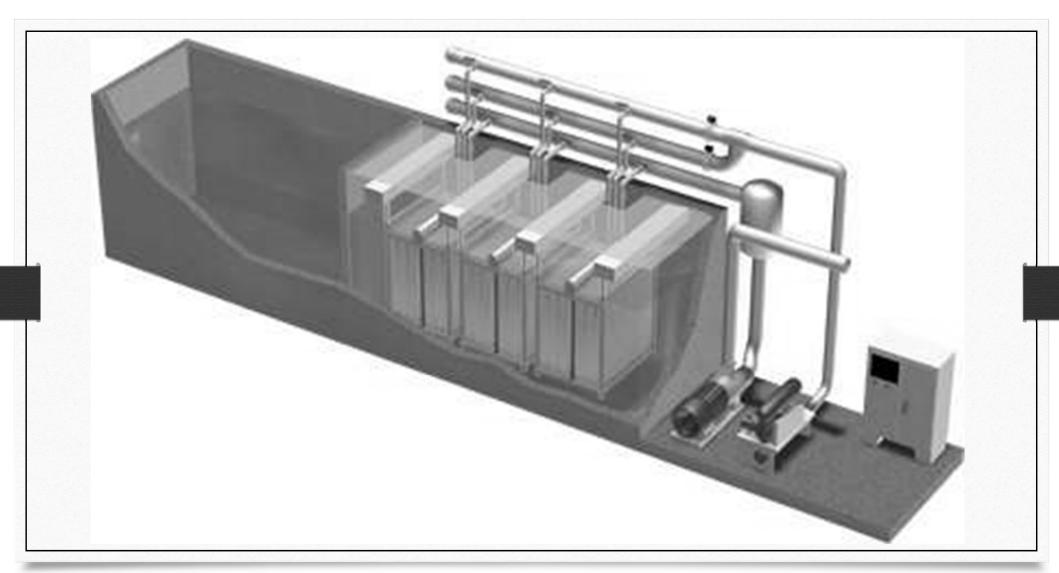
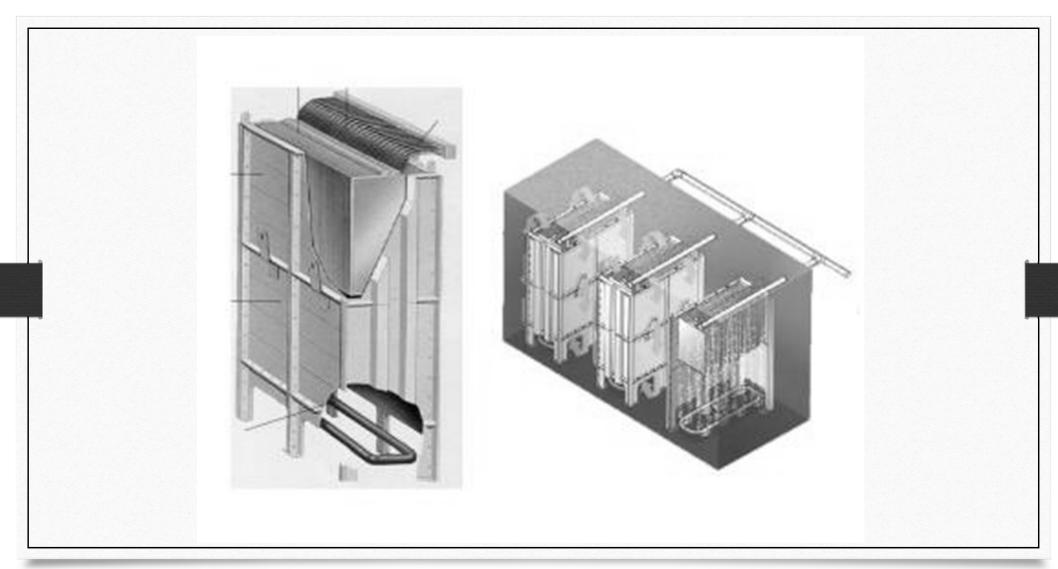
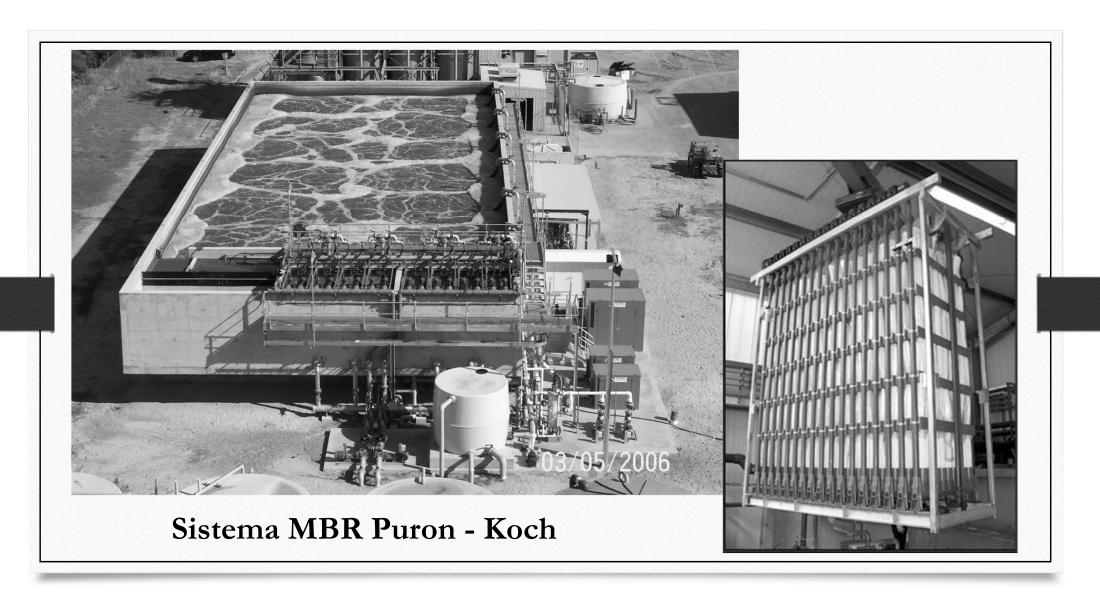

PHA 3418 – Tecnologia de Separação por Membranas para Tratamento de Água e Efluentes

Aulas 11 e 12 – Sistemas de Tratamento de Esgotos com Membranas Submersas (MBR)


Professor Mierzwa

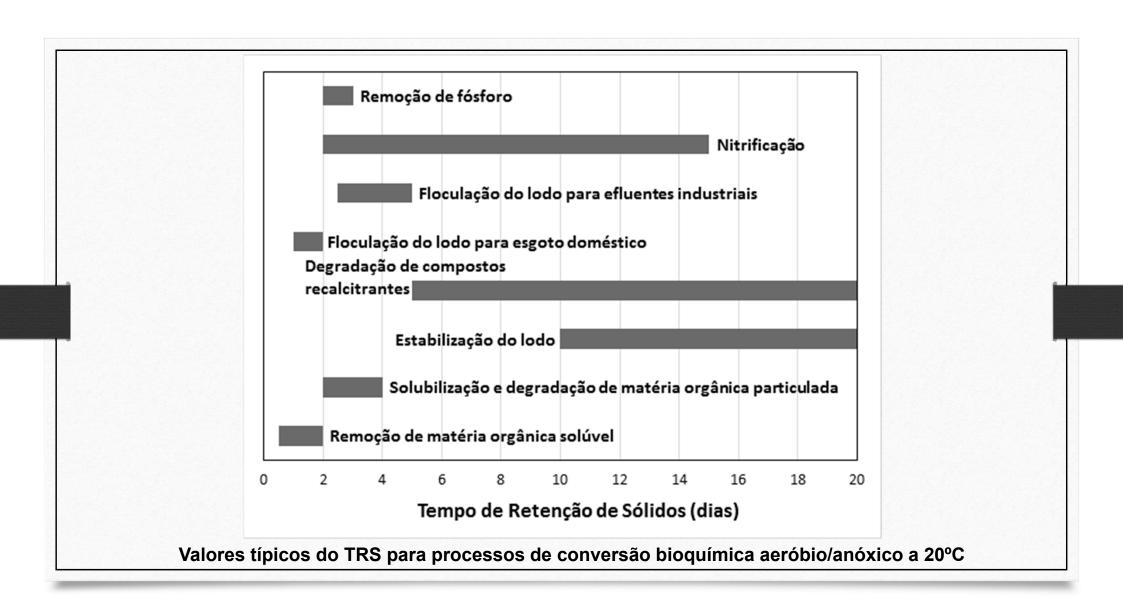
Conceituação


- São sistemas que combinam o processo biológico de tratamento de efluentes com o processo de separação por membranas;
- Elimina a necessidade de utilização de clarificadores secundários;
- Permite a operação com uma maior concentração de sólidos no licor misto;
- Possibilita a obtenção de um efluente tratado com qualidade superior.


Diferença entre um sistema de lodo ativado convencional e um MBR

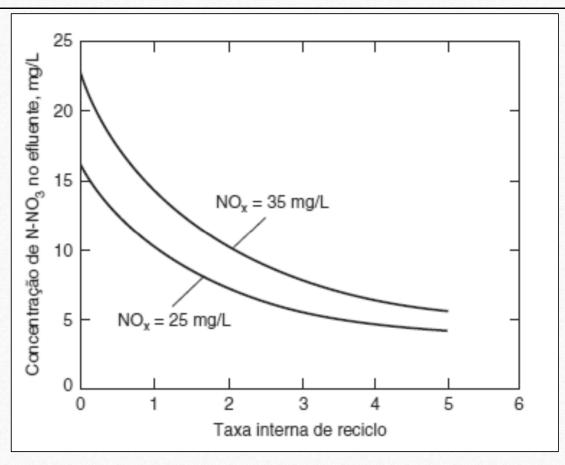
Representação de um sistema com membranas submersas

Reator de membranas planas submersas (KUBOTA)

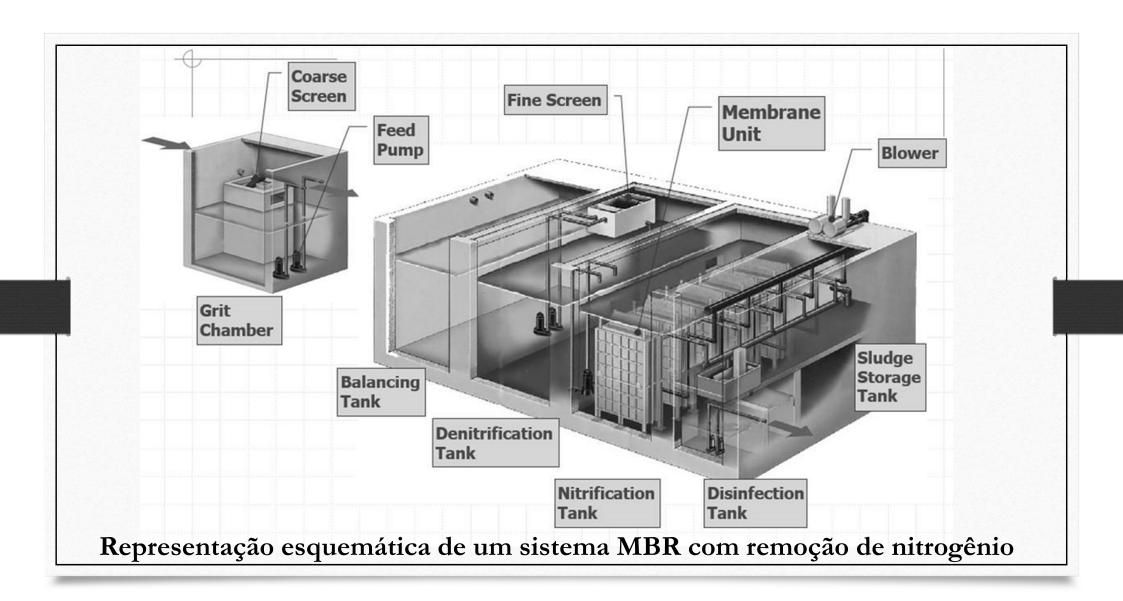

Tipos de sistemas MBR

- Apenas remoção de matéria orgânica;
- Remoção de matéria orgânica e nitrificação;
- Remoção de matéria orgânica e nitrogênio.

Tipos de processos em função da carga orgânica

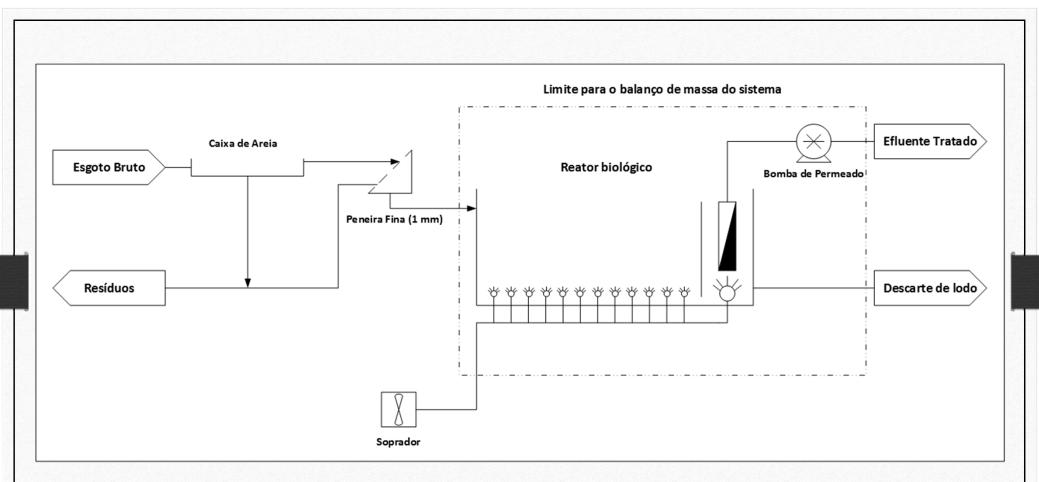

DQO afluente (mg O ₂ /L)	Processo mais indicado	Observações		
< 1000	Aeróbio / Anóxico	Maior consumo de oxigênio		
1000 < DQO < 4000	Aeróbio/Anóxico ou anaeróbio	A utilização do processo anaeróbio irá requer um processo complementar de tratamento		
> 4000	Anaeróbio	Requer a utilização de processo de pós-tratamento		

Fonte: Biological Wastewater Treatment, 2nd edition, 1999 – Chapter 9.

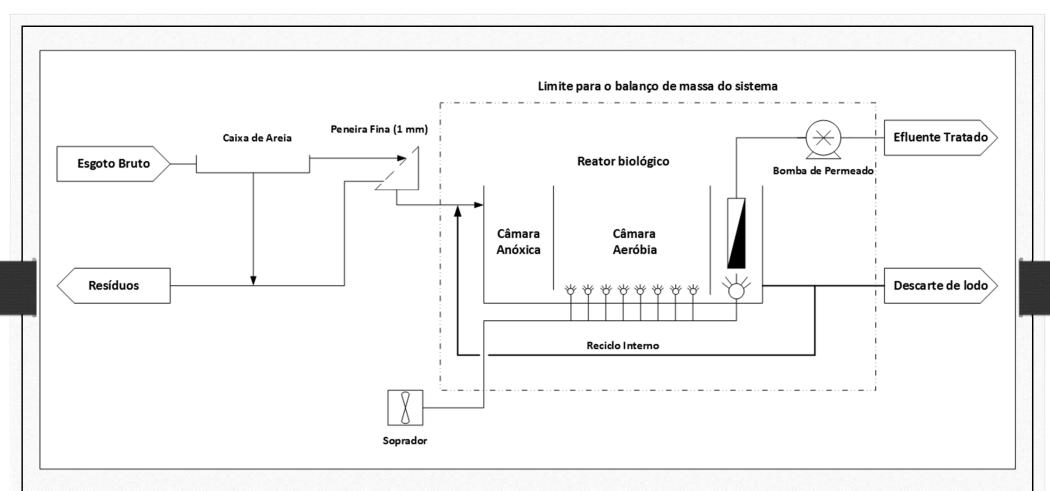


Dimensionamento de Sistemas MBR

- É similar ao procedimento utilizado para o dimensionamento de sistemas biológicos;
- Principais diferenças:
 - Concentração de sólidos no licor misto:
 - Geralmente, a concentração de SSLM deve ser maior que 8.000 mg/L (10.000 a 12.000 mg de SSLM/L é o usual);
 - A aeração para as membranas, geralmente, supera a demanda de oxigênio para o processo biológico;
 - Processos com nitrificação e desnitrificação requerem taxas de reciclo interno mais elevadas.

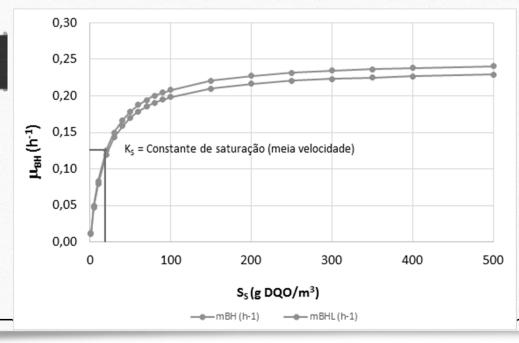


Efeito da taxa interna de reciclo na concentração de nitrato no efluente de um processo anóxico/aeróbio (Metcalf & Eddy, 2014)



Dimensionamento de Sistemas MBR

- O dimensionamento é similar àquele utilizado para sistemas biológicos de tratamento de efluentes;
- A principal diferença é que nos sistemas MBR não é necessário incluir o decantador secundário, nem a unidade de adensamento de lodo;
- A partir dos arranjos típicos promove-se o dimensionamento do sistema biológico e do sistema de separação por membranas.
- Dependendo da capacidade do sistema de tratamento as membranas são instaladas em um tanque separado:
 - O tanque de membranas também faz parte do reator biológico;
 - A separação é feita para otimizar o processo, reduzindo o consumo de ar.
- O pré-tratamento também pode ser simplificado.


Sistema para remoção de matéria orgânica e nitrificação

Sistema para remoção de matéria orgânica e de nitrogênio

Modelo de Monod para produção de biomassa

• Este modelo nada mais é do que o ajuste da curva de variação de produção de biomassa, ou da taxa de crescimento específico, em função do consumo de substrato.

$$\mu_{BH} = \mu_{BHmax} \left(\frac{S_S}{K_S + S_S} \right)$$

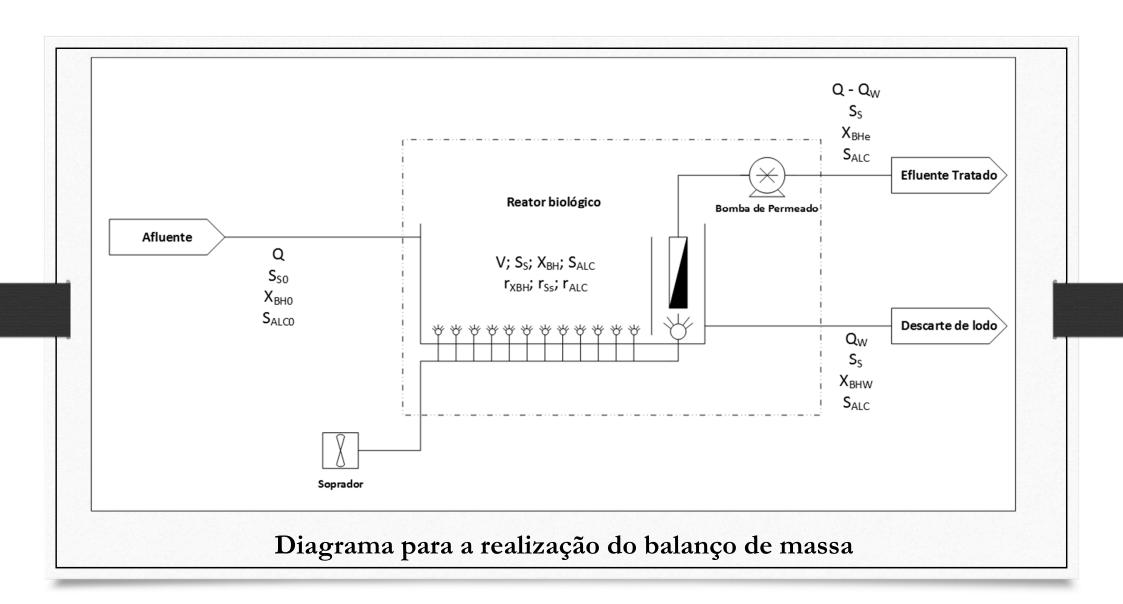
Sem limitação de oxigênio

$$\mu_{BHL} = \mu_{BHmax} \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_O}{K_{OH} + S_O} \right)$$

Com limitação de oxigênio (2,0 mg O_2/L)

Coeficientes cinéticos e estequiométricos para múltiplas reações no processo biológico com crescimento em suspensão

Componente → i		nente → i 1 2 3 4 5		5	6 7 8		9	Comptended of December 1 and 1 m1			
j	Processo ↓	Xs	Хв,н	X _{B,}	, X _D	Ss	So	S _{NO}	S _{NH}	S _{ALC}	Constantes do Processo, r _j , ML ⁻¹ T ⁻¹
1	Crescimento aeróbio de bactérias heterotróficas		1			$-\frac{1}{Y_H}$	$\frac{1-Y_H}{Y_H}$		$-i_{N/XB}$	$-\frac{i_{N/x_B}}{14}$	$\mu_{Hmax} \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_O}{K_{O,H} + S_O} \right) X_{B,H}$
2	Crescimento anóxico de bactérias heterotróficas		1			$-\frac{1}{Y_H}$		$-\frac{1-Y_{H}}{2,86Y_{H}}$	$-i_{N/XB}$	$-\frac{1-Y_H}{14(2,86Y_H)} - \frac{i_{N/XB}}{14}$	$\mu_{Hmax}\left(\frac{S_S}{K_S + S_S}\right)\left(\frac{K_{O,H}}{K_{O,H} + S_O}\right)\left(\frac{S_{NO}}{K_{NO} + S_{NO}}\right)\eta_g X_{B,H}$
3	Crescimento aeróbio de bactérias autotróficas			1			$\frac{4,57-Y_A}{Y_A}$	$\frac{1}{Y_A}$	$-i_{N/XB}-\frac{1}{Y_A}$	$-\frac{i_{N/XB}}{14}-\frac{1}{7Y_A}$	$\mu_{Amax}\left(\frac{S_{NH}}{K_{NH}+S_{NH}}\right)\left(\frac{S_O}{K_{O,A}+S_O}\right)X_{B,A}$
4	Morte e lise de bactérias heterotróficas	1-f ₀	-1		f'o						$b_{L,H} X_{B,H}$
5	Morte e lise de bactérias autotróficas	1 - f' _D		-1	f' _D						$b_{L,A} X_{B,A}$


Símbolo	Definição	Símbolo	Definição
X_S	DQO lentamente biodegradável (mg O_2/L)	S_{O}	Concentração de oxigênio (mg O_2/L)
$X_{B,H}$	Biomassa heterotrófica ativa (mg DQO/L)	S _{NO}	Nitrogênio na forma de nitrato (mg N/L)
$X_{B,A}$	Biomassa autotrófica ativa (mg DQO/L)	S_{NH}	Nitrogênio amoniacal (mg N/L)
X_{D}	Detrito de biomassa (mg DQO/L)	S _{ALC}	Alcalinidade (moles/L)
S _S	Substrato rapidamente biodegradável (mg DQO/L)		

Coeficiente estequiométricos e parâmetros cinéticos (20 °C)

Símbolo	Unidades	Valores							
Coeficientes estequiométricos									
Y_{H}	Produção de biomassa em função da DQO consumida (mg DQO _{formada} /mg DQO _{remov})	0,60							
f' _D	Produção de detritos (mg DQO _{detritos} /mg DQO _{biomassa})	0,08							
$i_{ m N/XB}$	Quantidade de nitrogênio na biomassa (mg N / mg DQO _{biomassa})	0,086							
Y_A	Produção de biomassa em função do N oxidado (mg $\mathrm{DQO}_{\mathrm{formada}}/\mathrm{mg}\mathrm{N}_{\mathrm{oxidado}}\!)$	0,24							
	Parâmetros cinéticos								
μ_{Hmax}	Constante de produção máxima de biomassa heterotrófica (h-1)	0,25							
K_S	Constante de saturação para meia velocidade de oxidação de substrato (mg DQO/L)	20							
K _{O,H}	Constante de limitação de oxigênio para bactérias heterotróficas (mg ${ m O}_2/{ m L})$	0,10							
K _{NO}	Constante de saturação para a meia velocidade de nitrificação (mg N/L)	0,20							
$b_{L,H}$	Constante de decaimento endógeno para bactérias heterotróficas (h-1)	0,017							
ηg	Fator adimensional	0,80							
μ_{Amax}	Constante de produção de biomassa autotrófica (h-1)	0,032							
K _{NH}	Constante de saturação para meia velocidade de oxidação de amônia (mg N/L)	1,0							
K _{O,A}	Constante de limitação de oxigênio para bactérias autotróficas (mg ${ m O}_2/{ m L})$	0,75							
$b_{L,A}$	Constante de decaimento endógeno para bactérias autotróficas (h-1)	0,004							

Dimensionamento de sistemas para remoção de matéria orgânica

- Com base nos dados de qualidade do efluente a ser tratado:
 - Adotar o tempo de retenção de sólidos no reator;
 - Adotar a concentração de sólidos suspensos no licor misto;
 - Elaborar o diagrama do processo indicando as principais correntes de processo;
 - Desenvolver as equações de balanço de massa necessárias.
 - Calcular a concentração de substrato no efluente final;
 - Calcular o volume do reator;
 - Calcular a vazão de descarte de lodo;
 - Calcular a área de membrana a ser utilizada;
 - Calcular o consumo de OD e a potência do aerador.

Equação geral para o balanço de massa

$$V\frac{dC}{dt} = Q.C_0 - (Q - Q_W).C_e - Q_W.C_W + r_C.V$$

- C₀, C_e e C_W referem-se às concentrações dos constituintes para os quais será feito o balanço de massa;
- Em regime permanente, não há acúmulo no reator.

Balanço para microrganismos heterotróficos

- Neste caso a variável C é substituída por X_{BH};
- A membrana é uma barreira efetiva para microrganismos;
- A concentração de microrganismos no afluente é desprezível;

$$V \frac{dX_{BH}}{dt} = Q.X_{BH0} - (Q - Q_W).X_{BHe} - Q_W.X_{BHW} + r_{X_{BH}}.V$$

$$r_{X_{BH}}.V = Q_W.X_{BHW} (1)$$

Considerando-se que o reator é de mistura completa, $X_{BHW} = X_{BH}$

• Tempo de retenção de sólidos (TRS) ou idade do lodo (θ)

$$\theta = \frac{V.X_{BH}}{Q_W.X_{BH}} \Longrightarrow \theta = \frac{V}{Q_W} (2)$$

• Cinética de produção de lodo (ver tabela do slide 18)

$$r_{X_{BH}} = \mu_{Hmax} \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_O}{K_{O,H} + S_O} \right) X_{BH} - b_{L,H} X_{BH}$$

$$r_{X_{BH}} = X_{BH} \left[\mu_{Hmax} \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_O}{K_{O,H} + S_O} \right) - b_{L,H} \right]$$
 (3)

$$\left(\frac{S_O}{K_{O,H} + S_O}\right) = f_{OX_H}(4); \ em \ (3) \implies r_{X_{BH}} = X_{BH} \left[\mu_{Hmax}. f_{OX_H} \left(\frac{S_S}{K_S + S_S}\right) - b_{L,H}\right] \ (5)$$

(5) em (1):

$$V. \textit{X/BH} \left[\mu_{Hmax}. \textit{f}_{OX_{H}} \left(\frac{\textit{S}_{S}}{\textit{K}_{S} + \textit{S}_{S}} \right) - \textit{b}_{L,H} \right] = \textit{Q}_{W}. \textit{X/BH} \\ \Longrightarrow \frac{\textit{Q}_{W}}{\textit{V}} = \frac{1}{\theta} = \mu_{Hmax}. \textit{f}_{OX_{H}} \left(\frac{\textit{S}_{S}}{\textit{K}_{S} + \textit{S}_{S}} \right) - \textit{b}_{L,H}$$

$$\mu_{Hmax}.f_{fox_H}\left(\frac{S_S}{K_S + S_S}\right) = \frac{1 + \theta.b_{L,H}}{\theta}$$
 (6)

$$\frac{S_S}{K_S + S_S} = \frac{1 + \theta.b_{L,H}}{\mu_{Hmax}.\theta.f_{OX_H}} \Longrightarrow \frac{K_S}{S_S} + 1 = \frac{\mu_{Hmax}.\theta.f_{OX_H}}{1 + \theta.b_{L,H}}$$

$$\frac{K_S}{S_S} = \frac{\mu_{Hmax}.\,\theta.\,f_{OX_H}}{1+\,\theta.\,b_{L,H}} - 1 \Longrightarrow \frac{K_S}{S_S} = \frac{\mu_{Hmax}.\,\theta.\,f_{OX_H} - \left(1+\theta.\,b_{L,H}\right)}{1+\theta.\,b_{L,H}} \Longrightarrow S_S = \frac{K_S(1+\theta.\,b_{L,H})}{\mu_{Hmax}.\,\theta.\,f_{OX_H} - 1-\theta.\,b_{L,H}}$$

$$S_S = \frac{K_S(1 + \theta.b_{L,H})}{\theta(\mu_{Hmax}.f_{OX_H} - b_{L,H}) - 1}$$
(7)

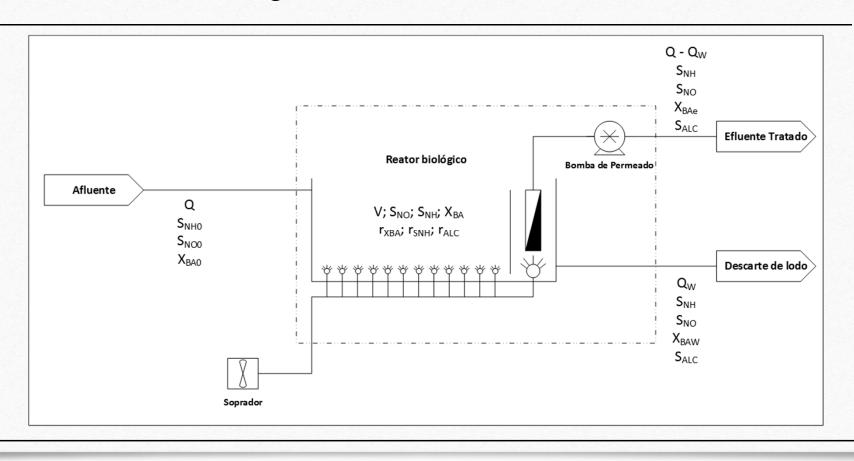
Repetir o balanço de massa para os demais componentes

• Para matéria orgânica:

$$V = \frac{Y_H \cdot \theta \cdot Q(S_{S_0} - S_S)}{X_{BH} (1 + \theta \cdot b_{L,H})}$$
(8)

• Para detritos:

$$|X_{D_H} = \theta.f_D'.b_{L,H}.X_{BH} (9)|$$


• Para oxigênio:

- O consumo de oxigênio é resultado do consumo para matéria orgânica alimentada ao sistema (S₀), mais aquela resultante da morte de organismos heterotróficos (X_S).
- Pela tabela do slide 18:

$$CO = (r_{S_0} + r_{X_L}).V$$

$$CO = Q(S_{S_0} - S_S) \left[1 - \frac{Y_H(1 + f_d'.\theta.b_{L,H})}{1 + \theta.b_{L,H}} \right] (10)$$

Para nitrificação

Equacionamento

- O equacionamento para a remoção de matéria orgânica já apresentado;
- Cinética de produção de lodo para bactérias oxidantes de amônia (Tabela do Slide 18):

$$r_{X_{BA}} = \mu_{Amax} \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) \left(\frac{S_O}{K_{O,A} + S_O} \right) X_{BA} - b_{L,A} X_{BA}; \qquad \left(\frac{S_O}{K_{O,A} + S_O} \right) = f_{OX_A} (11)$$

$$r_{X_{BA}} = X_{BA} \left[\mu_{Amax} \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) f_{OX_A} - b_{L,A} \right]$$
 (12)

• Balanço de massa:

$$V \frac{dX_{BA}^{\prime 0}}{dt} = Q.X_{BA0}^{\prime 0} - (Q - Q_W).X_{BAe} - Q_W.X_{BAW} + r_{X_{BA}}.V; \qquad r_{X_{BA}}.V = Q_W.X_{BAW}$$
(13)

• 12 em 13:

$$\mu_{Amax}.f_{OX_A}\left(\frac{S_{NH}}{K_{NH} + S_{NH}}\right) = \frac{1 + \theta.b_{L,A}}{\theta} (14)$$

• Isolando S_{NH}:

$$S_{NH} = \frac{K_{NH}(1 + \theta. b_{L,A})}{\theta(\mu_{Amax}. f_{OX_A} - b_{L,A}) - 1}$$
(15)

• Balanço para nitrogênio oxidável, obtém-se a concentração de bactérias autotróficas:

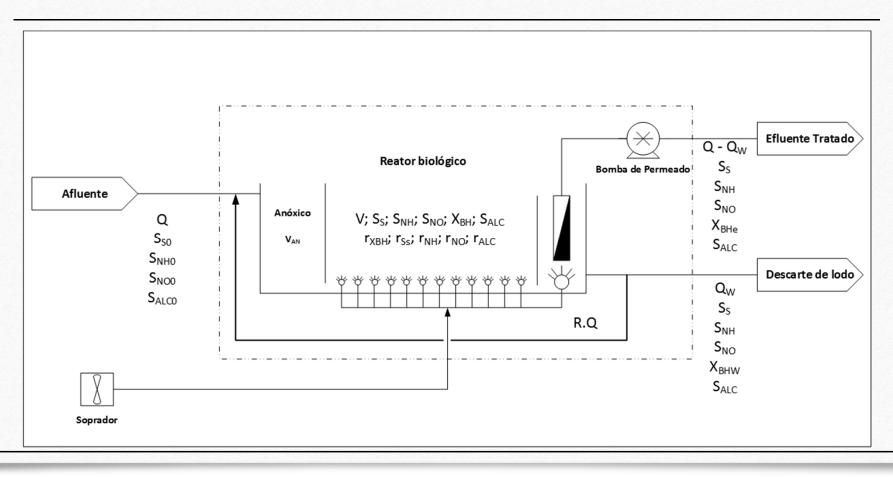
$$X_{BA} = Y_A \left[\frac{\theta \cdot Q(S_{NH_0} - S_{NH}) - V \cdot i_{N/XB} \cdot X_{BH} (1 + \theta \cdot b_{L,H})}{V(Y_A \cdot i_{N/XB} + 1) \cdot (1 + \theta \cdot b_{L,A})} \right]$$
(16)

• Balanço para nitrato:

$$S_{NO} = \frac{V.X_{BA}(1 + \theta.b_{L,A})}{Q.\theta.Y_A} (17)$$

• Balanço para detritos:

$$X_{DA} = \theta . f'_d . b_{L,A} . X_{BA} (18)$$


• Consumo de oxigênio para nitrificação:

$$CO_{Nitrificação} = (4.57 - Y_A) \left[\frac{\theta \cdot Q(S_{NH_0} - S_{NH}) - V \cdot i_{N/XB} \cdot X_{BH} (1 + \theta \cdot b_{L,H})}{\theta(Y_A \cdot i_{N/XB} + 1)} \right] (18)$$

• Balanço para alcalinidade (concentração molar):

$$S_{ALC} = S_{ALC_0} - \frac{V}{Q} \left[\frac{i_{N/XB} \cdot X_{BH} \cdot Y_A (1 + \theta \cdot b_{L,H}) + X_{BA} (i_{N/XB} \cdot Y_A + 2)(1 + \theta \cdot b_{L,A})}{14 \cdot Y_A \cdot \theta} \right]$$
(19)

Processo com nitrificação e desnitrificação

Considerações para o dimensionamento

- Os cálculos para a remoção de matéria orgânica e nitrificação são os mesmos que os apresentados;
- Contudo, o dimensionamento da câmara anóxica segue um procedimento diferente;
- Elabora-se um balanço de massa para obtenção da quantidade de nitrogênio oxidável;
- A partir da quantidade de nitrogênio oxidável elabora-se outro balanço de massa para obtenção da taxa de recirculação interna;
- Adota-se o volume do reator anóxico, de desnitrificação, como uma porcentagem do volume do reator aeróbio (20 a 30%);
- Admite-se que a produção e decaimento de biomassa na câmara anóxica é desprezível, e que todo o nitrato alimentado é reduzido;
- Utiliza-se o conceito de Taxa Específica de Desnitrificação proposto em Metcalf & Eddy 2014, para obter a capacidade de desnitrificação da câmara anóxica;
- Compara-se o valor com a quantidade de nitrogênio oxidável alimentado na câmara anóxica.

- Balanço para nitrogênio oxidável:
 - Noxidável = N-kjeldahl_{afluente} Nkjeldahl_{efluente} Nbiomassa_{descartada}

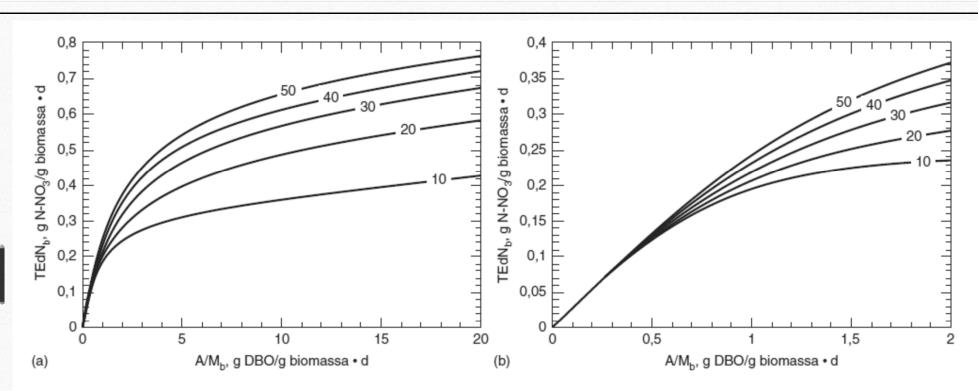
$$Q.(NO_x) = Q.(NKT_0) - Q(NKT_e) - 0.12.\frac{X_{bio}.V_{reator}}{\theta}$$
(20)

$$NOx = NKT_0 - NKT_e - 0.12 \frac{X_{bio}.V_{reator}}{Q.\theta}$$
 (21)

$$|X_{bio} = X_{BH} + X_{BA} + X_{D_{HA}} (22)|$$

- NKT_e é obtido com a equação (15).
- Balanço para nitrato:

• N-produzido = N-NO_{3efluente} + N-NO_{3reciclo} - N-NO_{3lodo descartado}


$$Q.NO_x = S_{NO}[(Q - \mathcal{Q}_W) + \mathcal{Q}_W + R.Q]; \qquad \mathcal{Q}.NO_x = \mathcal{Q}.S_{NO}(1 + R)$$

$$R = \frac{NO_x}{S_{NO}} - 1 \text{ (23)}; S_{NO} \text{ \'e obtido com a equação (17)}$$

- Cálculo da quantidade de nitrato alimentada ao reator anóxico:
 - Admite-se que a concentração de nitrato no afluente é zero;
 - A concentração de nitrato no reciclo interno é obtida pela equação (17).

$$NO_{x_{reator\ anóxico}} = Q.R.S_{NO}$$
 (24)

- Obtenção da Taxa Específica de Desnitrificação:
 - Adotar o volume da câmara anóxica;
 - Obter a concentração de bactérias heterotróficas no reator anóxico (X_{BHan});
 - Obter a relação A/M_{BH}, na câmara anóxica;
 - Obter a TEdN, com base nas equações das curvas do gráfico TEdN x A/M $_{\rm BH}$;
 - Calcular a quantidade de nitrato reduzido;
 - Comparar com a quantidade alimentada no reator anóxico.

FIGURA 8–31 Taxas específicas de desnitrificação (TEdN_b), com base na concentração de biomassa, a 20°C, em função da relação alimento/microrganismos (A/M_b), para várias porcentagens de DQOrb em relação à DQOb do afluente (a) para valores de A/M _b até 20 e (b) escala expandida para valores de A/M _b até 2.

Fonte: Metcalf & Eddy, 2014 – Capítulo 8

$$\frac{A}{M_{BH}} = \frac{Q.S_0}{V_{anox}.X_{BH_{anox}}}$$
(25); S_0 é a DBO af luente ao sistema.

$$X_{BH_{anox}} = \frac{R.X_{BH_{aer\acute{o}bio}}}{(1+R)} (26)$$

$$TEdN_{20^{\circ}C} = b_0 + b_1 \left[ln \left(\frac{A}{M_{BH}} \right) \right]$$
, se $\frac{A}{M_{BH}} > 0.50 (27)$

• Os valores de b₀ e b₁ dependem da DQO rapidamente biodegradável.

$$TEdN_{20^{\circ}C} = 0.24 \left(\frac{A}{M_{BH}}\right)$$
, se $\frac{A}{M_{BH}} \le 0.50 (28)$

- Se A/M_{BH} for maior ou igual a 1,0 g/g.d, a TEdN deverá ser ajustada:
 - Para TIR = 2: $TEdN_{ajus} = TEdN_{20°C} 0.0166 \ln \left(\frac{A}{M_{BH}} \right) 0.078$
 - Para TIR = 3-4: $TEdN_{ajus} = TEdN_{20^{\circ}C} 0,029 \ln \left(\frac{A}{M_{BH}} \right) 0,012$
- Cálculo da quantidade de NOx reduzida:

$$NO_{x_{removido}} = TEdN.V_{anox}.X_{BH_{anox}} (29)$$

Valores de b₀ e b₁ em função da porcentagem da DQO rapidamente biodegradável

	Coeficiente da equação da TEdN				
Porcentagem DQOrb	b _o	b ₁			
10	0,186	0,078			
20	0,213	0,118			
30	0,235	0,141			
40	0,242	0,152			
50	0,270	0,162			

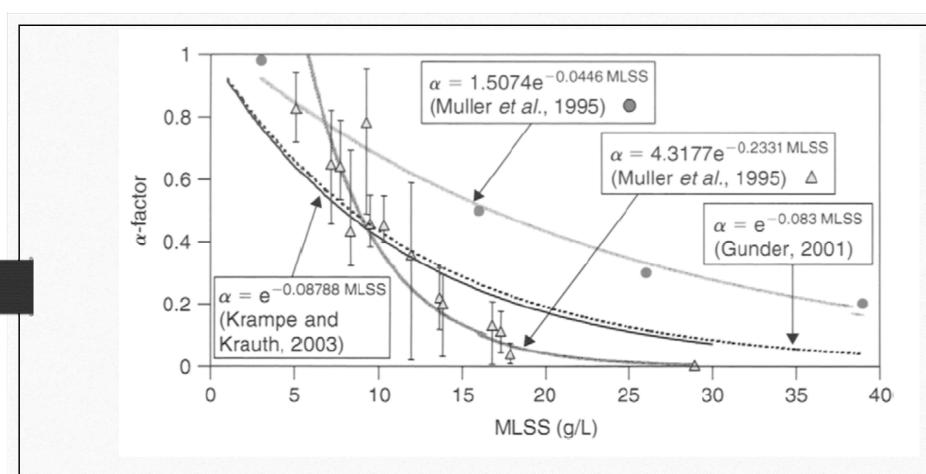
Efeito da temperatura nos processos biológicos

- Como os processos biológicos nada mais são do que reações químicas que ocorrem no reator a temperatura afeta os parâmetros cinéticos;
- Como em processos químicos, a constantes cinéticas podem ser representadas pela equação de Arrhenius;
- A partir da manipulação da equação de Arrhenius foi obtida uma equação simplificada para a correção das constantes cinéticas:

$$k_1 = k_2 \cdot \theta^{(T_1 - T_2)}$$
 (30)

 k_1 = constante na temperatura para cálculo;

 T_1 = temperatura de cálculo;


 k_2 = constante na temperatura de 20°C;

 T_2 = temperatura de referência para k_2 ;

 θ = fator de correção de temperatura.

Fatores de correção de temperatura para as constantes cinéticas

Constante cinética	Valor de θ
$\mu_{ m Hmax}$	1,08
$\mathrm{b_{L,H}}$	1,04
K _S e Y _H	1,00
$\mu_{ m Amax}$	1,11
$\mathrm{b_{L,A}}$	1,04
K_{NH}	1,14
Y_A	1,00
TEdN	1,03

Fator de transferência de oxigênio em processos de lodo ativado em função da concentração de SSLM (Fonte: Simon Judd, 2006)

Exemplo do desempenho dos bioreatores com membranas submersas

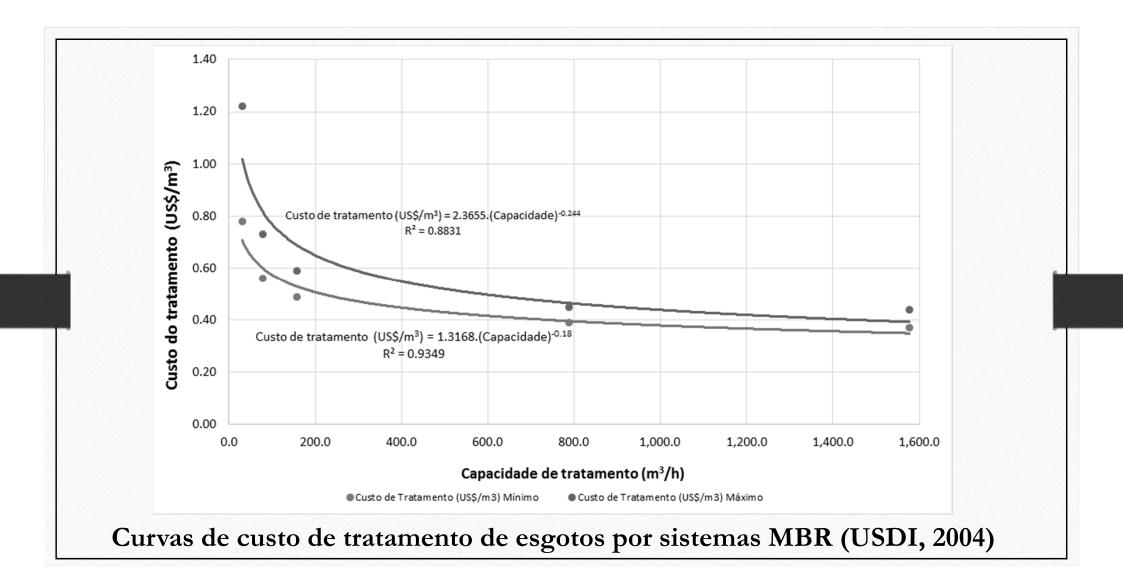
Aflu	iente (mg/l	-)	Efl	Marabrana			
SS	DQO*	DBO	SS	DQO	DBO	Membrana	
80 - 460	100 - 365	200 - 1000	< 5	< 40	< 10	UF	
96	89	349	< 5	12	3,7	UF	
280	620	230	< 5	11	< 5	MF	
153	79	176	< 5	6	1,5	MF	
110 – 164	292 – 411	X	< 5	15 – 19	X	UF	
1315	X	1130	5	X	5	UF	

^{*} DQO baseada no método com permanganato.

Fonte: Water Treatment Membrane Processes - AWWA

Informações para projeto (Apenas do sistema de membranas)

- Capacidade do sistema;
- Taxa de fluxo (LMH Litros por hora por metro quadrado);
- Limites de pressão
- Taxa específica de aeração;
- Frequência de contralavagem;
- Frequência de limpezas químicas:
 - Manutenção;
 - Preventiva;
 - Recuperação.


Dados sobre condições de operação de membranas comerciais

Manufacturer	Configuration (Model)	Flux, net (m/d)	Area (m²)	Air, net (m ³ /hr)	SAD _m (m ³ air/ m ² membrane/hr)	SAD _p (m ³ air/ m ³ permeate)	Remark	Raw data source
GE Water	HF(ZW500d)	0.6	98	18	0.18	7.3		Côté, 2004a
Kubota	FS(SP400)	0.8	400	120	0.30	9.0		Personal communication
Kubota	FS (EW400)	0.6	500	192	0.38	15	Manufacture's	
Econity	HF (4005CF)	0.4	1000	150	0.15	9.0	spec	Personal communication
Koch Puron					0.14-0.53			Herold, 2011
Kubota	FS (EK200)	0.6	160	96	0.60	24	Pilot test	Adham, 2004
Siemens	HF(B10R)	0.58	37	13.4	0.36	16	Pilot test	Adham, 2004
Mitsubishi	HF(SADF)	0.72	29	13.7	0.47	16	Pilot test	Wei, 2006
A3 Water Solutions	HF(SADF)	0.6	140	28	0.2	8	Pilot test	Grélot, 2010
Asahi	HF (MUNC- 620A)	0.6	25	6	0.24	9.6	Pilot test	Personal communication
	HF(ZW500a)	0.6	5,280	2,300	0.44	17	Rödingen, Germany	Brepols, 2004
•		0.6	4,088	1,577	0.39	15	Key Colony, FL	Survey
		0.73	67	25	0.37	13		
		0.9	67	18	0.27	7.2	Pilot test	Adham, 2004
GE Water	HF(ZW500c)	0.48			0.26	13	Pilot test	Côté, 2004b
GE Water	HF(ZW500C)	?	?	?	?	15	Varsseld, Netherlands	
		0.6	84,480	34,000	0.40	16	Nordkanal, Germany	Brepols, 2004
	HF(ZW500d)	0.6	12,100	4,000	0.33	13	Glessen, Germany	

Table 3: Process conditions and degrees of removal in typical conventional ASP and selected MBR plants for municipal wastewater treatment (^a Mudrack and Kunst, 1985, ^b MUNLV, 2003, ^c Cicek et al., 1999, ^d Hotchkies, ^e Kraume and Bracklow, 2003, ^f Tazi-Pain et al., 2002, ^g de Haas et al., 2004, ^h Mallia et al., 2001, ^j Gander et al., 2000).

	Unit	Conventional ASP ^{a,b,c}	MBR ^b	MBR ^c	ZenoGem Milton, (USA) ^d	6 German 750-12,000 EP plants ^e	BIOSEP (France) ^f	Magnetic Island (Australia) ^g
SRT	d	10-25	< 30	30	> 15 ^h	25-28	> 20	30
HRT	h	4-8 ^j	>6	8 ^j	3	< 10		
MLSS	kg m ⁻³	5	12-16		15-20 ^h	8-16, mainly 12	15	15
BOD ₅ loading rate	kg m ⁻³ d ⁻¹	0.25 0.32-0.64 ^j		0.4-0.7	2.5	0.32-0.79		
BOD ₅ (F:M)	kg kg ⁻¹ d ⁻¹	0.05	< 0.08		< 0.2	0.02-0.066		
BOD ₅ removal effluent conc.	% mg L ⁻¹	85-95 ^j 15		98-99 ^j	> 99 < 2	98 < 5	> 97.5	< 3
COD removal effluent conc.		94.5	< 30	99		96.1 < 25	97	
TSS removal TSS turbidity	% mg L ⁻¹ NTU	60.9 10-15	0	99.9	> 99 < 2 < 0.1	0	99.8	0.6
N _{total} removal effluent conc. NH ₄ ⁺ removal	% mg L ⁻¹ %	< 13 98.9	< 13	99.2	> 96 (TKN) < 2 (TKN) < 0.5 mg L ⁻¹	92 < 10 < 1 mg L ⁻¹	98.6 (TKN) 0.4 (TKN)	< 2 (with sugar dosing
P _{total} removal effluent conc.	% mg L ⁻¹	88.5 0.8-1	< 0.3	96.6	> 99 < 0.1	86.5 1		< 0.3

Dados sobre desempenho de sistemas de tratamento de esgotos, comparação com o sistema de lodo ativado convencional - http://www.iwawaterwiki.org/xwiki/bin/view/Articles/MembraneBioreactor

