinson et al., 2000, 2002a, 2002b, 2002c)

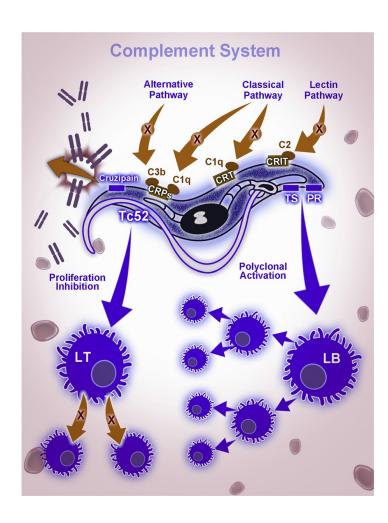

SUPERÓXIDO DISMUTASES

Ferro superóxido dismutase (Fe-SOD)

Resistência ao sistema complemento

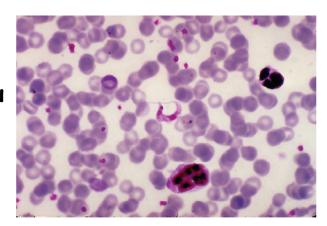
- **Tripomastigotas** são resistentes ao efeito lítico do complemento
- Epimastigotas são rapidamente atingidos pela via alternativa do complemento

- Proteína reguladora do complemento (CRP)
- Proteína trispanning inibidora do receptor de C2 (CRIT)
- Calreticulina (CRT)



Prolina racemase (PR)

- Enzimas que catalisam a interconversão de enantiômeros de L e D-prolina
- Ativação policional de linfócitos B que é crucial para a evasão e persistência do parasita


Tc52

- Proteína secretada responsável pela supressão da proliferação de células T
- Capaz de modular a expressão de citocinas e iNOS nos macrófagos
- Interfere em células dendríticas

Diagnóstico Parasitológico

- ✓ Diretos FASE AGUDA
 - Exame a fresco em lâmina (motilidade)
 - Gota espessa ou esfregaço corado com Giemsa ou Leishman (morfologia)
 - Centrifugação em tubos capilares
 (micro-hematócrito) baixa parasitemia

- ✓ Indiretos FASE CRÔNICA
- Xenodiagnóstico (alimentação de ninfas de triatomíneos não infectadas com o sangue de pacientes).
- Hemocultura (cultura do sangue em meio LIT) Leitura: 30, 60, 90 e 120 dias

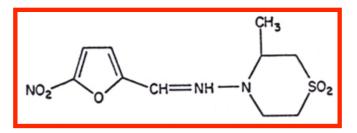
Diagnóstico sorológico

Hemaglutinação indireta (HAI)

Testes convencionais

Imunofluorescência indireta (IFI)

Ensaio imunoenzimático (ELISA)


Antigenos de *T. cruzi*: Extratos totais Frações semi-purificadas (epimastigotas)

- ✓ Fase aguda: detecção de IgM
- √ Fase crônica: detecção de IgG
- > Pelo menos dois testes sorológicos devem ser realizados para confirmação dos resultados.

Tratamento

Nifurtimox (Lampit):

- ✓ Nitro-derivado que age através da produção de radicais livres. O parasita é mais sensível devido a uma deficiência no seu repertório de enzimas anti-oxidantes.;
- ✓ Toxicidade frequente (anorexia, náusea, vômitos, reações alérgicas);
- ✓ Parcialmente efetivo na fase aguda;
- ✓Inativo na fase crônica (??);
- ✓ Tratamento prolongado (até 90 dias);
- √100 mg/Kg por dia;
- ✓ Somente disponível nos EUA e Canadá.

Tratamento

Benznidazole (Rochagan):

- √Modo de ação ainda não completamente claro. Parece inibir a síntese de RNA e proteína;
- ✓ Toxicidade frequente (Anorexia, cefaléia, dermatopatia, gastralgia, insônia, náuseas, perda de peso, polineuropatia, vômitos);
- ✓ Parcialmente efetivo na fase aguda;
- ✓Inativo na fase crônica (??);
- ✓ Tratamento prolongado (até 60 dias);
- ✓ adultos: 5 mg/Kg por dia.
- ✓ crianças: 5-10 mg/Kg por dia.

Tratamento

Profilaxia

- ✓ Transmissão vetorial: controle químico de vetores com inseticidas quando a investigação entomológica indicar a presença de triatomíneos domiciliados; melhoria habitacional em áreas de alto risco suscetíveis a domiciliação.
- ✓ Transmissão transfusional: manutenção do controle de qualidade rigoroso de hemoderivados. Na ausência de condições, pode-se utilizar cristal violeta nas bolsas de sangue.
- √Transmissão vertical: identificação de gestantes chagásicas na assistência pré-natal ou de recém-nascidos por triagem neonatal para tratamento precoce.
- √Transmissão oral: cuidados de higiene na produção e manipulação artesanal de alimentos de origem vegetal.
- √Transmissão acidental: utilização de equipamento de biossegurança.

Vacina???

✓ inúmeras tentativas: de parasitas atenuados a recombinantes

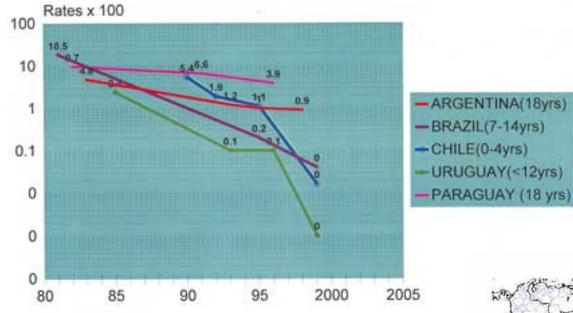
- ✓ Problemas
- como avaliar?
- autoimunidade?

Profilaxia: Controle dos vetores.


Aplicação de inseticidas

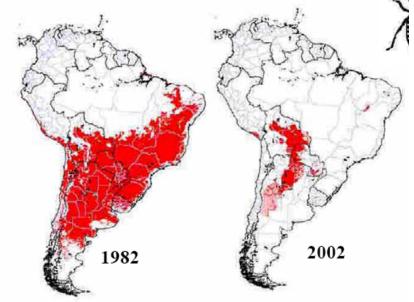
Source: WHO/TDR

Uso de pintura contendo inseticida e melhoria das condições de moradia.



http://www-nt.who.int/tropical_diseases/databases/imagelib.pl?imageid=9105006

SOUTHERN CONE INITIATIVE


Controle Vetorial

Elimination of Transmission: Incidence of infection 1980-2000

Source: Reports by National Chagas disease control program

✓ 2006: Brasil recebeu certificação internacional de interrupção da transmissão da doença pelo *Triatoma* infestans, concedida pela *Organização* Panamericana da Saúde e *Organização* Mundial da Saúde.

www.who.int

Fonte: Portal da Saúde, 2015

Recursos gastos para controle da doença de Chagas no Brasil (2003 a 2006).

Melhorias habitacionais	R\$ 61 milhões
Equipamentos e veículos	R\$ 9,1 milhões
Repasse a estados e municípios para atividades de controle	R\$ 3,2 milhões
Inquérito Nacional de Soroprevalência	R\$ 2,7 milhões
Reuniões de avaliação, capacitações, publicações, congressos e acompanhamento do programa junto aos estados.	R\$ 2,6 milhões
Aquisição de insumos (inseticidas)	R\$ 18 milhões
Pesquisa sobre transmissão congênita	R\$ 600 mil
Pesquisa sobre o <i>Triatoma rubrofasciata</i> em São Luis (MA)	R\$ 100 mil
Avaliação da eficácia dos kits sorológicos	R\$ 120 mil
TOTAL	R\$ 97 milhões