

Ressonância Magnética Nuclear - RMN

Espectroscopia

Lucas Colucci Ducati

4 de junho de 2018

ducati@iq.usp.br - Sala 321 - Bloco 3

Sumário

- 1. Acoplamento de ¹H e ¹³C com Outros Núcleos
- 2. Espectros de ${}^{1}H$ e ${}^{13}C$ de moléculas com ${}^{19}F$
- 3. Espectros de ¹H e ¹³C de moléculas ³¹P
- 4. Espectros de ${}^{1}H$ e ${}^{13}C$ de moléculas com ${}^{15}N$
- 5. DEPT Distortioneless Enhancement by Polarization Transfer
- 6. Técnicas Bidimensionais RMN 2D
- 7. Exercícios
- 8. Exercícios Integrados

Acoplamento de ¹H e ¹³C com Outros Núcleos

Espectros de ¹H e ¹³C de moléculas com ¹⁹F

Núcleo de ¹⁹F

- $I=\frac{1}{2}$
- Acoplamentos típicos com ¹H
 - ${}^{1}J_{\rm HF} = 500~{\rm Hz}$
 - ${}^{2}J_{\rm HF} = 40 60 \ {\rm Hz}$
 - ${}^{3}J_{\rm HF} = 5 15~{\rm Hz}$
 - ${}^4J_{\rm HF}=1-5~{\rm Hz}$
- Acoplamentos típicos com ¹³C
 - ${}^{1}J_{CF} = 150 300 \text{ Hz}$
 - ${}^{2}J_{CF} = 10 30 \text{ Hz}$
 - ${}^{3}J_{CF} = 3 15 \text{ Hz}$

Espectro de ¹H da Flúoracetona

4

Espectro de ¹³C da Flúoracetona

Espectro de ¹⁹F da Flúoracetona

Espectro de ¹H da Diflúoracetona

7

Espectro de ¹³C da Diflúoracetona

Espectro de ¹⁹F da Diflúoracetona

Espectros de ¹H e ¹³C de moléculas ³¹P

Núcleo de ³¹P

- $I=\frac{1}{2}$
- Acoplamentos típicos com ¹H
 - ${}^{1}J_{\text{HP}} = 1000 180 \text{ Hz}$
 - ${}^{2}J_{\rm HP} = 30 -10$ Hz
 - ${}^{3}J_{HP} = 30 10 \text{ Hz}$
 - ${}^4J_{Hp} = 1-5$ Hz
- Acoplamentos típicos com ¹³C
 - ${}^{1}J_{CP} = 150 -20 \text{ Hz}$
 - ${}^{2}J_{CP} = 30 10 \text{ Hz}$
 - ${}^{3}J_{CP} = 15 3 \text{ Hz}$
 - ${}^{4}J_{CP} = 3 0$ Hz

Espectro de ¹H da tri-tercbutilfosfina

Espectro de ¹³C da tri-tercbutilfosfina

Espectro de ¹³C da tri-tercbutilfosfina

Espectros de ¹H e ¹³C de moléculas com ¹⁵N

Núcleo de N

- Núcleo de ¹⁴N
 - / = 1
 - abundância de 99,63%
 - núcleo quadrupolar
 - $Q = 2,044 \times 10^{-30} \text{ m}^2 \ (^2\text{D} \rightarrow Q = 0,286 \times 10^{-30} \text{ m}^2)$
 - sinais de ¹H são alargados
 - relação muito rápida difícil observar acoplamento com ¹H
- Núcleo de ¹⁵N
 - $l = \frac{1}{2}$
 - abundância 0,37 %
 - núcleo dipolar
 - sinais de ¹H são finos
 - observação de acoplamento com ¹H

Espectro de ¹H da Formamida

Espectro de ¹³C da Formamida

Espectro de RMN de ¹³C a 100 MHz em DMSO-d₆ para a formamida.

Espectro de ¹H da Formamida com 100 % de ¹⁵N

Espectro de ¹H da Formamida com 100 % de ¹⁵N

Espectro de RMN de ¹H a 400 MHz em DMSO-d₆ para a formamida marcada.

Espectro de ¹H da Formamida com 100 % de ¹⁵N

Espectro de ¹³C da Formamida com 100 % de ¹⁵N

Espectro de ¹⁵N da Formamida com 100 % de ¹⁵N

Espectro de RMN de 15 N a 40.5 MHz em DMSO-d₆ para a formamida marcada.

DEPT - Distortioneless Enhancement by Polarization Transfer

DEPT

- Técnica de RMN 1D
- Determinar multiplicidade de ¹³C
- DEPT45
 - intensidade positiva para CH, CH₂ e CH₃
 - intensidade nula para C
 - útil para subtrair do espectro de ¹³C e acharmos C
- DEPT90
 - intensidade positiva para CH
 - intensidade nula para C, $CH_2 e CH_3$
- DEPT135
 - intensidade negativa para CH,
 - intensidade positiva para $CH_2 e CH_3$
 - intensidade nula para C

Distribuição da Intensidade de CH, CH_2 e CH_3 pela Largura do Pulso

Espectro de ¹H do Acrilato de Vinila

Espectro de ¹³C do Acrilato de Vinila

Espectro de DEPT135 do Acrilato de Vinila

Espectro de ¹³C e DEPT135 do Acrilato de Vinila

Técnicas Bidimensionais - RMN 2D

Técnicas Bidimensionais - RMN 2D

- Correlações homonucleares
 - ${}^{1}H-{}^{1}H$, ${}^{19}F-{}^{19}F$, ${}^{31}P-{}^{31}P$, ...
- Correlações heteronucleares
 - ${}^{1}H-{}^{13}C, {}^{1}H-{}^{15}N, {}^{1}H-{}^{19}F, \cdots$
- Em duas dimensões temos um mapa de contorno, não um espectro
 - correlações entre os núcleos no mapa de contorno
 - correlações se devem aos J entre eles
- Experimentos mais comuns
 - COSY Correlação ¹H-¹H via acoplamento escalar
 - HSQC Correlação ${}^{1}\text{H}{-}{}^{13}\text{C}$ via acoplamento ${}^{1}J_{\text{CH}}$
 - HMQC Correlação ${}^{1}\text{H} {}^{13}\text{C}$ via acoplamentos ${}^{n}J_{\text{CH}}$, sendo $n \geq 2$

COSY - Correlation Spectroscopy

COSY - Correlation Spectroscopy

HSQC - Heteronuclear Single Quantum Coherence

HSQC - Heteronuclear Single Quantum Coherence

Espectro de ¹H da 3-Hexanona

Espectro de ¹³C da 3-Hexanona

Espectro de DEPT135 da 3-Hexanona

Espectro de ¹³C e DEPT135 da 3-Hexanona

COSY da 3-Hexanona

HSQC da 3-Hexanona

38

HSQC da 3-Hexanona

HSQC da 3-Hexanona

40

Exercícios

Ex1: Espectro de ¹H do $C_3H_8S_2$

Ex1: Espectro de ¹H do $C_3H_8S_2$

Ex1: Espectro de ¹H do $C_3H_8S_2$

Ex1: Espectro de ${}^{13}C$ do $C_3H_8S_2$

Ex2: Espectro de ¹H do $C_4H_{10}S$

Ex2: Espectro de ¹H do $C_4H_{10}S$

Ex2: Espectro de ¹H do $C_4H_{10}S$

Ex2: Espectro de ¹³C do $C_4H_{10}S$

Ex3: Espectro de ¹H do C_3H_8S

Ex3: Espectro de ¹H do C_3H_8S

Ex3: Espectro de ¹H do C_3H_8S

Ex3: Espectro de 13 C do C₃H₈S

Ex4: Espectro de ¹H do $C_2H_3F_3S$

Ex4: Espectro de ${}^{13}C$ do $C_2H_3F_3S$

Ex4: Espectro de ¹³C do $C_2H_3F_3S$

Ex4: Espectro de ¹³C do $C_2H_3F_3S$

Ex5: Espectro de ¹H do C_3H_7CIS

Ex5: Espectro de ¹³C do C_3H_7CIS

Ex6: Espectro de ¹H do C_2H_6OS

Ex6: Espectro de ¹H do C_2H_6OS

Ex6: Espectro de ¹H do C_2H_6OS

Ex6: Espectro de 13 C do C₂H₆OS

Ex7: Espectro de ${}^{13}C$ do $C_4H_{10}OS_2$

Ex9: Espectro de ¹³C do $C_3H_{10}N_2$

Ex10: Espectro de ¹H do C_3H_6BrF

Ex10: Espectro de ¹H do C₃H₆BrF

Ex10: Espectro de ¹³C do C₃H₆BrF

Ex10: Espectro de ¹³C do C₃H₆BrF

Ex10: Espectro de ¹³C do C₃H₆BrF

Ex11: Espectro de ¹H do C_2H_4CIBr

Ex11: Espectro de ¹H do C_2H_4CIBr

85

Ex11: Espectro de ¹³C do C_2H_4CIBr

Ex12: Espectro de 13 C do C₅H₁₃N

Ex13: Espectro de ¹H do C₃H₆CINO

Ex13: Espectro de ¹H do C_3H_6CINO

Ex13: Espectro de ¹³C do C_3H_6CINO

Ex14: Espectro de ¹H do C_3H_7N

Ex14: Espectro de ¹H do C_3H_7N

Ex14: Espectro de ¹H do C₃H₇N

Ex14: Espectro de ¹³C do C_3H_7N

Ex15: Espectro de ¹H do $C_4H_6O_2$

Ex15: Espectro de ¹H do $C_4H_6O_2$

Ex15: Espectro de ¹H do $C_4H_6O_2$

Ex15: Espectro de ¹³C do $C_4H_6O_2$

Ex16: Espectro de ¹H do C₆H₅CIO

Ex16: Espectro de ¹H do C₆H₅ClO

Ex16: Espectro de ¹³C do C₆H₅ClO

Ex17: Espectro de ¹H do C₆H₅CIO

Ex17: Espectro de 13 C do C₆H₅ClO

Ex18: Espectro de ¹H do $C_6H_5CIO_2$

Ex18: Espectro de ¹H do $C_6H_5CIO_2$

Ex18: Espectro de ¹H do $C_6H_5CIO_2$

Ex18: Espectro de ¹³C do $C_6H_5CIO_2$

Ex19: Espectro de ¹H do C₆H₅BrS

Ex19: Espectro de 13 C do C₆H₅BrS

Ex20: Espectro de ¹H do $C_6H_5CIS_2$

Ex20: Espectro de ¹H do $C_6H_5CIS_2$

Ex20: Espectro de ¹³C do $C_6H_5CIS_2$

Ex21: Espectro de ¹H do C₆H₅CIFN

Ex21: Espectro de ¹H do C₆H₅CIFN

Ex21: Espectro de ¹³C do C₆H₅CIFN

Ex21: Espectro de ^{13}C do C₆H₅CIFN

Exercícios Integrados

Atribua os Sinais do Espectro de ¹H do C₆H₁₂O₂

300 MHz ¹H NMR In CDCl3

Atribua os Sinais do Espectro de ¹³C do C₆H₁₂O₂

Atribua os Sinais Mais Intensos do Espectro de Massas do $C_6H_{12}O_2$. Mostre o Mecanismo de Fragmentação

Atribua as Bandas Mais Intensas do Espectro de Infravermelho do $C_6H_{12}O_2$

Atribua os Sinais do Espectro de ${}^{1}H$ do C₄H₈O

Atribua os Sinais do Espectro de ¹³C do C₄H₈O

75 MHz¹³C NMR In CDCl3

Atribua os Sinais Mais Intensos do Espectro de Massas do C_4H_8O . Mostre o Mecanismo de Fragmentação

Atribua as Bandas Mais Intensas do Espectro de Infravermelho do C_4H_8O

Atribua os Sinais do Espectro de ¹H do $C_4H_6O_2$

Atribua os Sinais do Espectro de ¹³C do C₄H₆O₂

75 MHz¹³C NMR In CDCl3

Atribua os Sinais Mais Intensos do Espectro de Massas do $C_4H_6O_2$. Mostre o Mecanismo de Fragmentação

Atribua as Bandas Mais Intensas do Espectro de Infravermelho do $C_4H_6O_2$

Atribua os Sinais do Espectro de ¹H do C₉H₈O₂

Atribua os Sinais do Espectro de ¹³C do C₉H₈O₂

Atribua os Sinais Mais Intensos do Espectro de Massas do $C_9H_8O_2$. Mostre o Mecanismo de Fragmentação

Atribua as Bandas Mais Intensas do Espectro de Infravermelho do $C_9H_8O_2$

