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Review planar bilateral constraint

I Procedure for bilateral planar
constraints:

I Identify point A and feasible
velocity dA, for each
constraint.

I Construct ⊥ to dA at A, for
each constraint.

I Intersection of all ⊥’s is
candidate IC.

I More abstractly:
I Express each constraint as

a set of feasible IC’s.
I Intersect all sets, to get

candidate IC’s.

IC

fixed centrod
m oving centro
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Generalizing to unilateral constraints

I The abstract procedure:
I Express each constraint as

a set of feasible IC’s.
I Intersect all sets, to get

candidate IC’s.
I It won’t work: all IC’s are

feasible.
I The solution: signed IC’s!

I Construct inward pointing
normal, at contact.

I Label the normal both +
and −.

I Label the right half plane −.
I Label the left half plane +.



Lecture 5.
Nonholonomic

constraint.

Planar contact
constraints
(Reuleaux)

Nonholonomic
constraint
Example: the unicycle

Integebrable and
nonintegrable constraints

Vector fields and
distributions

Frobenius’s theorem

Multiple unilateral constraints (Reuleaux’s
method)

I Can this triangle move?
I Construct positive and

negative half-planes for
each contact.

I Keep consistently
labelled points.

I Triangle can rotate CW
about any − point.
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But watch for false positives

I The process identifies candidate IC’s.

IC?

False positive for bilateral
constraints.

False positive for unilateral
constraints.
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Nonholonomic constraint

Definition (Holonomic constraint)

A kinematic constraint is a holonomic constraint if it can
be expressed in the form

f (q, t) = 0.

That is, expressed as a bilateral constraint on
configuration.

I Not everybody recognizes that a unilateral constraint
is nonholonomic.
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Nonholonomic constraint

Why study nonholonomic constraint?

It is fundamental to all of robotics . . .
I The robot has only a few motors, say k .
I The task has many degrees of freedom, say n.
I How many independent motions can the robot

produce? At most k .
I How many DoFs in the task does the robot wish to

control? Perhaps all n.
I The difference implies nonholonomic constraint.
I (Often true in locomotion problems, almost always

true in manipulation problems.)
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Integrable constraints
Look again at the definition:

Definition (Holonomic constraint)

A kinematic constraint is a holonomic constraint if it can
be expressed in the form

f (q, t) = 0.

Suppose you have a constraint of the form

f (q, q̇, t) = 0

Is it nonholonomic? Perhaps it can be expressed in the
form

f (q, t) = 0

in which case we say the constraint is integrable. It’s a
holonomic constraint, disguised as a nonholonomic
constraint.
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The unicycle: counting constraints

The unicycle cannot move sideways. Let

q̇ =




ẋ
ẏ
θ̇




and let

w1 = (sin θ,− cos θ,0)

so there is one constraint, written
w1q̇ = 0.

x

y

θ(x, y)

(
sin θ

− cos θ

)
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The unicycle: counting freedoms

The unicycle can move in two directions,
expressed by defining

g1(q) =




0
0
1


 ,g2(q) =




cos θ
sin θ

0




and noting that the unicycle’s motion is
(missing from book)

q̇ = u1g1 + u2g2

where u1 and u2 are arbitrary reals.
They are the controls.

The robot has two controls. How many
freedoms?

Three.

x

y

θ(x, y)

(
sin θ

− cos θ

)
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The unicycle: counting freedoms

The unicycle can move in two directions,
expressed by defining

g1(q) =




0
0
1


 ,g2(q) =




cos θ
sin θ

0




and noting that the unicycle’s motion is
(missing from book)

q̇ = u1g1 + u2g2

where u1 and u2 are arbitrary reals.
They are the controls.

The robot has two controls. How many
freedoms? Three.

x

y

θ(x, y)

(
sin θ

− cos θ

)
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Unsteered cart constraint and freedom

The unsteered cart cannot turn, and
cannot move sideways. Let

w1 = (sin θ,− cos θ,0) ,w2 = (0,0,1)

so the two constraints are written
w1q̇ = 0, w2q̇ = 0. Expanding the
products:

ẋ sin θ − ẏ cos θ = 0
θ̇ = 0

These can be integrated:

θ = θ0

(x − x0) sin θ0 − (y − y0) cos θ0 = 0

.x;y/

x

y

x
y

Leaves of the
foliation
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Unicycle versus cart

I Unicycle.
I One velocity constraint.
I Three freedoms.

I Unsteered cart
I Two velocity constraints.
I Integrable. Equivalent to two

configuration constraints.
I One freedom.

System is nonholonomic if the constraint
cannot be written in the form f (q, t) = 0.

x

y

θ(x, y)

(
sin θ

− cos θ

)
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Holonomic does not mean unconstrained!!!

If your universe consists of planar mobile robots with all
three freedoms, then either the robot is unconstrained, or
it is nonholonomic. You will think holonomic means
unconstrained.

I Holonomic means the constraints can be written as
equations independent of q̇

f (q, t) = 0

I A mobile robot with no constraints is holonomic.
I A mobile robot capable of only translations is also

holonomic.
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Integrable? Or not? How can you tell?

How can you tell whether a velocity
constraint is integrable?

1. Try to integrate it. As we did for the
cart.

2. Determine whether the DOFs were
reduced. As we did for the unicycle.

3. Either technique might work for
simple systems. But we need a
systematic technique: Lie
brackets!!! (Frobenius’s theorem.)

x

y

θ(x, y)

(
sin θ

− cos θ

)
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Pfaffian constraints

Definition (Pfaffian constraints)

A set of k Pfaffian constraints are of the form

wi(q)q̇ = 0, i = 1 . . . k

where the wi are linearly independent row vectors, and q̇
is a column vector.

All the velocity constraints we have considered for the
unicycle and the cart are Pfaffian.
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Vector fields

Definition (Vector field)

A vector field is a smooth map

f (q) : C 7→ TqC

from configurations q to velocity vectors
q̇.

Note: In differential geometry “vector”
sometimes means specifically “velocity
vector”.

g1: turning x
y

  

g2: forward
rolling

x

y
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Distributions
Definition (Distribution)

A distribution is a smooth map assigning
a linear subspace of TqC to each
configuration q of C.

Example: The linear span of g1 and g2.

Recall that for the unicycle

q̇ = u1g1 + u2g2

for u1,u2 ∈ R. So the figure shows the
feasible velocities for every q.

(Well, it only shows a circular patch
where it should show a whole plane at
every q.)

x

y
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Regular distributions and Lie brackets

Definition (Regular distribution)

A distribution is regular if its dimension is constant over
the configuration space.

Definition (Lie bracket)

Let f, g be two vector fields on C. Define the Lie bracket
[f,g] to be the vector field

∂g
∂q

f− ∂f
∂q

g

What is this thing written ∂g
∂q or ∂f

∂q? Matrix. Each column
is partial of velocity w.r.t. configuration variable.
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Lie brackets, example.
Let’s take the Lie bracket [g1,g2].

∂g1

∂q
=




0 0 0
0 0 0
0 0 0




∂g2

∂q
=




0 0 − sin θ
0 0 cos θ
0 0 0




For the new vector field defined by the Lie bracket we
obtain

g3 = [g1,g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2

=



− sin θ
cos θ

0



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Lie brackets example continued

g3 =



− sin θ
cos θ

0




Physically, g3 moves sideways. It is linearly independent
of g1 and g2, and it violates the constraint w1.

What is its physical significance? Given two vector fields f
and g,

1. Follow f for some time ε;
2. Follow g for ε;
3. Follow −f for ε;
4. Follow −g for ε.

In the limit as ε approaches zero, the result of the above
motion approaches the Lie bracket [f,g]. The Lie bracket
could have been called “parallel parking product”.
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Involutive distribution

Definition (Involutive)

A distribution is involutive if it is closed under Lie brackets.

Definition (Involutive closure)

The involutive closure of a distribution ∆ is the closure ∆
of the distribution under Lie bracketing.

I Given a distribution take all Lie brackets.
I If you get new fields, add them to the distribution.
I Repeat until you get nothing new.
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Frobenius’s theorem
Theorem (2.8, Frobenius’s theorem)

A regular distribution is integrable if and only if it is
involutive.

Proof.

I (integrable→ involutive.) Take the Taylor series of
parallel parking as a function of ε. Second order
terms are Lie brackets! If the distribution is involutive,
the Lie brackets must also be contained in the
distribution.

I (involutive→ integrable). Too involved for us. By
induction over dimension.

Restating Frobenius’s theorem: A set of constraints is
nonholonomic↔ parallel parking is useful.
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Lessons

I Robots usually have less motors than task freedoms.
There will be constraints.

I A holonomic constraint is a constraint on
configuration: it says there are places you cannot go.
That is a reduction in freedoms. That’s (usually) bad.

I A nonholonomic constraint is a constraint on velocity:
there are directions you cannot go. But you can still
get wherever you want. That’s (usually) good!

I Parallel parking is general. If you want to move in the
constrained direction, pick a pair of controls and
interleave oscillations. Or do it mathematically with
Lie brackets.

I If parallel parking doesn’t help, you are truly stuck on
the leaf of a foliation. Rearrange your motors, or buy
more.
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