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What is flux balance analysis? 
 

Supplementary Tutorial 
 
 
 
In this tutorial, several examples of how FBA can be used to analyze constraint-based models are 
presented.  These examples utilize the COBRA Toolbox1 and E. coli core model2, which were 
introduced in the main text.  Many COBRA methods, including some that are covered in this tutorial, 
are also presented in the original COBRA Toolbox paper.  The forthcoming COBRA Toolbox 2.0 will 
also include a test suite of functions that will demonstrate many of these methods.  A map of the core 
model is shown in Supplementary Figure 1.  Formal reaction name abbreviations are listed in blue text, 
formal metabolite name abbreviations are listed in purple text, and COBRA Toolbox code is listed in 
Courier text. 
 
Beginner COBRA methods 
Example from the main text: Calculating growth rates  
Supplementary Example 1.  Growth on alternate substrates 
Supplementary Example 2.  Production of cofactors and biomass precursors 
Supplementary Example 3.  Alternate optimal solutions 
Supplementary Example 4.  Robustness analysis 
Supplementary Example 5.  Phenotypic phase planes 
Supplementary Example 6.  Simulating gene knockouts 
Supplementary Example 7.  Which genes are essential for which biomass precursor?  
Supplementary Example 8.  Which non-essential gene knockouts have the greatest effect on the 
network flexibility? 
 
Non-FBA based COBRA methods 
Supplementary Example 9.  Analysis of the topological features of the S matrix 
Supplementary Example 10.  Characterization of functional states by random sampling 
 
Advanced COBRA methods 
FBA with regulation (Covert et al.3) 
MOMA (minimization of metabolic adjustment) (Segre et al.4) 
ROOM (regulatory on/off minimization) (Shlomi et al.5) 
SMILEY (Reed et al.6) 
OMNI (Herrgard et al.7) 
GapFind and GapFill (Satish Kumar et al.8) 
GrowMatch (Kumar and Maranas9) 
OptKnock (Burgard et al.10) 
OptGene (Patil et al.11) 
OptStrain (Pharkya et al.12) 
 

Nature Biotechnology: doi: 10.1038/nbt.1614



Page 2 of 28 
 

 
 Supplementary Figure 1  Map of the core E. coli metabolic network.  Orange circles represent cytosolic metabolites, 
yellow circles represent extracellular metabolites, and the blue arrows represent reactions.  Reaction name 
abbreviations are uppercase and metabolite name abbreviations are lowercase. 
 
 
Example from the main text: calculating growth rates 
This section will demonstrate how to perform the FBA calculations referenced in the main text.  
Growth of E. coli on glucose can be simulated under aerobic conditions.  To set the maximum glucose 
uptake rate to 18.5 mmol gDW-1 hr-1 (millimoles per gram dry cell weight per hour, the default flux 
units used in the COBRA Toolbox), enter into Matlab: 
 
model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l'); 
 
This changes the lower bound ('l') of the glucose exchange reaction to -18.5, a biologically realistic 
uptake rate.  By convention, exchange reactions are written as export reactions (e.g. ‘glc[e] 
<==>’), so import of a metabolite is a negative flux.  To allow unlimited oxygen uptake, enter: 
 
model = changeRxnBounds(model,'EX_o2(e)',-1000,'l'); 
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By setting the lower bound of the oxygen uptake reaction to such a large number, it is practically 
unbounded.  Next, to ensure that the biomass reaction is set as the objective function, enter: 
 
model = changeObjective(model,'Biomass_Ecoli_core_w_GAM'); 
 
To perform FBA with maximization of the biomass reaction as the objective, enter: 
 
FBAsolution = optimizeCbModel(model,'max'); 
 
FBAsolution.f  then gives the value of the objective function (Z) as 1.6531.  This means that the 
model predicts a growth rate of 1.6531 hr-1.  Inspection of the flux distribution vector 
FBAsolution.x   (v) shows that there is high flux in the glycolysis, pentose phosphate, TCA cycle, 
and oxidative phosphorylation pathways, and that no organic by-products are secreted 
(Supplementary Figure 2a). 
 Next, the same simulation is performed under anaerobic conditions.  With the same model, 
enter: 
 
model = changeRxnBounds(model,'EX_o2(e)',0,'l'); 
 
The lower bound of the oxygen exchange reaction is now 0, so oxygen may not enter the system.  
When optimizeCbModel  is used as before, the resulting growth rate is now much lower, 0.4706 hr-

1.  The flux distribution shows that oxidative phosphorylation is not used in these conditions, and that 
acetate, formate, and ethanol are produced by fermentation pathways (Supplementary Figure 2b). 
 

 
Supplementary Figure 2  Flux distributions computed by FBA can be visualized on network maps.  In these two 
examples, the thick blue arrows represent reactions carrying flux, and the thin black arrows represent unused reactions.  
These maps show the state of the E. coli core model with maximum growth rate as the objective (Z) under aerobic (a) 
and anaerobic (b) conditions.  Reactions that are in use have thick blue arrows, while reactions that carry 0 flux have 
thin black arrows. The metabolic pathways shown in these maps are glycolysis (Glyc), pentose phosphate pathway 
(PPP), TCA cycle (TCA), oxidative phosphorylation (OxP), anaplerotic reactions (Ana), and fermentation pathways 
(Ferm).  These flux maps were drawn using SimPheny and edited for clarity with Adobe Illustrator. 

 
 
Supplementary Example 1.  Growth on alternate substrates 
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Just as FBA was used to calculate growth rates of E. coli on glucose in the main text, it can also be used 
to simulate growth on other substrates.  The core E. coli model contains exchange reactions for 13 
different organic compounds, each of which can be used as the sole carbon source under aerobic 
conditions.  For example, to simulate growth on succinate instead of glucose, first use the 
changeRxnBounds  function to set the lower bound of the glucose exchange reaction (EX_glc(e)) 
to 0.  Then use changeRxnBounds  to set the lower bound of the succinate exchange reaction 
(EX_succ(e)) to -20 mmol gDW-1 hr-1 (an arbitrary uptake rate).  As in the glucose examples, make 
sure that Biomass_Ecoli_core_w_GAM is set as the objective (the function checkObjective can 
be used to identify the objective reaction(s)), and use optimizeCbModel  to perform FBA.  The 
growth rate, given by FBAsolution.f, will be 0.8401 hr-1.  The full code to calculate growth on 
succinate (with the model starting with its default bounds and objective) is: 
 
model = changeRxnBounds(model,'EX_glc(e)',0,'l'); 
model = changeRxnBounds(model,'EX_succ(e)',-20,'l'); 
FBAsolution = optimizeCbModel(model,'max'); 
 
Growth can also be simulated under anaerobic conditions with any substrate by using 
changeRxnBounds  to set the lower bound of the oxygen exchange reaction (EX_o2(e)) to 0 mmol 
gDW-1 hr-1, so no oxygen can enter the system.  When this constraint is applied and succinate is the 
only organic substrate, optimizeCbModel  returns a growth rate of 0 hr-1, and does not calculate a 
flux vector v (depending on which linear programming solver is used with the COBRA Toolbox, a 
growth rate may not be calculated at all).  In this case, FBA predicts that growth is not possible on 
succinate under anaerobic conditions.  Because the maximum amount of ATP that can be produced 
from this amount of succinate is less than the minimum bound of 8.39 mmol gDW-1 hr-1 of the ATP 
maintenance reaction, ATPM, there is no feasible solution.  FBA predicted growth rates for all 13 
organic substrates in the E. coli core model under both aerobic and anaerobic conditions are shown in 
Supplementary Table 1.  The growth rates are all much lower anaerobically (0 hr-1 in most cases) 
because the electron transport chain cannot be used to fully oxidize the substrates and generate as 
much ATP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 1  The maximum growth rate of the core E. coli model on its 13 different organic substrates, 
computed by FBA.  Growth rate was calculated for both aerobic and anaerobic conditions for each substrate, and the 
maximum substrate uptake rate was set to 20 mmol gDW-1 hr-1 for every substrate. 

  Growth Rate (hr-1) 
Substrate Aerobic Anaerobic 

acetate 0.3893 0 
acetaldehyde 0.6073 0 
2-oxoglutarate 1.0982 0 
ethanol 0.6996 0 
D-fructose 1.7906 0.5163 
fumarate 0.7865 0 
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D-glucose 1.7906 0.5163 
L-glutamine 1.1636 0 
L-glutamate 1.2425 0 
D-lactate 0.7403 0 
L-malate 0.7865 0 
pyruvate 0.6221 0.0655 
succinate 0.8401 0 

 
 
Supplementary Example 2.  Production of cofactors and biomass precursors 
FBA can also be used to determine the maximum yields of important cofactors and biosynthetic 
precursors from glucose and other substrates13.  In this example, the maximum yields of the cofactors 
ATP, NADH, and NADPH from glucose under aerobic conditions are calculated. To calculate optimal 
ATP production, first use changeRxnBounds  to constrain the glucose exchange reaction 
(EX_glc(e)) to exactly -1 mmol gDW-1 hr-1 by setting both the lower and upper bounds to -1 ('b'). 
Next, set the ATP maintenance reaction (ATPM) as the objective to be maximized using 
changeObjective.  ATPM is a stoichiometrically balanced reaction that hydrolyzes ATP (atp[c]) 
and produces ADP (adp[c]), inorganic phosphate (pi[c]), and a proton (h[c]).  It works as an 
objective for maximizing ATP production because in order to consume the maximum amount of ATP, 
the network must first produce ATP by the most efficient pathways available by recharging the 
produced ADP.  The constraint on this reaction should be removed by using changeRxnBounds 
to set the lower bounds to 0.  By default, this reaction has a lower bound of 8.39 mmol gDW-1 hr-1 to 
simulate non-growth associated maintenance costs.  Use optimizeCbModel to calculate the 
maximum yield of ATP, which is 17.5 mol ATP/mol glucose.  The full COBRA Toolbox code to 
perform this calculation (with the model starting with its default bounds and objective) is: 
 
model = changeRxnBounds(model,'EX_glc(e)',-1,'b'); 
model = changeObjective(model,'ATPM'); 
model = changeRxnBounds(model,'ATPM',0,'l'); 
FBAsolution = optimizeCbModel(model,'max'); 

 
Calculation of the yields of NADH and NADPH one at a time can be performed in a similar manner.  
First, constrain ATPM to 0 mmol gDW-1 hr-1 flux ('b') so the cell is not required to produce ATP, 
and also cannot consume any ATP using this reaction.  Add stoichiometrically balanced NADH and 
NADPH consuming reactions using the function addReaction, and set these as the objectives using 
changeObjective.  The maximum yields of ATP, NADH, and NADPH are shown in 
Supplementary Table 2.  The full code to calculate the maximum NADH yield is: 

 
model = changeRxnBounds(model,'EX_glc(e)',-1,'b'); 
model = changeRxnBounds(model,'ATPM',0,'b'); 
model = addReaction(model,'NADH_drain','nadh[c] -> nad[c] + h[c]'); 
model = changeObjective(model,'NADH_drain'); 
FBAsolution = optimizeCbModel(model,'max'); 
 
The sensitivity of an FBA solution is indicated by either shadow prices or reduced costs.  Shadow 
prices are the derivative of the objective function with respect to the exchange flux of a metabolite.  
They indicate how much the addition of that metabolite will increase or decrease the objective.  
Reduced costs are the derivatives of the objective function with respect to an internal reaction with 0 
flux, indicating how much each particular reaction affects the objective.  In the COBRA Toolbox, 
shadow prices and reduced costs can be calculated by optimizeCbModel.  The vector of m 
shadow prices is FBAsolution.y and the vector of n reduced costs is FBAsoltuion.w. 
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ATP production is limited by cellular proton balancing.  The shadow price of cytosolic 
protons (h[c]) is -0.25, indicating that the addition of 4 mol protons/mol glucose to the system reduces 
ATP yield by 1 mol ATP/mol glucose.  Protons are produced by various metabolic reactions and are 
also pumped into the cell by the ATP synthase reaction (ATPS4r).  In order for the system to be at 
steady-state (Sv = 0), an equal number of protons must be pumped out by the electron transport chain 
reactions or by excreting metabolites with symporters.  If more ATP were to be produced by ATP 
synthase, it would import additional protons that have no way to escape the cell.  The flux distribution 
for optimal ATP production is shown in Supplementary Figure 3. 

NADH and NADPH production are also ultimately limited by proton balancing.  For 
maximum NADH yield, the proton shadow price is -0.1429.  For maximum NADPH yield, the proton 
shadow price is -0.1111.  The protons produced in metabolism are removed by ATPS4r in reverse 
(with a negative flux), which consumes ATP.  The stoichiometry of the network also limits the 
production of NADH and NADPH.  Glucose has 12 electron pairs that can be donated to redox 
carriers such as NAD+ or NADP+, but when the TCA cycle is used, two of these electron pairs are used 
to reduce the quinone q8[c] in the succinate dehydrogenase reaction (SUCDi), and thus cannot be 
used to produce NADH or NADPH.  The only pathway that can reduce 12 redox carriers with one 
molecule glucose is the pentose phosphate pathway, but this is infeasible because this pathway 
generates no ATP, which is needed to pump out the protons that are produced. 
 The production of these cofactors can also be computed under anaerobic conditions by setting 
the lower bound of the oxygen exchange reaction (EX_o2(e)) to 0 mmol gDW-1 hr-1.  The results of 
these calculations are shown in Supplementary Table 3. 
 The core E. coli model contains 12 basic biosynthetic precursor compounds that are used to 
build macromolecules such as nucleic acids and proteins.  The maximum yield of each of these 
precursor metabolites from glucose can be calculated by adding a demand reaction for each one (a 
reaction that consumes the compound without producing anything) and setting these as the objectives 
for FBA.  Maximum yields of each of the 12 precursors are listed in Supplementary Table 4.  Note that 
the drain reactions for acetyl-CoA (accoa[c]) and succinyl-CoA (succoa[c]) produce coenzyme-A 
(coa[c]), since this carrier molecule is not produced from glucose in the core model. 
 
 
 
Supplementary Table 2  The maximum yields of the cofactors ATP, NADH, and NADPH from glucose under aerobic 
conditions.  ATP Shadow Price is the shadow price of the metabolite atp[c], and indicates how much the addition of 
ATP to the system will increase the yield of the cofactor.  Constraint indicates what is limiting constraints on the yields 
are.  Energy constraints are due to the limited availability of ATP, while stoichiometry constraints indicate that the 
structure of the network prevents maximum yield. 

Cofactor Yield (mol/mol glc) ATP Shadow Price Constraint 
ATP 17.5 0 H+ balancing 
NADH 10 0.5714 Energy, Stoichiometry 
NADPH 8.778 0.4444 Energy, Stoichiometry 
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Supplementary Figure 3  Flux map for maximum ATP yield from glucose under aerobic conditions.  Thick blue lines 
indicate reactions carrying flux in this particular solution vector.  This is a unique solution (see Supplementary 
Example 3).  
 
Supplementary Table 3  The maximum yields of the cofactors ATP, NADH, and NADPH from glucose under anaerobic 
conditions.  ATP Shadow Price is the shadow price of the metabolite atp[c], and indicates how much the addition of 
ATP to the system will increase the yield of the cofactor.  Constraint indicates what is limiting constraints on the yields 
are. 

Cofactor Yield (mol/mol glc) ATP Shadow Price Constraint 

ATP 2.75 0 H+ balancing 
NADH 6 1 Energy 
NADPH 4 1.333 Energy 

 
Supplementary Table 4  The maximum yields of different biosynthetic precursors from glucose under aerobic 
conditions.  The precursors are 3pg (3-phospho-D-glycerate), pep (phosphoenolpyruvate), pyr (pyruvate), oaa 
(oxaloacetate), g6p (D-glucose-6-phosphate), f6p (D-fructose-6-phosphate), r5p (� -D-ribose-5-phosphate), e4p (D-
erythrose-4-phosphate), g3p (glyceraldehyde-3-phosphate), accoa (acetyl-CoA), akg (2-oxoglutarate), and succoa 
(succinyl-CoA).  Carbon Conversion indicates what percentage of the carbon atoms in glucose are converted to the 
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precursor compound.  ATP Shadow Price is the shadow price of the metabolite atp[c].  Constraint indicates what the 
limiting constraints on the yields are, preventing a yield of at least 100%.  Some precursors have a yield of over 100% 
because carbon from CO2 can be fixed in some reactions. 

Precursor Yield (mol/mol glc) 
Carbon 
Conversion 

ATP Shadow 
Price Constraint 

3pg 2 100% 0 - 
pep 2 100% 0 - 
pyr 2 100% 0 - 
oaa 2 133.33% 0 - 
g6p 0.8916 89.16% 0.0482 Energy 
f6p 0.8916 89.16% 0.0482 Energy 
r5p 1.0571 88.10% 0.0571 Energy 
e4p 1.2982 86.55% 0.0702 Energy 
g3p 1.6818 84.09% 0.0909 Energy 
accoa 2 66.67% 0 Stoichiometry 
akg 1 83.33% 0 Stoichiometry 
succoa 1.64 109.33% 0 - 

 
  
Supplementary Example 3.  Alternate optimal solutions 
As discussed in the main text, the flux distribution calculated by FBA is often not unique.  In many 
cases, it is possible for a biological system to achieve the same objective value by using alternate 
pathways, so phenotypically different alternate optimal solutions are possible.   A method that uses 
FBA to identify alternate optimal solutions is Flux Variability Analysis (FVA)14.  This is a method that 
identifies the maximum and minimum possible fluxes through a particular reaction with the objective 
value constrained to be close to or equal to its optimal value.  Performing FVA on a single reaction 
using the basic COBRA Toolbox functions is simple.  First, use functions changeRxnBounds, 
changeObjective, and optimizeCbModel  to perform FBA as described in the previous 
examples.  Get the optimal objective value Z (FBAsolution.f), and then set both the lower and 
upper bounds of the objective reaction to exactly this value.  Next, set the reaction of interest as the 
objective, and use FBA to minimize and maximize this new objective in two separate steps.  This will 
give the minimum and maximum possible fluxes through this reaction while contributing to the 
optimal objective value. 
 For example, consider the variability of the malic enzyme reaction (ME1) in E. coli growing on 
succinate.  The minimum possible flux through this reaction is 0 mmol gDW-1 hr-1 and the maximum 
is 6.49 mmol gDW-1 hr-1.  In one alternate optimal solution, the ME1 reaction is used, but in another, it 
is not used at all.  The full code to set the model to these conditions and perform FVA on this reaction 
is: 
 
model = changeRxnBounds(model,'EX_glc(e)',0,'l'); 
model = changeRxnBounds(model,'EX_succ(e)',-20,'l'); 
FBAsolution = optimizeCbModel(model,'max'); 
model = changeRxnBounds(model,'Biomass_Ecoli_core_w_GAM',FBAsolution.f,'b'); 
model = changeObjective(model,'ME1'); 
FBAsolutionMin = optimizeCbModel(model,'min'); 
FBAsolutionMax = optimizeCbModel(model,'max'); 
 
The COBRA Toolbox includes a built in function for performing FVA called fluxVariability.  
This function is useful because it performs FVA on every reaction in a model.  When FVA is 
performed on every reaction in the E. coli core model for growth on succinate, eight reactions are 
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found to be variable (Supplementary Table 5).  Inspection of the variable reactions shows that 
conversion of L-matate to pyruvate may occur through several different pathways, each leading to the 
same maximum growth rate.  Flux distributions using combinations of these pathways are also valid 
solutions. Two of these alternate solutions are shown in Supplementary Figure 4. 
 
Supplementary Table 5  Variable reactions for growth on succinate (uptake rate = 20 mmol gDW-1 hr-1) under aerobic 
conditions.  The minimum and maximum possible flux for every reaction was calculated at the maximum growth rate 
and only reactions with variable fluxes are shown here.  FRD7 (fumarate reductase) and SUCDi (succinate 
dehydrogenase) always have highly variable fluxes in this model because they form a cycle that can carry any flux.  
Physiologically, these fluxes are not relevant.  The other variable reactions are MDH (malate dehydrogenase), ME1 
(malic enzyme (NAD)), ME2 (malic enzyme (NADP)), NADTRHD (NAD transhydrogenase), PPCK 
(phosphoenolpyruvate carboxykinase), and PYK (pyruvate kinase). 

Reaction 
Minimum Flux 
(mmol gDW-1 hr-1) 

Maximum Flux 
(mmol gDW-1 hr-1) 

FRD7 0 972.77 
MDH 13.56 20.06 
ME1 0 6.49 
ME2 7.17 13.67 
NADTRHD 0 6.49 
PPCK 3.93 10.42 
PYK 0 6.49 
SUCDi 27.23 1000 

 

 
Supplementary Figure 4  Flux maps for two alternate solutions for maximum aerobic growth on succinate.  In (a), the 
reaction ME1 is used to convert L-malate to pyruvate, but in (b), this reaction is not used at all, and the reaction PYK is 
used.  The two alternative reactions are highlighted in red. 
 
 
Supplementary Example 4.  Robustness analysis 
Another method that uses FBA to analyze network properties is robustness analysis15.  In this method, 
the flux through one reaction is varied and the optimal objective value is calculated as a function of 
this flux.  This reveals how sensitive the objective is to a particular reaction.  There are many insightful 
combinations of reaction and objective that can be investigated with robustness analysis.  One example 
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is examination of the effects of nutrient uptake on growth rate.  To determine the effect of varying 
glucose uptake on growth, first use changeRxnBounds to set the oxygen uptake rate (EX_o2(e)) to 
17 mmol gDW-1 hr-1, a realistic uptake rate.  Then, use a for loop to set both the upper and lower 
bounds of the glucose exchange reaction to values between 0 and -20 mmol gDW-1 hr-1, and use 
optimizeCbModel  to perform FBA with each uptake rate.  Be sure to store each growth rate in a 
vector or other type of Matlab list.  The COBRA Toolbox also contains a function for performing 
robustness analysis (robustnessAnalysis) that can perform these functions. The full code to 
perform this robustness analysis is: 
 
model = changeRxnBounds(model,'EX_o2(e)',-17,'b'); 
growthRates = zeros(21,1); 
for i = 0:20 
 model = changeRxnBounds(model,'EX_glc(e)',-i,'b'); 
 FBAsolution = optimizeCbModel(model,'max'); 
 growthRates(i+1) = FBAsolution.f; 
end 
 
The results can then be plotted, as in Supplementary Figure 5.  As expected, with a glucose uptake of 0 
mmol gDW-1 hr-1, the maximum possible growth rate is 0 hr-1.  Growth remains at 0 hr-1 until a glucose 
uptake rate of about 2.83 mmol gDW-1 hr-1, because with such a small amount of glucose, the system 
cannot make 8.39 mmol gDW-1 hr-1 ATP to meet the default lower bound of the ATP maintenance 
reaction (ATPM).  This reaction simulates the consumption of ATP by non-growth associated 
processes such as maintenance of electrochemical gradients across the cell membrane.  Once enough 
glucose is available to meet this ATP requirement, growth increases rapidly as glucose uptake 
increases.  At an uptake rate of about 7.59 mmol gDW-1 hr-1, growth does not increase as rapidly.  It is 
at this point that oxygen and not glucose limits growth.  Excess glucose cannot be fully oxidized, so the 
fermentation pathways are used. 

The oxygen uptake rate can also be varied with the glucose uptake rate held constant.  With 
glucose uptake fixed at 10 mmol gDW-1 hr-1, growth rate increases steadily as oxygen uptake increases 
(Supplementary Figure 6).  At an oxygen uptake of about 21.80 mmol gDW-1 hr-1, growth actually 
begins to decrease as oxygen uptake increases.  This is because glucose becomes limiting at this point, 
and glucose that would have been used to produce biomass must instead be used to reduce excess 
oxygen.  In the previous example, growth rate continues to increase once oxygen become limiting 
because E. coli can grow on glucose without oxygen.  In this example, E. coli cannot grow with oxygen 
but not glucose (or another carbon source), so growth decreases when excess oxygen is added.  
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Supplementary Figure 5  Robustness analysis for maximum growth rate while varying glucose uptake rate with oxygen 
uptake fixed at 17 mmol gDW-1 hr-1. 
 

 
Supplementary Figure 6  Robustness analysis for maximum growth rate while varying oxygen uptake rate with glucose 
uptake fixed at 10 mmol gDW-1 hr-1. 
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Supplementary Example 5.  Phenotypic phase plane analysis 
When performing robustness analysis, one parameter is varied and the network state is calculated.  It is 
also possible to vary two parameters simultaneously and plot the results as a phenotypic phase plane16.  
These plots can reveal the interactions between two reactions in interesting ways.  As an example, the 
phenotypic phase plane for maximum growth while varying glucose and oxygen uptake rates will be 
calculated.  Although more sophisticated methods for computing phenotypic phase planes exist17, they 
can be easily computed in a manner similar to the calculations for robustness analysis.  Instead of 
using one for loop to vary one reaction, two nested for loops are used to vary two reactions.  In this 
case, use for loops to vary the bounds of the glucose exchange reaction (EX_glc(e)) and oxygen 
exchange reaction (EX_o2(e)) between 0 and -20 mmol gDW-1 hr-1.  Use optimizeCbModel  to 
perform FBA at each combination of glucose and oxygen uptake rates.  The full code to perform the 
calculations is: 
 
growthRates = zeros(21); 
for i = 0:20 
 for j = 0:20 
  model = changeRxnBounds(model,'EX_glc(e)',-i,'b'); 
  model = changeRxnBounds(model,'EX_o2(e)',-j,'b'); 
  FBAsolution = optimizeCbModel(model,'max'); 
  growthRates(i+1,j+1) = FBAsolution.f; 
 end 
end 
 
The resulting growth rates can be plotted as a 2-D graph or as a 3-D surface (Supplementary Figure 7).  
It is clear from these plots that this surface has 5 distinct regions, and each one is a flat plane.  This is a 
general feature of phenotypic phase planes.  They do not form curved surfaces or other shapes.  Each 
of these phases has a qualitatively distinct phenotype, and all of the shadow prices 
(FBAsolution.y) are constant within each phase.  Phase 1 (on the far left of the plots) is 
characterized by 0 growth.  There is not enough glucose to meet the ATP maintenance requirement 
imposed by the ATPM reaction.  In phase 2, growth is limited by oxygen.  o2[e] has a shadow price of 
-0.0229 because there is not enough glucose to reduce all of the oxygen and produce biomass 
optimally.  The line between phase 2 and phase 3 is where glucose and oxygen are perfectly balanced 
and growth yield is highest.  In phases 3, 4, and 5, oxygen and glucose are both limiting growth.  There 
is not enough oxygen to fully oxidize glucose, so various compounds are produced by fermentation. 
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Supplementary Figure 7  Phenotypic phase planes for growth with varying glucose and oxygen uptake rates.  In phase 1, 
no growth is possible.  In phase 2, growth is limited by excess oxygen.  In phase 3, acetate is secreted; in phase 4, acetate 
and formate are secreted; and in phase 5, acetate, formate, and ethanol are secreted.  The 3-D plot was created using the 
Matlab function surfl and the 2-D plot was created with pcolor. 
 
 
Supplementary Example 6.  Simulating gene knockouts 
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Just as growth in different environments can be simulated with FBA, gene knockouts can also be 
simulated by changing reaction bounds.  To simulate the knockout of any gene, its associated reaction 
or reactions can simply be constrained to not carry flux.  By setting both the upper and lower bounds 
of a reaction to 0 mmol gDW-1 hr-1, a reaction is essentially knocked out, and is restricted from 
carrying flux.  The E. coli core model, like many other constraint-based models, contains a list of gene-
protein-reaction interactions (GPRs), a list of Boolean rules that dictate which genes are connected 
with each reaction in the model.  When a reaction is catalyzed by isozymes (two different enzymes that 
catalyze the same reaction), the associated GPR contains an “or” rule, where either of two or more 
genes may be knocked out but the reaction will not be constrained.  For example, the GPR for 
phosphofructokinase (PFK) is “b1723 (pfkB) or b3916 (pfkA),” so according to this Boolean rule, both 
pfkB and pfkA must be knocked out to restrict this reaction.  When a reaction is catalyzed by a protein 
with multiple essential subunits, the GPR contains an “and” rule, and if any of the genes are knocked 
out the reaction will be constrained to 0 flux.  Succinyl-CoA synthetase (SUCOAS), for example, has 
the GPR “b0728 (sucC) and b0729 (sucD),” so knocking out either of these genes will restrict this 
reaction.  Some reactions are catalyzed by a single gene product, while others may be associated with 
ten or more genes in complex associations. 
 The COBRA Toolbox contains a function called deleteModelGenes  that uses the GPRs to 
constrain the correct reactions.  Then FBA may be used to predict the model phenotype with gene 
knockouts.  For example, growth can be predicted for E. coli growing aerobically on glucose with the 
gene b1852 (zwf), corresponding to the reaction glucose-6-phospahte dehydrogenase (G6PDH2r), 
knocked out.  The FBA predicted growth rate of this strain is 1.6329 hr-1, which is slightly lower than 
the growth rate of 1.6531 hr-1 for wild-type E. coli because the cell can no longer use the oxidative 
branch of the pentose phosphate pathway to generate NADPH.  Using FBA to predict the phenotypes 
of gene knockouts is especially useful in predicting essential genes.  When the gene b2779 (eno), 
corresponding to the enolase reaction (ENO), is knocked out, the resulting growth rate on glucose is 0 
hr-1.  Growth is no longer possible because there is no way to convert glucose into TCA cycle 
intermediates without this glycolysis reaction, so this gene is predicted to be essential.  Because FBA 
can compute phenotypes very quickly, it is feasible to use it for large scale computational screens for 
gene essentiality, including screens for two or more simultaneous knockouts.  Supplementary Figure 8 
shows the results of a double knockout screen, in which every pairwise combination of the 136 genes in 
the E. coli core model were knocked out.  The code to produce this figure is: 
 
[grRatio,grRateKO,grRateWT] = doubleGeneDeletion(model); 
imagesc(grRatio) 
xlabel('gene knockout 1') 
ylabel('gene knockout 2') 
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Supplementary Figure 8  Gene knockout screen on glucose under aerobic conditions.  Each of the 136 genes in the core 
E. coli model were knocked out in pairs, and the resulting relative growth rates were plotted.  In this figure, genes are 
ordered by their b number.  Some genes are always essential, and result in a growth rate of 0 when knocked out no 
matter which other gene is also knocked out.  Other genes form synthetic lethal pairs, where knocking out only one of 
the genes has no effect on growth rate, but knocking both out is lethal.  Growth rates in this figure are relative to wild-
type. 
 
 
Supplementary Example 7.  Which genes are essential for which biomass precursor?  
Earlier, we saw how to determine essential genes for growth. Here we will repeat the same analysis but 
instead of optimizing for the biomass production, we will optimize for the synthesis of all biomass 
precursors individually. Therefore, we have to add a demand reaction for each biomass precursor to 
the model and perform a gene deletion study for each demand reaction.  First, the components of the 
biomass reaction can be identified and demand reactions can be added by using the 
addDemandReaction function: 
 
[biomassComponents,biomassFraction] = printBiomass(model,13); 
[modelBiomass,rxnNames] = 
addDemandReaction(model,biomassComponents); 
 
Next, gene knockout screens can be performed with each of these demand reactions set as the 
objective, one at a time: 
 
for i = 1:length(rxnNames) 
    modelBiomass = changeObjective(modelBiomass,rxnNames{i}); 
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    [grRatio,grRateKO,grRateWT,hasEffect,delRxns,fluxSolution] = 
singleGeneDeletion(modelBiomass); 
    biomassPrecursorGeneEss(:,i) = grRateKO; 
    biomassPrecursorGeneEssRatio(:,i) = grRatio; 
end 
 
The resulting matrix biomassPrecursorGeneEssRatio  is plotted with the imagesc function 
in Supplementary Figure 9, and indicate which biomass precursors become blocked by certain gene 
knockouts.  Some precursors (like atp[c]) cannot be produced by any of the gene knockout strains 
because of the demand reactions that consume them.  The addDemandReacton function produces 
a demand reaction that does not regenerate ADP when ATP is consumed or NAD+ when NADH is 
consumed, so these reactions cannot carry flux at steady-state. 

 
Supplementary Figure 9  Gene essentiality for biomass precursor synthesis. Heat map shows the relative biomass 
precursor synthesis rate of mutant compared to wild-type.   The 23 biomass precursors are 3pg, accoa, adp, akg, atp, coa, 
e4p, f6p, g3p, g6p, gln-L, glu-L, h2o, h, nad, nadh, nadp, nadph, oaa, pep, pi, pyr, r5p. 
 
 
 
Supplementary Example 8.  Which non-essential gene knockouts have the greatest 
effect on the network flexibility? 
Another question one might be interested in asking is what are the consequences for the network of 
deleting a non-essential gene? To address this question, first delete the network genes individually (a 
single gene deletion study) and then perform FVA (Supplementary Example 3) on non-essential gene 
deletion strains. In many cases one would expect that the deletion of a gene has only minor 
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consequences to the network, especially if the deletion does not alter the maximal growth rate. In some 
cases however, the deletion may reduce the overall network flexibility or maybe even increase the flux 
range through specific reactions. In fact, this latter property is used to design optimal production 
strains (e.g., using OptKnock10), by redirecting fluxes through the network.  

The absolute flux span is a measure of flux range for each reaction. It is calculated as fi = 
abs(vmax,i – vmin,i), where vmin,i and vmax,i are the minimal and maximal flux rate as determined using 
FVA.  First, calculate wild-type flux variability: 
 
[minFluxAll(:,1),maxFluxAll(:,1)] = fluxVariability(model); 
 
Next, calculate the knockout strain flux variablities and flux spans: 
  
genes=model.genes([2,14,16,23,42,48]); 
for i = 1 : length(genes) 
    [modelDel] = deleteModelGenes(model,genes{i}); 
    [minFluxAll(:,i+1),maxFluxAll(:,i+1)] = 
fluxVariability(modelDel); 
end 
 
fluxSpan = abs(maxFluxAll - minFluxAll); 
for i = 1 : size(fluxSpan,2) 
    fluxSpanRelative(:,i) = fluxSpan(:,i)./fluxSpan(:,1); 
end 
 
Finally, histograms can be plotted to show how many reactions have increased or decreased flux spans 
for each knockout: 
 
for i =2:7 
    subplot(2,3,i-1) 
    hist(fluxSpanRelative(:,i),20); 
    title(genes{i-1}); 
end 
 
This example with six mutant strains shows that the majority of the network reactions have reduced 
flux span compared to wild-type (Supplementary Figure 10). However, some of these knockout strains 
have a few reactions which have much higher flux span than wildtype. For example, in one of the 
knockout strains ( � sucA), the flux span is increased 14 times through the phosphoenolpyruvate 
carboxykinase reaction (PPCK). 
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Supplementary Figure 10  Histograms of relative flux spans for 6 gene knockout mutants. 
 
 
Supplementary Example 9.  Topological features of the S matrix:  metabolite 
connectivity and reaction participation 
 
Visualization of the S matrix 
The core E. coli model S matrix can be visualized by using the spy command in Matlab. This 
command will represent all non-zero entries in S with a dot, as shown in Supplementary Figure 11.  
The code to produce this figure is: 
 
spy(model.S); 
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Supplementary Figure 11  The (72*95) S matrix of the E. coli core model.  All non-zero entries are marked with a dot.  
 
 
Determination of the number of reactions the metabolites occur in 
The S matrix can be converted into a binary matrix (Sbin), by replacing all non-zero elements in S with 
a ‘1’ in Sbin. Then, all ones in each row of the Sbin can be summed to determine the number of 
reactions a metabolite occurs in.  The full code to binarize the S matrix and calculate and plot 
metabolite connectivity is: 
 
Sbin = zeros(size(model.S)); 
Sbin(find(model.S))=1; 
 
for i = 1 : length(model.mets) 
metConnectivity(i,1) = sum(Sbin(i,:)); 
end 
 
loglog(sort(metConnectivity,'descend'),'*') 
xlabel('metabolite number (rank ordered) - log scale’); 
ylabel('number of reactions - log scale') 
 
As Supplementary Figure 12 shows, there are very few metabolites that are highly connected, while 
most metabolites participate only in a few reactions. The approximate linear appearance of the curve 
of connectivities is surprising and corresponds to a power law distribution of metabolite connectivity. 
The few highly connected metabolites are “global” players, similar to hubs in protein-protein-
interaction networks, while the low connectivity metabolites are “local” players, many of which only 
occur in linear pathways. The power law distribution indicates that the networks are scale-free18, 19. 
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Supplementary Figure 12  Connectivity of the core E. coli metabolites (loglog plot). 
 
 
Reaction participation is the number of metabolites per reaction 
To determine reaction participation for every reaction, the number of non-zero elements per column 
in Sbin is counted: 
 
for i = 1 : length(model.rxns) 

rxnParticipation(i,1) = sum(Sbin(:,i)); 
end 
 
In the E. coli core model, there are on average 3.8 metabolites per reaction 
(mean(rxnParticipation)).  The most common type of reaction in the E. coli core metabolic 
network is the bi-linear reaction involving two substrates and two products. 
 
 
How many metabolites are co-occurring in two reactions?  
To determine the number of metabolites common to two reactions, one needs to calculate the 
compound adjacency matrix (Acomp): Acomp = Sbin * Sbin

T. This multiplication leads to a square matrix of 
size m*m, where m is the number of metabolites in the network. 
 
Acomp = Sbin*Sbin'; 
 
The diagonal elements correspond to the metabolite connectivity (computed above), and can be 
extracted as follows: 
 
metConnectivity = diag(Acomp); 
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The off-diagonal elements correspond to the number of reactions two metabolites are co-occurring in. 
The cofactor pair nad[c] and nadh[c] occurs in 12 reactions together. Moreover, the connectivity of 
both metabolites is 12, thus, they only occur as pairs in the core E. coli model. 
 
 
Is there any correlation between reaction essentiality and metabolite connectivity20? 
One way to address this question is to delete all reactions in the network that are associated with a 
metabolite and ask if the network can still produce biomass. To find all reactions associated with a 
metabolite, one has to just scan through the corresponding rows in the S matrix.  Then the associated 
genes can be knocked out, and FBA can be used to predict if growth is possible.  The full code to 
perform these calculations and plot the results is: 
 
growthDel = zeros(length(model.mets),1); 
for i = 1 : length(model.mets) 
    rxnID = find(model.S(i,:)); 
    for j = 1 : length(rxnID) 
        modelDel = deleteModelRxn(model,model.rxns(rxnID(j))); 
        FBAsolutionDel = optimizeCbModel(modelDel); 
        if FBAsolutionDel.f <= 1e-6 
            growthDel(i,1) = growthDel(i,1) + 1; 
        end 
    end 
end 
 
lethalityFraction = growthDel./metConnectivity; 
semilogx(metConnectivity,lethalityFraction,'*') 
xlabel('metabolite connectivity - log scale'); 
ylabel('average lethality fraction'); 
 
The results for the E. coli core model (Supplementary Figure 13) show that some less connected 
metabolites have a higher lethality fraction than highly connected metabolites. This has been found to 
be true for other, more complex metabolic networks20. In fact, for the E. coli core model, the average 
lethality fraction lies between 0.2 and 0.5 for the majority of the metabolites, regardless of their 
connectivity. There are a few compounds that have a connectivity of 2 and have a lethality fraction of 1 
(e.g., cit[c], glc-D[e]). These metabolites often occur in a linear pathway, at the end of which an 
essential biomass precursor is produced. 
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Supplementary Figure 13  Correlation between metabolite connectivity and average lethality of reactions producing or 
consuming a particular metabolite.  Less connected metabolites tend to occur in a higher fraction of essential reactions. 
 
 
Supplementary Example 10.  Characterization of functional states by random 
sampling 
 
How probable is a flux through a reaction? 
While flux variability analysis determines the minimum and maximum value of a reaction flux given 
some network constraints, Monte-Carlo-sampling can be used to determine a probability flux 
distribution for each network reaction21, 22. 

Sampling is an unbiased method, compared to many other biased methods in constraint-based 
modeling. Monte-Carlo-sampling involves a random walk from a starting point through the entire 
space. As the network size increases the number of steps required to reach all regions of the high-
dimensional space will increase, making unbiased sampling more time-consuming. Consequently, a 
slightly biased approach (hit-and-run sampling) has been adapted for sampling of metabolic 
networks22 that provides the sampling algorithm with a set of ‘warm up points’ (warmupPts)which are 
randomly generated within the feasible steady-state solution space. The hit-and-run sampler 
determines the geometric center (cg) of the high-dimensional solution space. Using this geometric 
center, the direction from a point x to the next step is biased by choosing a point x1 along the line of x 
and cg, whereby the step size to x1 is randomly determined. This approach has been shown to 
accelerate the random walk through the space. To ensure that the set of sampling points does indeed 
represent the solution space, i) there must be sufficient points (i.e., as the size of the solution space 
increases the number of stored points must increase, nFiles*pointsPerFile gives the total number 
of stored points to the ACHRSampler); and ii) all points must be random, i.e., the chosen path 
between two subsequent sampling points has to be untraceable. Therefore, the number of points 
between two stored points (stepsPerPoint) must be chosen appropriately. For this latter property, it 
is also the case that the number of steps per points must increase as the dimensionality of the steady-
state solution space increases.  Note that the following calculations can be quite time consuming, even 
with a small scale model. 
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To sample the solution space of the E. coli core model with its default constraints (growth on 
glucose, aerobic): 
 
warmupPts= createHRWarmupRand(model,500); 
ACHRSampler(model,warmupPts,'samplingResults',10,5000,1000,warmupPts(:,1)); 
 
To the load the calculated data: 
 
samples = loadSamples('samplingResults', 10, 5000); 
 
Next, FVA (Supplementary Example 3) can be used to determine the minimum and maximum possible 
fluxes so the sampling results can be plotted for the first nine reactions in the model (Supplementary 
Figure 14): 
 
[minFlux,maxFlux] = FluxVariability(model,0); 
 
figure; 
for i = 1 : 9 
    subplot(3,3,i) 
    hist(samples(i,:),10); 
    hold on 
    plot([minFlux(i) maxFlux(i)], [0 1],'*r'); 
    title(model.rxns{i}); 
end 
 
The error of Sv = 0 for the sampled flux distributions can be calculated, and these errors are plotted in 
Supplementary Figure 15.  The errors are all very small, indicating that these sampling results are valid: 
 
errors = max(abs(model.S*samples)); 
plot(errors) 
 
The correlation between the first ten network reactions can be calculated and plotted (Supplementary 
Figure 16) with: 
 
sampleScatterMatrix(model.rxns(1:10),model,samples); 
 
This scatter plot allows us to visualize the interaction between two network reactions. For example, the 
aconitase reactions ACONTa and ACONTb are perfectly correlated in the tested condition (sample 
points between the two reactions align on a line). In contrast, the flux through the adenylate kinase 
reaction (ADK1) seems mostly independent from the flux through the acetaldehyde dehydrogenase 
reaction (ACALD). Considering the locations of these reactions on the metabolic map of the E. coli 
core model (Supplementary Figure 1), this observation is not astonishing. 

Which network reactions are perfectly correlated? Once the samples points have been 
calculated they can readily used to determine the correlation between any two reactions in the 
network. To obtain the list of perfectly correlated reactions (e.g., as in the example above, ACONTa 
and ACONTb), the following commands can be used: 
 
[setsSorted,setNoSorted,setSize] = 
identifyCorrelSets(model,samples); 
setNames = []; 
setNumbers = []; 
for i = 1 : length(setsSorted) 
    setNames = [setNames; setsSorted{i}.names]; 
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    setNumbers = [setNumbers; 
i*ones(length(setsSorted{i}.names),1)]; 
end 
 
Two vectors will be returned (setNames, setNumbers) which can be copied into a spreadsheet to 
obtain a table view (see Supplementary Table 6). Interestingly, only 37 of the 95 network reactions are 
grouped into 17 perfectly correlated reaction sets. A main reason for this is that we did not require the 
growth rate to have a minimum value. Hence, many functional states are possible, some of which 
support growth while others don´t.  
 

 
Supplementary Figure 14  Histograms of sampled fluxes for nine reactions. 
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Supplementary Figure 15  Error of Sv = 0 for the sampled fluxes. 
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Supplementary Figure 16  Scatter matrix of sample points in the E. coli core model, simulated in minimal medium 
glucose under aerobic conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 6: Correlated reaction sets in the E. coli core model, when grown on glucose minimal medium, 
aerobic conditions. Reactions that are not part of a correlated reaction set with more than one member are not listed. 
Correlated 
Set #  

Reaction 
Name 

Correlated 
Set #  

Reaction 
Name 

Correlated 
Set #  

Reaction 
Name 
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1 CYTBD 6 GND 12 EX_for(e) 
1 EX_o2(e) 6 PGL 12 PFL 

1 O2t 7 GAPD 13 ENO 

2 ACONTa 7 PGK 13 PGM 

2 ACONTb 8 FBA 14 D_LACt2 
2 CS 8 TPI 14 LDH_D 

3 ACKr 9 EX_pi(e) 15 CO2t 
3 ACt2r 9 PIt2r 15 EX_co2(e) 

3 PTAr 10 EX_nh4(e) 16 ALCD2x 

4 TALA 10 NH4t 16 ETOHt2r 

4 TKT1 11 EX_h2o(e) 17 ADK1 

5 ICL 11 H2Ot 17 PPS 

5 MALS       
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