OPERAÇÕES UNITÁRIAS II

AULA 13: EVAPORADORES E CONGELAMENTO

Profa. Dra. Milena Martelli Tosi

Exercício 1 – Aula 13

o Uma solução é concentrada em um sistema de evaporação em triplo efeito. Emprega-se para o aquecimento do primeiro efeito, vapor saturado a 2 bar. A pressão de operação do terceiro efeito é de 25 kPa. Os coeficientes globais de transferência de calor são: U_1 = 2800 W/m²K, U_2 = 2400 W/m²K, U_3 = 2000 W/m²K. Considere as áreas de transferência de calor iguais e despreze a elevação do ponto de ebulição (EPE). Estime a temperatura de evaporação em cada evaporador (ou efeito).

Exercício 2 – Aula 13

Um evaporador duplo-efeito é utilizado para concentrar suco de fruta clarificado de 15 para 72 ºBrix em alimentação direta.

- i) Para o aquecimento (primeiro efeito) utiliza-se vapor saturado a 243 kPa;
- ii) O suco entra no primeiro efeito a 50 °C e vazão de 3800 kg/h, considere as vazões de vapor de evaporação iguais ($m_{V1} = m_{V2}$);
- iii) O coeficiente global no primeiro e no segundo efeito é 1625 e 1280 W.m²⁰C;
- iv) Devido ao vácuo, a pressão no segundo evaporador é mantida em 61,3 kPa.

Determine:

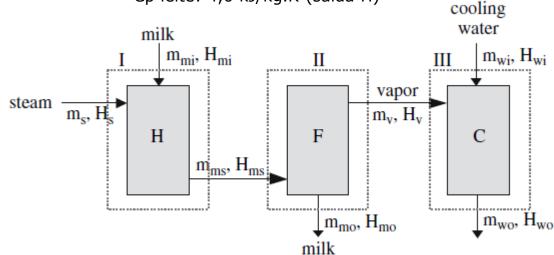
- A vazão de vapor consumido e a economia do evaporador;
- A vazão de vapor produzido no efeito 1 e efeito 2;
- A área de troca térmica em cada evaporador;
- A elevação do ponto de ebulição em cada efeito;
- A temperatura de ebulição da solução em cada efeito.

Dados:

- Calor específico com a
- concentração (X_{WATER}: fração de água):

$$\hat{C}_P = 0.84 + 3.34 X_{WATER} \, kJ/(kg \cdot {}^{\circ}C)$$

Exercício 3: Infusão de vapor


• 2000 kg/h de leite é esterilizado por infusão de vapor. O leite é aquecido até 145 °C na câmara H e é rapidamente resfriado em uma câmara tipo flash (F). O vapor removido do tanque flash é condensado no trocador C, a fim de evitar a diluição do leite. Calcule a vazão de água fria no trocador C necessária para manter a baixa pressão de vapor requerida no Flash.

Dados:

Temperatura do leite (H): 40°C

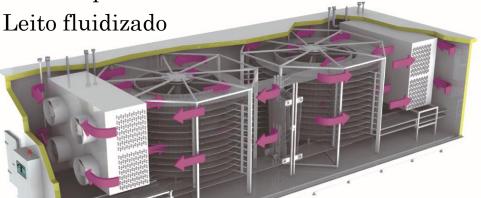
Temp. agua condensador (C): 20 °C Pressão vapor infusão (H): 475,8 kPa

Cp leite: 3,8 kJ/kg.K (entrada H) Cp leite: 4,0 kJ/kg.K (saida H)

Pressão	Temp.	Femp. $H_i \longrightarrow \lambda$		
(kPa)	(°C)	(kJ/kg)	(kJ/kg)	$H_{_{\scriptscriptstyle ee}}$ (kJ/kg)
0,8	3,8	15,8	2493	2509
2	17,5	73,5	2460	2534
5	32,9	137,8	2424	2562
10	45,8	191,8	2393	2585
20	60,1	251,5	2358	2610
28	67,5	282,7	2340	2623
35	72,7	304,3	2327	2632
45	78,7	329,6	2312	2642
55	83,7	350,6	2299	2650
65	88	368,6	2288	2657
75	91,8	384,5	2279	2663
85	95,2	398,6	2270	2668
95	98,2	411,5	2262	2673
100	99,6	417,5	2258	2675
101,33	100	419,1	2257	2676
110	102,3	428,8	2251	2680
130	107,1	449,2	2238	2687
150	111,4	467,1	2226	2698
170	115,2	483,2	2216	2699
190	118,6	497,8	2206	2704
220	123,3	517,6	2193	2711
260	128,7	540,9	2177	2718
280	131,2	551,4	2170	2722
320	135,8	570,9	2157	2728
360	139,9	588,5	2144	2733
400	143,1	604,7	2133	2738
440	147,1	619,6	2122	2742
480	150,3	633,5	2112	2746

CONGELAMENTO

Redução da atividade enzimática e dos microrganismos


Redução da atividade de água e da quantidade de água líquida

• Qualidade: tamanho do cristal de gelo

Possível perda de massa em AL não embalados

Tipos congeladores: de placas, imersão ou ar forçado:

- Tipo bandeja, descontínuo ou contínuo
- Túnel
- Túnel espiral

https://www.youtube.com/watch?v=bGjxajL-Raw

https://www.youtube.com/watch?v=afEaVj0W79A

CONGELAMENTO

• Carga térmica de congelamento = mudança de entalpia para reduzir a temperatura do produto (T_i) até T abaixo da T inicial de congelamento (T_{ic})

- $\Delta H = \text{Calor sens}$ ível removido dos sólidos do produto +
 - + Calor sensível removido da água não congelada +
 - + Calor latente de fusão +
 - + Calor sensível removido da água congelada

No projeto de sistemas de congelamento, é necessário, além das características do produto e suas dimensões, considerar a transferência de calor na superfície do produto: convecção, radiação, evaporação.

o Cinética de congelamento:

$$t^{c} = \frac{1}{\lambda} \left[\frac{\Delta H_{1}}{\Delta T_{1}} + \frac{\Delta H_{2}}{\Delta T_{2}} \right] \left[\frac{e}{2h} + \frac{e^{2}}{8k^{c}} \right]$$

$$\Delta H_1 = \rho C_p^u (T_i - \overline{T})$$

$$\Delta H_2 = \rho X_I \Delta_{fus} H + \rho C_p^c (\overline{T} - T)$$

$$\Delta T_1 = 0.5(T_i + \overline{T}) - T_{\infty}$$

$$\Delta T_2 = \overline{T} - T_{\infty}$$

 $T = 1.8 + 0.263T + 0.105T_{\infty}$

λ: fato de forma (adimensional);

e: espessura do alimento congelado;

h: coeficiente de troca térmica por convecção;

k^c: condutividade do alimento congelado;

X_I: Fração mássica de gelo.

T: Temperatura média de congelamento;

T_i: Temperatura inicial;

t^c: tempo de congelamento em relação à mudança de fase;

C_P^u: Cp do alimento não congelado

C_P^c: Cp do alimento congelado

Efeito da forma sobre o tempo de congelamento, medida do quanto cada uma das três dimensões espaciais contribui para a TC, situado entre 1 e 3. **Ex: esfera:** perfeitamente tridimensional (λ =3), **cilindro infinitamente longo** (λ =2) e **placa infinita** (λ =1), apenas uma dimensão. Para outras geometrias pode ser estimado.

Ex. 4 - AULA 13

- Calcular o tempo de congelamento de um bloco de carne de dimensões 1 m x 0,25 m x 0,6 m (λ : 1,18), considerando:
- (i) que o conteúdo inicial de produto é 74,5g/100g;
- (ii) que a fração mássica de gelo formada foi estimada em 56 g/ 100g de produto.

Dados:

k^c=1,108W.m⁻¹.K⁻¹

h: 30 W.m⁻².K⁻¹

C_P^u: 3,52 KJ.Kg⁻¹.K⁻¹

C_Pc: 2,052 KJ.Kg⁻¹.K⁻¹

T_i: 5 °C

T: -10 °C

T_{ic}: -1,75 °C

 ρ : 1050 kg.m⁻³

 $\Delta_{fus}H_{w}$: 333,22 kJ.kg⁻¹

A hipótese de que todo conteúdo de água congela, acarreta naturalmente em uma superestimativa do tempo de congelamento total.

 A fração de gelo formada é de difícil obtenção.