

Considere a adição de NH_3 à solução aquosa do íon Cu^{2+} { $[Cu(H_2O)_6]^{2+}$ }. O NH_3 é uma base mais forte do que a H_2O , então desloca as moléculas de H_2O e forma o íon complexo $[Cu(NH_3)_4]^{2+}$. Visualmente, é observado uma drástica mudança de cor.

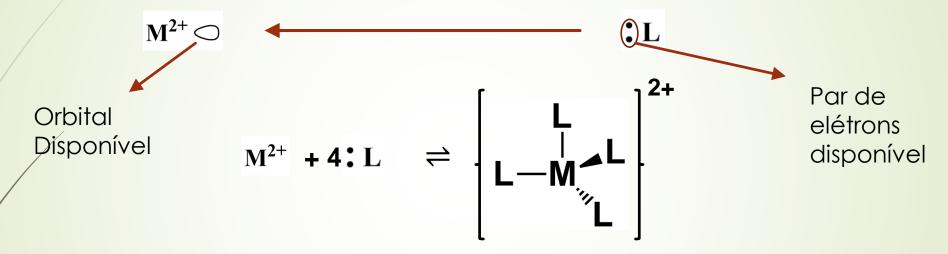
 $[Cu(H_2O)_6]^{2+}_{(aq)} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}_{(aq)} + 6H_2O$

Formação de Íon Complexos

• Metais de transição tendem a ser bons ácidos Lewis. Frequentemente se ligam a uma ou mais moléculas de H₂O para forma um íon hidratado. A H₂O é base de Lewis e, portanto doam pares de elétrons para formar ligação covalente coordinada.

$$Cu^{2+}_{(aq)} + 6 H_2O_{(l)} \rightleftharpoons [Cu(H_2O)_6]^{2+}_{(aq)}$$

Os íons formados pela combinação de um cátion com vários ânions ou moléculas neutras são denominados <u>ÍON COMPLEXOS</u>.


$$\checkmark Cu(H_2O)_6^{2+}$$

· Íons ou moléculas que interagem são denominadas LIGANTES

Ácidos e Bases de Lewis

Ácido de Lewis – Espécie com orbitais disponíveis para aceitar elétrons

Base de Lewis – Espécie com orbitais disponíveis para doar elétrons

O complexo resultante tem carga líquida de acordo com o metal de coordenação e os ligantes

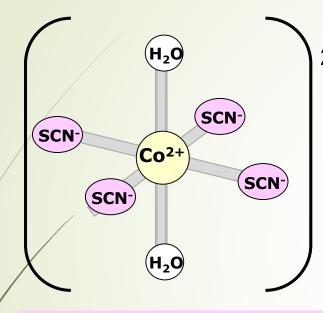
$$Co^{3+} + 6 NH_3 \rightleftharpoons [Co(NH_3)_6]^{3+}$$

Hexaamincobalto (III)
 $Fe3^+ + 6 CN^- \rightleftharpoons [Fe(CN)_6]^{3-}$
Hexacianoferrato.

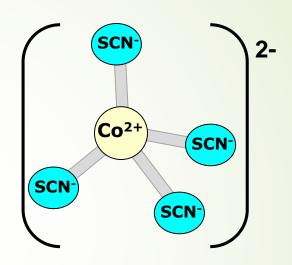
$$Cu^{2+} + 2 SCN^- \rightleftharpoons Cu(SCN)_2$$

[Co(NH₃)₆] [Fe(CN)₆] e o nome disso???? Hexacianoferrato de Hexaamincobalto (III)

Elementos de transição na Tabela Periódica


H₂O, NH₃, CN⁻ bases de Lewis

 $Cu(H_2O)_6^{2+}$: absorve luz na região laranja, com $v_{máx} = 5 \times 10^{14} \text{ s}^{-1}$ ou $\lambda \approx 600 \text{ nm}$. A luz transmitida é predominantemente azul


[Co(SCN)₄(H₂O)₂]²⁻complexo octaédrico

[Co(SCN)₄]²⁻ complexo tetraédrico

acetona

Solvente com cte. baixa dielétrica (ε)

Íon central - Co²⁺

Ligante - SCN⁻ e H₂O

NC - 6

Nome – Tetratiocianodiaquo cobalto (II)

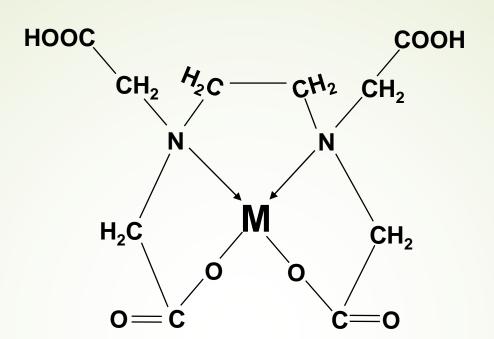
 $\varepsilon_{\rm H2O} = 80$

Íon central - Co²⁺

Ligante - SCN⁻ e H₂O

NC - 6

Nome - Tetratiociano cobalto (II)

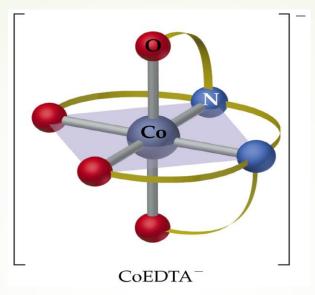

 $\varepsilon_{acetona} = 21$

- Um agente quelante muito importante é o etilenodiaminotetraacetato (EDTA⁴-).
- O EDTA é usado em produtos de consumo para complexar os íons metálico que catalisam reações de decomposição.

EDTA: ácido etilenodiaminotetraacético = LIGANTE HEXADENTADO

$$\begin{array}{c} O \\ | \\ | \\ O - C - CH_2 \\ | \\ O - C - CH_2 \\ | \\ O \end{array} | \begin{array}{c} O \\ | \\ | \\ | \\ O \end{array} | \begin{array}{c} CH_2 - C - O \\ | \\ | \\ O \end{array} | \begin{array}{c} CH_2 - C - O \\ | \\ | \\ O \end{array} |$$

EDTA


Representação esquemática do quelato formado de EDTA e um cátion bivalente (M)

EDTA é o acrónimo em inglês: EthyleneDiamineTetrAcetic acid.(ácido etilenodiamino tetra-acético).

É um composto orgânico que age como ligante polidentado, formando complexos muito estáveis com diversos íons

metálicos.

O EDTA ocupa 6 sítios de coordenação, por exemplo, [CoEDTA]⁻ é um complexo octaédrico Co³⁺.

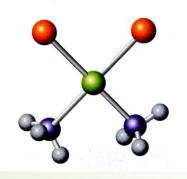
Tanto os átomos de N como os átomos de O coordenam-se ao metal.

Íon central – Co³⁺

Ligante – EDTA (etilenodiaminotetraacetato)

NC - 6

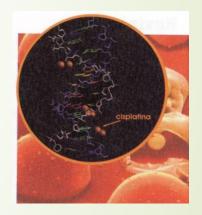
Nome - etilenodiaminotetraacetato cobalto (III)


Aplicações dos complexos

Química

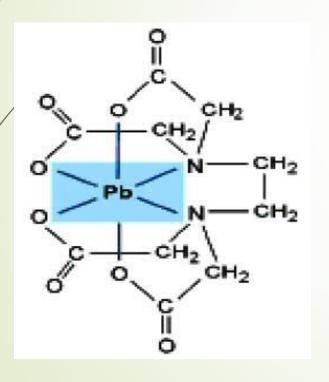
Produtos de limpeza – O EDTA é um agente complexante capaz de formar quelatos com metais como Ca²⁺, Mg²⁺, criando um complexo iônico solúvel evitando a fixação cálcio em tubulações e materiais.

Limpar ferrugem – o oxido de ferro é insolúvel em água, mas dissolve–se na presença de ácido oxálico dando origem ao íon complexo trioxalato ferrato (III) $[Fe(C_2O_4)_3]^{3-}$ solúvel ou ao $[FeF_6]^{3-}$


Medicina

Um dos complexos de maior sucesso na área da terapêutica é a cisplatina [Pt(NH₃)₂Cl₂]

cisplatina [Pt(NH₃)₂Cl₂]


Este complexo tem a capacidade de se introduzir nas cadeias de DNA do núcleo das células. Como consequência desta introdução anómala na cadeia DNA, a célula deixa de se replicar o que permite que a cisplatina seja um instrumento eficaz na cura do câncer. É injetada nas células tumorais o que as impede de se replicarem.

Possui no entanto grandes efeitos secundários a nível renal

Medicina

EDTA é um composto orgânico que age como ligante polidentado, formando complexos muito estáveis com diversos íons metálicos. Porisso, é usado como preservante do sangue, pois "inativa" os íons Ca²⁺, que promovem a coagulação sanguínea.

Esta habilidade de complexar e assim "inativar" íons metálicos é também usada como antídoto para envenenamento por chumbo

Bioquímica

A molécula de hemoglobina $(C_{2952}H_{4664}O_{832}N_{812}S_8Fe_4)$ é um complexo de ferro , podendo ser dividida em mais de 500 aminoácidos. A parte principal da molécula é um anel heterocíclico contendo um átomo de Fe. Este átomo de Fe é o responsável por manter o O_2 ligado à molécula e assegurar o seu transporte no sangue .

O mesmo complexo pode ser encontrado em enzimas como peroxidases, responsaveis pela conversão peróxidos em seus respectivos derivados.

ROOR' + electron donor (2 e⁻) + 2H⁺ \rightarrow ROH + R'OH

APLICAÇÕES EM QUÍMICA ANALÍTICA

QUALITATIVA → Dissolução de precipitados por efeito de complexação - auxílio na separação e identificação de cátion e ânions.

QUANTITATIVA → Desenvolvimento de métodos analíticos para determinação quantitativa de metais. Neste caso o principal agente complexante é o EDTA, cuja seletividade de complexação pode ser controlada por variação de pH.

Reaçoes de cátions usuais com base forte (OH-) e base fraca (NH₄OH) precipitação e eventual redissolução com formação de complexos

De acordo com os produtos formados em cada caso, como equacionar corretamente as equações de reação?

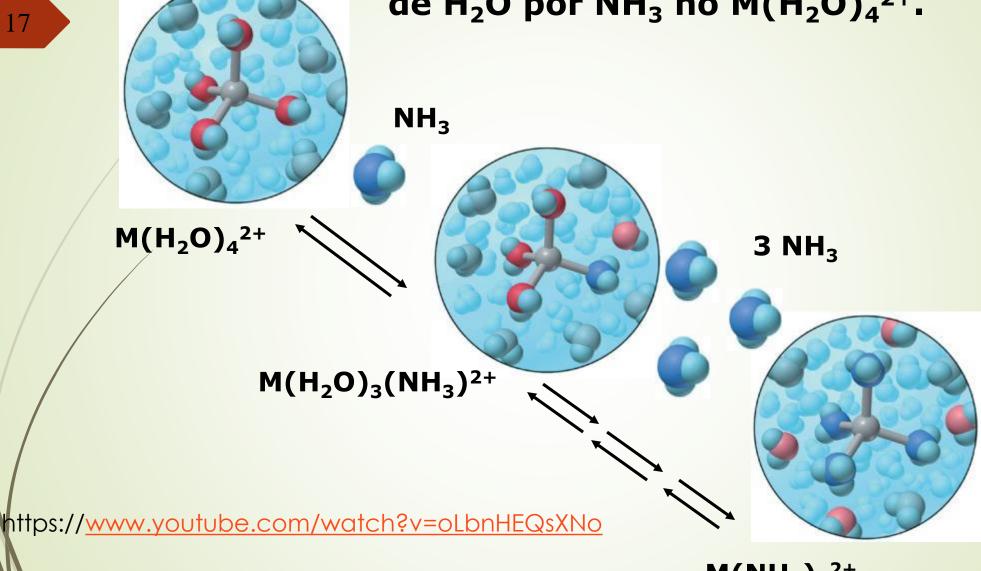
S.L.T.I. = solução límpida, transparente e incolor

I.E. = Insolúvel no excesso

Aplicação: Como separar e identificar os íons presentes na mistura formada pelos sais: AgNO₃, CdCO₃, Al₂(SO₄)₃, Fe₂O₃ e Zn(NO₃)₂? Escreva asequações das reações envolvidas.

	BASE FORTE (OH·)		BASE FRACA (NH₄OH)		
CÁTION	Quant. Normal	Excesso	Quant. Normal	FRACA (NH ₄ OH)	
1- Ag ⁺	Ag ₂ O_castanho	I.E.	<u>Ag₂O</u>	Ag(NH₃)₂+ S.L.T.I.	
2- Hg ₂ ²⁺	<u>Hg₂</u> O pardo	I.E.	Hg ₂ O	HgNH ₂ X Hgº branco preto	
3- Hg ²⁺	HgO amarelo	I.E.	HgNH ₂ X branco X = ânion do sal	complexo	
4- Pb ²⁺	Pb(OH) ₂ branco	Pb(OH) ₄ ² -S.L.T.I.	Pb(OH) ₂	I.E.	
5- Sn ²⁺	Sn(OH) ₂ branco	Sn(OH) ₄ ²⁻ S.L.T.I.	Sn(OH)₂	I.E.	
6- Sn ⁴⁺	Sn(OH)₄ branco	Sn(OH) ₆ 2-S.L.T.I.	Sn(OH)₄	I.E.	
7- Cu ²⁺	Cu(OH)₂ azul	I.E.	<u>Cu(OH)₂</u>	Cu(NH ₃) ₄ ²⁺ S.L.T.I. azul profundo	
8- Bi ³⁺	Bi(OH) ₃ branco	I.E.	Bi(OH) ₃	I.E.	
9- Cd ²⁺	Cd(OH) ₂ branco	I.E.	Cd(OH)₂	Cd(NH ₃) ₆ ²⁺ S.L.T.I.	
10- Al ³⁺	AI(OH) ₃ branco	Al(OH) ₄ -S.L.T.I.	AI(OH) ₃	I.E.	
11- Cr ³⁺	Cr(OH) ₃ verde-cinza	Cr(OH) ₄ - S.L.T. verde esmeralda	Cr(OH) ₃	Cr(NH ₃) ₆ 3+ S.L.T. violáceo	
12- Fe ³⁺	Fe(OH) ₃ vermelho-acast.	I.E.	Fe(OH) ₃	I.E.	
13- Fe ²⁺	Fe(OH) ₂ verde-musgo	I.E.	Fe(OH) ₂	I.E.	
14- Co ²⁺	CoOHX X =ânion Azul do sal	Co(OH) ₂ beje I.E.	CoOHX ► Co(OH) ₂	Co(NH ₃) ₆ ³+ S.L.T. amarelo-sujo	
15- Ni ²⁺	Ni(OH)₂ verde-maçã	I.E.	Ni(OH) ₂	Ni(NH ₃) ₄ 2+	
16- Mn ²⁺	Mn(OH) ₂ ar	→ MnO(OH) ₂ marron	Mn(OH) ₂	O cátion Mn²+ oxida-se facilmente em melo alcalino	
17- Zn ²⁺	Zn(OH) ₂ branco	Zn(OH) ₄ ²⁻ S.L.T.I.	Zn(OH) ₂ Zn(NH ₃) ₆ ²⁺ S.L.T.		
18- Mg ²⁺	Mg(OH) ₂ branco	I.E.	Mg(OH) ₂ (incompleta)	I.E.	

Constante de Formação


A reação entre um íon central e ligantes para formação de um íon complexo é denominada reação de formação de íon complexo.

$$Ag^{+}_{(aq)} + 2 NH_{3(aq)} \longrightarrow Ag(NH_3)_2^{+}_{(aq)}$$

A constante de equilíbrio para a reação de formação é denominada de constante de formação, K_f

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2} = 1.7 \times 10^7$$

Etapas de substituição das moléculas de H_2O por NH_3 no $M(H_2O)_4^{2+}$.

 $M(NH_3)_4^{2+}$

K_f = Constante de Formação ou de Estabilidade

$$M^+ + L^- \longrightarrow ML$$

$$K_f = \frac{[ML]}{[M^+][L^-]}$$

K_d = Constante Dissociação ou de Instabilidade

$$ML \longrightarrow M^+ + L^-$$

$$K_d = \frac{1}{K_f}$$

Complexação de íons Ag+ por NH₃.

constante de estabilidade ou de formação

$$Ag^{+} + NH_{3} \longrightarrow [Ag(NH_{3})]^{+} \quad K_{1}$$

$$[Ag(NH_{3})]^{+} + NH_{3} \longrightarrow [Ag(NH_{3})_{2}]^{+} \quad K_{2}$$

$$Ag^{+} + 2NH_{3} \longrightarrow [Ag(NH_{3})_{2}]^{+} \quad K_{1} \times K_{2} = \beta_{2} = \text{constante de estabilidade global de formação}$$

$$\beta_2 = \frac{[Ag(NH_3)_2^+]}{[Ag^+]_{eq}[NH_3]_{eq}^2} = 1,6x10^7$$

Para fins analíticos, considera-se sempre a formação do complexo com a entrada do último ligante, condição de maior estabilidade. Geralmente, se trabalha com excesso de ligante, o que garante a formação do complexo.

Considerando o equilíbrio inverso podemos escrever:

$$[Ag(NH_3)_2]^+ \longrightarrow Ag^+ + 2NH_3$$

$$1/\beta_2 = \frac{[Ag^+]_{eq}[NH_3]^2_{eq}}{[Ag(NH_3)_2^+]}$$
 constante de instabilidade

Valores de constante de formação de alguns íons complexos

Complexo	Equação da reação de formação	Kr			
[AlF ₆] ³ -	Al3+ + 6 F- ← [AlF ₆]3-	6.7×10^{19}	[Pb(C ₂ H ₃ O ₂) ₄] ² -	$Pb^{2+} + 4 C_2H_3O_2^- \rightleftharpoons [Pb(C_2I_1)]$	1 × 108
[Al(OH) ₄]-	Al3+ + 4 OH- (Al(OH)4]-	1.1×10^{33}	[PbCl ₃]-	Pb ²⁺ + 3 Cl ⁻ ← [PbCl ₃] ⁻	2.4×10^{1}
[BiBr ₄]-	Bi ³⁺ + 4 Br ← [BiBr ₄]-	6.6×10^{7}	[PbBr ₄]2-	Pb ²⁺ + 4 Br ← [PbBr ₄] ²⁻	1.3×10^{1}
[BiCL ₄]-	Bi3+ + 4 Cl- ← [BiCl ₄]-	4 × 105	[PbCl ₄] ² -	Pb ²⁺ + 4 Cl ⁻ ← [PbCl ₄] ²⁻	2.4×10^{1}
[BiL ₄]-	Bi ³⁺ + 4 I ⁻ ← [BiI ₄] ⁻	8.9×10^{14}	[PbL ₁]2-	Pb ²⁺ + 4 I ⁻ ← [PbL ₄] ²⁻	3.0×10^{4}
[Bi(SCN) ₄]-	$Bi^{3+} + 4 SCN^{-} \rightleftharpoons [Bi(SCN)_4]^{-}$	1.7×10^4	[Mg(C ₂ O ₄) ₂] ² -	$Mg^{2+} + 2 C_2O_4^2 \rightleftharpoons [Mg(C_2C)]$	2.4×10^4
[Cd(NH ₃) ₄] ²⁺	$Cd^{2+} + 4 NH_3 \rightleftharpoons [Cd(NH_3)_4]^{2+}$	1.3×10^{7}			1.0×10^{21}
[CdBr ₄]2-	Cd2+ + 4 Br ← [CdBr ₄]2-	5.0×10^{3}	[HgBr ₄] ² -	Hg ²⁺ + 4 Br	1.0×10^{-5}
[CdCl ₄]2-	Cd2+ + 4 Cl- ← [CdCl ₄]2-	6.3×10^{2}	[HgCL]2-	Hg ²⁺ + 4 Cl ⁻ ← [HgCl ₄] ²⁻	
[Cd(CN) ₄]2-	Cd2+ + 4 CN- ← [Cd(CN) ₄]2-	7.1×10^{18}	[HgI ₄] ² -	Hg ²⁺ + 4 I ⁻ ₹ [HgI ₄] ²⁻	1.9×10^{30}
[CdI ₄]2-	Cd ²⁺ + 4 I- ← [CdL ₄] ²⁻	2.6×10^{5}	[Hg(SCN) ₄] ² -	$Hg^{2+} + 4 SCN^{-} \rightleftharpoons [Hg(SCN)]$	1.7×10^{21}
[Cd(SCN) ₄]2-	$Cd^{2+} + 4 SCN^- \rightleftharpoons [Cd(SCN)_4]^{2-}$	4×10^3	[Ni(CN) ₄] ² -	$Ni^{2+} + 4 CN^{-} \longrightarrow [Ni(CN)_4]^{2-}$	1×10^{22}
[Co(NH ₃) ₆] ²⁺	$Co^{2+} + 6 NH_3 \rightleftharpoons [Co(NH_3)_6]^{2+}$	1.3×10^{5}	[Ni(NH ₃) ₄] ²⁺	$Ni^{2+} + 4 NH_3 \rightleftharpoons [Ni(NH_3)_4]^2$	6.0×10^{8}
[Co(SCN) ₄]2-	$Co^{2+} + 4 SCN - \rightleftharpoons [Co(SCN)_4]^{2-}$	1.0×10^{3}	$[Ag(NH_3)_2]^+$	$Ag^+ + 2 NH_3 \rightleftharpoons [Ag(NH_3)_2]^4$	1.6×10^{7}
[Co(NH ₃) ₆]3+	$Co^{3+} + 6 NH_3 \rightleftharpoons [Co(NH_3)_6]^{3+}$	4.5×10^{33}	[AgBr ₂]-	$Ag^+ + 2 Br^- \rightleftharpoons [AgBr_2]^-$	2.1×10^{7}
[Co(SCN) ₆]3-	$Co^{3+} + 6 SCN - \rightleftharpoons [Co(SCN)_6]^{3-}$	2×10^{13}	[AgCl ₂]-	$Ag^+ + 2CI^- \rightleftharpoons [AgCI_2]^-$	1.1×10^{5}
[CuBr ₂]-	Cu+ + 2 Br ← [CuBr ₂]-	7.8×10^{5}	[Ag(CN) ₂]-	$Ag^+ + 2 CN^- \rightleftharpoons [Ag(CN)_2]^-$	5.6×10^{18}
[CuCl ₂]-	Cu+ + 2 Cl- ← [CuCl ₂]-	3×10^5	[AgI ₂]-	$Ag^+ + 2I^- \rightleftharpoons [AgI_2]^-$	5.5×10^{11}
[Cu(CN) ₃] ² -	$Cu^+ + 3 CN^- \rightleftharpoons [Cu(CN)_3]^{2-}$	2×10^{27}	[Ag(SCN) ₂]-	$Ag^+ + 2 SCN^- \rightleftharpoons [Ag(SCN)_2$	3.7×10^{7}
[CuI ₂]-	Cu+ + 2 I- ← [CuI ₂]-	7.1×10^{8}	[Ag(S ₂ O ₃) ₂] ³ -	$Ag^+ + 2 S_2O_3^2 \longrightarrow [Ag(S_2O_3)]$	1.7×10^{13}
[Cu(SCN) ₂]-	$Cu^+ + 2 SCN^- \rightleftharpoons [Cu(SCN)_2]^-$	1.5×10^{5}	[SnCl ₆] ² -	$Sn^{4+} + 6 Cl^{-} \rightleftharpoons [SnCl_6]^{2-}$	1 × 10 ⁴
[Cu(NH ₃) ₄] ²⁺	$Cu^{2+} + 4 NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$	1.1×10^{13}	[SnCl ₄] ²	Sn ²⁺ + 4 Cl ⁻ ← [SnCl ₄] ²⁻	3.0 × 101
[Fe(CN) ₆]4-	$Fe^{2+} + 6 CN \longrightarrow [Fe(CN)_6]^{4-}$	1×10^{37}		[
[Fe(CN) ₆]3-	Fe3+ + 6 CN- ← [Fe(CN) ₆]3-	1×10^{42}	[Zn(NH ₃) ₄] ²⁺	$Zn^{2+} + 4 NH_3 \longrightarrow [Zn(NH_3)_4]^2$	4.1×10^{8}
[FeF ₆]3-	$Fe^{3+} + 6 F^{-} \rightleftharpoons [FeF_6]^{3-}$	1 × 1016	[Zn(CN) ₄] ² -	$Zn^{2+} + 4CN^- \rightleftharpoons [Zn(CN)_4]^{2-}$	1 × 1018
			[Zn(OH) ₄] ²⁻	$Zn^{2+} + 4 OH^- \rightleftharpoons [Zn(OH)_4]^{2-}$	4.6×10^{17}

 $[Co(SCN)_4]^{2-}$ $[Fe(SCN)_6]^{3-}$ $[FeF_6]^{3-}$

Ex. 1 – 250 mL de 1.5 x 10^{-3} mol/L de Cu(NO₃)₂ é misturado com 250 mL de 0,20 mol/L de NH₃. Qual é a [Cu²⁺] no equilíbrio?

Escrever a reação de formação e a expressão de K_f.

$$Cu^{2+}_{(aq)} + 4 NH_{3(aq)} \longrightarrow Cu(NH_3)_4^{2+}_{(aq)}$$

$$K_f = \frac{[\text{Cu}(\text{NH}_3)_4^{2+}]}{[\text{Cu}^{2+}][\text{NH}_3]^4} = 1.7 \times 10^{13}$$

Determine a concentração das espécies na solução diluída.

$$[Cu^{2+}] = \frac{0.250 L \times \frac{1.5 \times 10^{-3} \text{ mol}}{1 L}}{(0.250 L + 0.250 L)} = 7.5 \times 10^{-4} \text{ mol/L}$$

[NH₃] =
$$\frac{0.250 \,\mathrm{L} \times \frac{2.0 \times 10^{-1} \,\mathrm{mol}}{1 \,\mathrm{L}}}{\left(0.250 \,\mathrm{L} + 0.250 \,\mathrm{L}\right)} = 1.0 \times 10^{-1} \,\mathrm{mol/L}$$

Ex. 1 – 200 mL de $Cu(NO_3)_2$ 1.5 x 10^{-3} mol/L é misturado com 250 mL de NH_3 0,20 mol/L. Qual é a $[Cu^{2+}]$ no equilíbrio?

$$Cu^{2+}_{(aq)} + 4 NH_{3(aq)} \longrightarrow Cu(NH_3)_4^{2+}_{(aq)}$$

	[Cu ²⁺]	[NH ₃]	[Cu(NH ₃) ₄ ²⁺]
Início	7.5x10 ⁻⁴	0,11	0
Reage/forma	-≈7.5x10 ⁻⁴	-4(7.5x10 ⁻⁴)	+ 7.5x10 ⁻⁴
Equilíbrio	X	0.10	7.5x10 ⁻⁴

Visto que K_f é grande e assumindo que todos os íons Cu^{2+} são convertidos ao complexo, então o sistema retorna ao equilíbrio.

Ex. 1 – 200 mL de $Cu(NO_3)_2$ 1.5 x 10⁻³ mol/L é misturado com 250 mL de NH_3 0,20 mol/L. Qual é a $[Cu^{2+}]$ no equilíbrio?

Substituindo os valores das []s das espécies na expressão de K_f e resolvendo, pode-se encontrar o valor de x

$$K_f = \frac{[\text{Cu}(\text{NH}_3)_4^{2+}]}{[\text{Cu}^{2+}][\text{NH}_3]^4} = 1.7 \times 10^{13}$$

$$1.7 \times 10^{13} = \frac{(7.5 \times 10^{-4})}{(x)(0.10)^4}$$

$$x = \frac{\left(7.5 \times 10^{-4}\right)}{\left(1.7 \times 10^{13}\right)\left(0.10\right)^4} = 4.4 \times 10^{-13}$$

Observe que a aproximação é válida porque o x é pequeno.

 $4.4 \times 10^{-13} << 7.5 \times 10^{-4}$

EX. 2. Qual a composição da solução resultante da adição de 10 mL de AgNO₃ 0,1 mol/L a 10 mL de amônia 1 mol/L?

Assumindo que todos os íons Ag+ são convertidos ao complexo, Então:

$$[Ag(NH3)2 +]solução = 0,05 mol/L$$

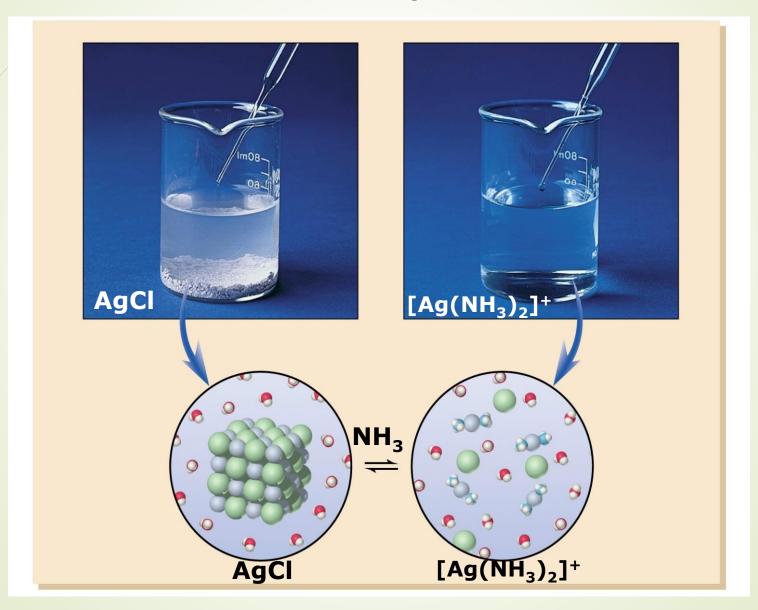
 $[NH_3]_{equilibrio} = 0.5 \text{ mol/L} - [NH_3] \text{ utilizada para formar complexo}$

$$[NH_3]_{\text{equilibrio}} = 0.5 - (0.05x2) = 0.4 \text{ mol/L}$$

Qual
$$[Ag^+]_{equilibrio} = ?$$

EX. 2. Qual a composição da solução resultante da adição de 10 mL de AgNO₃ 0,1 mol/L a 10 mL de amônia 1 mol/L?

Substituindo os valores das []s das espécies na expressão de K_f e resolvendo, pode-se encontrar o valor de x

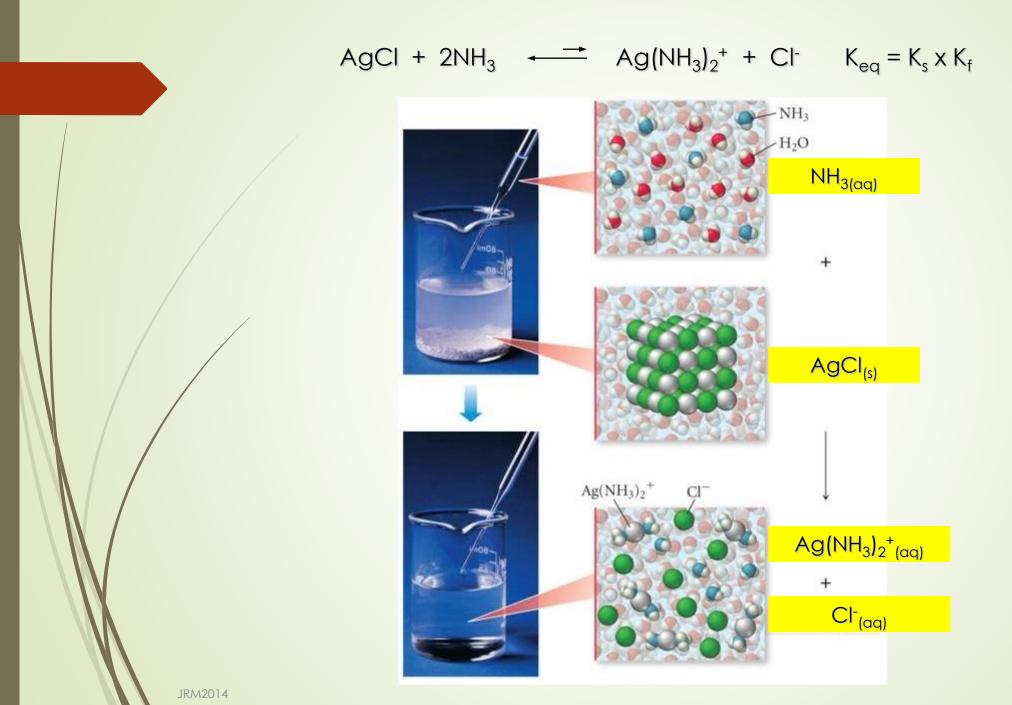

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2} = 1.6 \times 10^7$$

1,6x10⁷ =
$$\frac{0,05}{(0,4)^2 x [Ag^+]}$$
 \Rightarrow [Ag⁺] \approx 2,6x10⁻⁸ M

Composição da solução final:

$$[Ag(NH_3)_2]^+ = 0.05 \text{ mol/L}$$
 $[NH_3]_{equilibrio} = 0.4 \text{ mol/L}$
 $[Ag^+]_{equilibrio} = 2.6 \times 10^{-8} \text{ mol/L}$

Equilíbrios Simultâneos de Precipitação e de Solubilidade com Formação de Complexo



Equilíbrios Simultâneos

Escrever, separadamente, a equação da reação de solubilidade e de formação do complexo. Indique cada constante.

AgCl_(s)
$$\longrightarrow$$
 Ag⁺ + Cl⁻ $K_s = 1.6 \times 10^{-10}$
Ag⁺ + 2NH₃ \longrightarrow Ag(NH₃)₂⁺ $K_f = 1.6 \times 10^7$
AgCl + 2NH₃ \longrightarrow Ag(NH₃)₂⁺ + Cl⁻ $K_{eq} = K_s \times K_f$
 $K_{eq} = K_s \times K_f = (1.6 \times 10^{-10}) \times (1.6 \times 10^7) = 2.56 \times 10^{-3}$

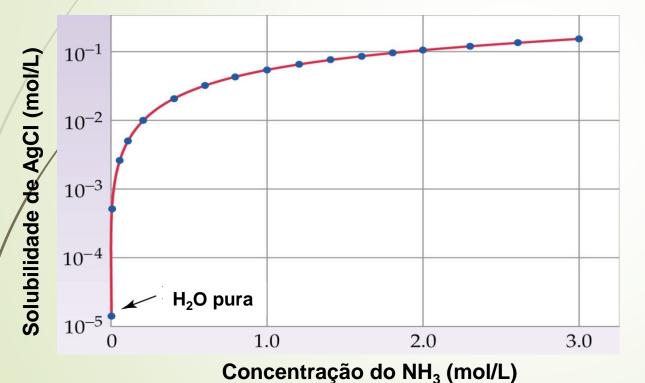
https://www.youtube.com/watch?v=4uZqAWwguXU

Ex 3. Qual a $[NH_3]$ necessária para solubilizar, completamente, 0,1 mol de cada haleto de prata (AgCl; AgBr e AgI) em 1 L de H_2O ?

$$\frac{0.1 \times 0.1}{[NH_3]_{\frac{1}{2}}^2} = 1.6 \times 10^{-10} \times 1.6 \times 10^7 = 2.56 \times 10^{-3}$$

$$K_{ps(AgBr)} = 5.0 \times 10^{-13}$$

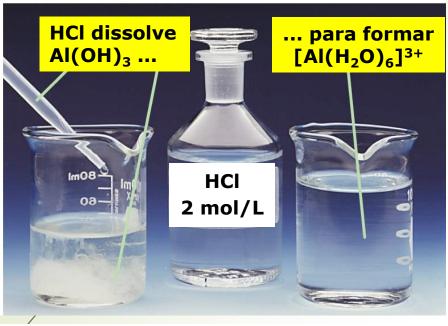
 $K_{ps(AgI)} = 8.3 \times 10^{-17}$


$$[NH_3]_{\rightarrow} = 1,98 \text{ mol/L}$$
 Então, $[NH_3]_{total} = (1,98 + 0,2) = 2,18 \text{ mol/L}$

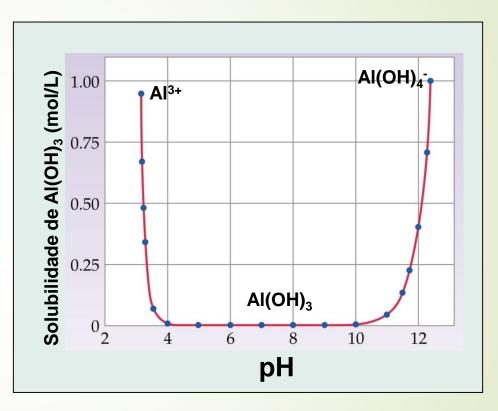
Faça o mesmo para AgBr e AgI e compare os resultados

Equilíbrios Simultâneos de Precipitação e de Solubilidade com Formação de Complexo

AgX
$$\longrightarrow$$
 Ag⁺ + X⁻ \mathbb{K}_{s}
Ag⁺ + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ \mathbb{K}_{f}
AgX + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ + X⁻


$$K_{eq} = \frac{[Ag(NH_3)_2]^+ [X^-]}{[NH_3]_{\rightleftharpoons}^2} = K_s.K_f$$

E se substituíssemos a amônia pela 1,10-fenantrolina (phen). Seria possível dissolver 0.1 mol AgBr e AgI?


Ag⁺ + 2 Phen
$$\longrightarrow$$
 [Ag(Phen)₂]⁺
 $\beta_2 = 1.2 \times 10^{12}$

Equilíbrios de íon Complexo e Solubilidade

$Al(OH)_3 + 3H \longrightarrow Al^{3+} + 3H_2O$ branco incolor

$$AI(OH)_3 + OH^- \longrightarrow [AI(OH)_4]^-$$

branco ion aluminato (incolor)

- a) Explique como é possível identificar num mesmo tubo de ensaio os íons Fe³⁺ e Co²⁺, usando HCl, SCN⁻,F⁻ e acetona? Em que se baseia tal identificação?
- b) Por quê na oxidação de Cr³+ a CrO₄²- por PbO₂ em meio fortemente alcalino não ocorre a precipitação de Pb(OH)₂? Escreva as equações das reações envolvidas.
- c) Na identificação de NO₃-, de uma solução colorida, com Al⁰ em meio alcalino há liberação de NH₃. Por quê não ocorre a precipitação do Al(OH)₃? Escreva as equações das reações envolvidas.
- d) Escreva as equações de reação para obtenção do sal complexo Na₃Co(NO₂)₆?
- e) É possível armazenar NO empregando uma solução de Fe²⁺. Equacione
- f) Calcule a $[NH_3]_{total}$ necessária para dissolver 0,001 mol/L dos AgX $(X = Cl^-, Br^- e I^-)$
- g) O Ks do Al(OH)₃ é 1,3x10⁻³³ enquanto o Kf do Al(OH)₄- é 2,5x10³³ A partir desses valores pode-se dizer que a formação do aluminato é favorável? Escreva as equações dos equilíbrios envolvidos.

h) Dissolve-se 0,2 mols de $CuSO_4$ num litro de uma solução 1,20 mol/L de NH_3 . Qual a concentração de Cu^{2+} livre em solução? Dado. K_f [$Cu(NH_3)_4^{2+}$] = $5x10^{13}$

A constante de formação é:
$$K_f = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4}$$

$$K_f = 5 \times 10^{13} = \frac{0.2}{x(0.4)^4}$$
$$x = 1.6 \times 10^{-13} \mod / L \sim 0$$

A concentração é praticamente nula!

Ex.4) Foram misturados 0,1 mol de AgCl com 1 mol de NH_3 em um litro de solução. a) Qual a % de AgCl que ainda permanece no precipitado? b) Qual a $[NH_3]$ necessária para a dissolução completa.

Dados: $K_f [Ag(NH_3)_2^+] = 1,6x10^7$; Ks (AgCl) = 1,6x10⁻¹⁰

AgCl
$$\longrightarrow$$
 Ag⁺ + Cl⁻ $K_s = 1,6 \times 10^{-10}$
Ag⁺ + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ $K_f = 1,6 \times 10^7$
AgCl + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ + Cl⁻

início 0,1 M 1 M

Reage/forma xM 2xM xM xM final 0,1-x 1-2x xM xM

$$K_{eq} = \frac{[Ag(NH_3)_2]^+ [X^-]}{[NH_3]_{\stackrel{?}{\rightleftharpoons}}^2} = K_{s} \cdot K_f = 2,56 \times 10^{-3} = \frac{X \cdot X}{(1-2x)^2} \rightarrow 1,0102x^2 - 2,56 \times 10^{-3} = 0$$

$$1,0102 \times X^2 - 2,56 \times 10^{-3} = 0$$

 $x = 0,0503 \text{ mol/L} = [AgCl]_{reagiu}$ Logo, sobrou 0,1 - x de AgCl sem reagir

Então, sobrou 0,0497 mol/L sem reagir, ou seja, $100 \times 0,0497/0,1 = 49,7\%$

Para a dissolução completa de 0,1 mol/L de AgCl, deve-se considerar a Quantidade de NH₃ suficiente para converter o AgCl em Ag(NH₃)₂]+Cl-E satisfazer a constante de equílíbrio envolvida na reação, ou seja,

AgCl
$$\longrightarrow$$
 Ag⁺ + Cl⁻ $K_s = 1,6x10^{-10}$
Ag⁺ + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ $K_f = 1,6x10^7$
AgCl + 2NH₃ \longrightarrow [Ag(NH₃)₂]⁺ + Cl⁻

início 0,1 M

 Reage/forma
 0,1
 x
 0,1
 0,1

 final
 ~ 0 x
 0,1
 0,1

$$K_{eq} = \frac{[Ag(NH_3)_2]^+ [X^-]}{[NH_3]_{+-}^2} = K_s \cdot K_f = 2,56 \times 10^{-3} = \frac{(0,1)^2}{(x)^2} \rightarrow x = 1,98 = [NH_3]_{+-}$$

$$[NH_3]_{total} = [NH_3]_{+-} + [NH_3]_{no \ complexo}$$

$$1,98 \ mol/L \qquad 0,1 \ x \ 2 = 0,2 \ mol/L$$

$$[NH_3]_{total} = 2,18 \ mol/L$$