
Page 1 of 28

What is flux balance analysis?

Supplementary Tutorial

In this tutorial, several examples of how FBA can be used to analyze constraint-based models are
presented. These examples utilize the COBRA Toolbox1 and E. coli core model2, which were
introduced in the main text. Many COBRA methods, including some that are covered in this tutorial,
are also presented in the original COBRA Toolbox paper. The forthcoming COBRA Toolbox 2.0 will
also include a test suite of functions that will demonstrate many of these methods. A map of the core
model is shown in Supplementary Figure 1. Formal reaction name abbreviations are listed in blue text,
formal metabolite name abbreviations are listed in purple text, and COBRA Toolbox code is listed in
Courier text.

Beginner COBRA methods
Example from the main text: Calculating growth rates
Supplementary Example 1. Growth on alternate substrates
Supplementary Example 2. Production of cofactors and biomass precursors
Supplementary Example 3. Alternate optimal solutions
Supplementary Example 4. Robustness analysis
Supplementary Example 5. Phenotypic phase planes
Supplementary Example 6. Simulating gene knockouts
Supplementary Example 7. Which genes are essential for which biomass precursor?
Supplementary Example 8. Which non-essential gene knockouts have the greatest effect on the
network flexibility?

Non-FBA based COBRA methods
Supplementary Example 9. Analysis of the topological features of the S matrix
Supplementary Example 10. Characterization of functional states by random sampling

Advanced COBRA methods
FBA with regulation (Covert et al.3)
MOMA (minimization of metabolic adjustment) (Segre et al.4)
ROOM (regulatory on/off minimization) (Shlomi et al.5)
SMILEY (Reed et al.6)
OMNI (Herrgard et al.7)
GapFind and GapFill (Satish Kumar et al.8)
GrowMatch (Kumar and Maranas9)
OptKnock (Burgard et al.10)
OptGene (Patil et al.11)
OptStrain (Pharkya et al.12)

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 2 of 28

 Supplementary Figure 1 Map of the core E. coli metabolic network. Orange circles represent cytosolic metabolites,
yellow circles represent extracellular metabolites, and the blue arrows represent reactions. Reaction name
abbreviations are uppercase and metabolite name abbreviations are lowercase.

Example from the main text: calculating growth rates
This section will demonstrate how to perform the FBA calculations referenced in the main text.
Growth of E. coli on glucose can be simulated under aerobic conditions. To set the maximum glucose
uptake rate to 18.5 mmol gDW-1 hr-1 (millimoles per gram dry cell weight per hour, the default flux
units used in the COBRA Toolbox), enter into Matlab:

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound ('l') of the glucose exchange reaction to -18.5, a biologically realistic
uptake rate. By convention, exchange reactions are written as export reactions (e.g. ‘glc[e]
<==>’), so import of a metabolite is a negative flux. To allow unlimited oxygen uptake, enter:

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 3 of 28

By setting the lower bound of the oxygen uptake reaction to such a large number, it is practically
unbounded. Next, to ensure that the biomass reaction is set as the objective function, enter:

model = changeObjective(model,'Biomass_Ecoli_core_w_GAM');

To perform FBA with maximization of the biomass reaction as the objective, enter:

FBAsolution = optimizeCbModel(model,'max');

FBAsolution.f then gives the value of the objective function (Z) as 1.6531. This means that the
model predicts a growth rate of 1.6531 hr-1. Inspection of the flux distribution vector
FBAsolution.x (v) shows that there is high flux in the glycolysis, pentose phosphate, TCA cycle,
and oxidative phosphorylation pathways, and that no organic by-products are secreted
(Supplementary Figure 2a).
 Next, the same simulation is performed under anaerobic conditions. With the same model,
enter:

model = changeRxnBounds(model,'EX_o2(e)',0,'l');

The lower bound of the oxygen exchange reaction is now 0, so oxygen may not enter the system.
When optimizeCbModel is used as before, the resulting growth rate is now much lower, 0.4706 hr-

1. The flux distribution shows that oxidative phosphorylation is not used in these conditions, and that
acetate, formate, and ethanol are produced by fermentation pathways (Supplementary Figure 2b).

Supplementary Figure 2 Flux distributions computed by FBA can be visualized on network maps. In these two
examples, the thick blue arrows represent reactions carrying flux, and the thin black arrows represent unused reactions.
These maps show the state of the E. coli core model with maximum growth rate as the objective (Z) under aerobic (a)
and anaerobic (b) conditions. Reactions that are in use have thick blue arrows, while reactions that carry 0 flux have
thin black arrows. The metabolic pathways shown in these maps are glycolysis (Glyc), pentose phosphate pathway
(PPP), TCA cycle (TCA), oxidative phosphorylation (OxP), anaplerotic reactions (Ana), and fermentation pathways
(Ferm). These flux maps were drawn using SimPheny and edited for clarity with Adobe Illustrator.

Supplementary Example 1. Growth on alternate substrates

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 4 of 28

Just as FBA was used to calculate growth rates of E. coli on glucose in the main text, it can also be used
to simulate growth on other substrates. The core E. coli model contains exchange reactions for 13
different organic compounds, each of which can be used as the sole carbon source under aerobic
conditions. For example, to simulate growth on succinate instead of glucose, first use the
changeRxnBounds function to set the lower bound of the glucose exchange reaction (EX_glc(e))
to 0. Then use changeRxnBounds to set the lower bound of the succinate exchange reaction
(EX_succ(e)) to -20 mmol gDW-1 hr-1 (an arbitrary uptake rate). As in the glucose examples, make
sure that Biomass_Ecoli_core_w_GAM is set as the objective (the function checkObjective can
be used to identify the objective reaction(s)), and use optimizeCbModel to perform FBA. The
growth rate, given by FBAsolution.f, will be 0.8401 hr-1. The full code to calculate growth on
succinate (with the model starting with its default bounds and objective) is:

model = changeRxnBounds(model,'EX_glc(e)',0,'l');
model = changeRxnBounds(model,'EX_succ(e)',-20,'l');
FBAsolution = optimizeCbModel(model,'max');

Growth can also be simulated under anaerobic conditions with any substrate by using
changeRxnBounds to set the lower bound of the oxygen exchange reaction (EX_o2(e)) to 0 mmol
gDW-1 hr-1, so no oxygen can enter the system. When this constraint is applied and succinate is the
only organic substrate, optimizeCbModel returns a growth rate of 0 hr-1, and does not calculate a
flux vector v (depending on which linear programming solver is used with the COBRA Toolbox, a
growth rate may not be calculated at all). In this case, FBA predicts that growth is not possible on
succinate under anaerobic conditions. Because the maximum amount of ATP that can be produced
from this amount of succinate is less than the minimum bound of 8.39 mmol gDW-1 hr-1 of the ATP
maintenance reaction, ATPM, there is no feasible solution. FBA predicted growth rates for all 13
organic substrates in the E. coli core model under both aerobic and anaerobic conditions are shown in
Supplementary Table 1. The growth rates are all much lower anaerobically (0 hr-1 in most cases)
because the electron transport chain cannot be used to fully oxidize the substrates and generate as
much ATP.

Supplementary Table 1 The maximum growth rate of the core E. coli model on its 13 different organic substrates,
computed by FBA. Growth rate was calculated for both aerobic and anaerobic conditions for each substrate, and the
maximum substrate uptake rate was set to 20 mmol gDW-1 hr-1 for every substrate.

 Growth Rate (hr-1)
Substrate Aerobic Anaerobic

acetate 0.3893 0
acetaldehyde 0.6073 0
2-oxoglutarate 1.0982 0
ethanol 0.6996 0
D-fructose 1.7906 0.5163
fumarate 0.7865 0

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 5 of 28

D-glucose 1.7906 0.5163
L-glutamine 1.1636 0
L-glutamate 1.2425 0
D-lactate 0.7403 0
L-malate 0.7865 0
pyruvate 0.6221 0.0655
succinate 0.8401 0

Supplementary Example 2. Production of cofactors and biomass precursors
FBA can also be used to determine the maximum yields of important cofactors and biosynthetic
precursors from glucose and other substrates13. In this example, the maximum yields of the cofactors
ATP, NADH, and NADPH from glucose under aerobic conditions are calculated. To calculate optimal
ATP production, first use changeRxnBounds to constrain the glucose exchange reaction
(EX_glc(e)) to exactly -1 mmol gDW-1 hr-1 by setting both the lower and upper bounds to -1 ('b').
Next, set the ATP maintenance reaction (ATPM) as the objective to be maximized using
changeObjective. ATPM is a stoichiometrically balanced reaction that hydrolyzes ATP (atp[c])
and produces ADP (adp[c]), inorganic phosphate (pi[c]), and a proton (h[c]). It works as an
objective for maximizing ATP production because in order to consume the maximum amount of ATP,
the network must first produce ATP by the most efficient pathways available by recharging the
produced ADP. The constraint on this reaction should be removed by using changeRxnBounds
to set the lower bounds to 0. By default, this reaction has a lower bound of 8.39 mmol gDW-1 hr-1 to
simulate non-growth associated maintenance costs. Use optimizeCbModel to calculate the
maximum yield of ATP, which is 17.5 mol ATP/mol glucose. The full COBRA Toolbox code to
perform this calculation (with the model starting with its default bounds and objective) is:

model = changeRxnBounds(model,'EX_glc(e)',-1,'b');
model = changeObjective(model,'ATPM');
model = changeRxnBounds(model,'ATPM',0,'l');
FBAsolution = optimizeCbModel(model,'max');

Calculation of the yields of NADH and NADPH one at a time can be performed in a similar manner.
First, constrain ATPM to 0 mmol gDW-1 hr-1 flux ('b') so the cell is not required to produce ATP,
and also cannot consume any ATP using this reaction. Add stoichiometrically balanced NADH and
NADPH consuming reactions using the function addReaction, and set these as the objectives using
changeObjective. The maximum yields of ATP, NADH, and NADPH are shown in
Supplementary Table 2. The full code to calculate the maximum NADH yield is:

model = changeRxnBounds(model,'EX_glc(e)',-1,'b');
model = changeRxnBounds(model,'ATPM',0,'b');
model = addReaction(model,'NADH_drain','nadh[c] -> nad[c] + h[c]');
model = changeObjective(model,'NADH_drain');
FBAsolution = optimizeCbModel(model,'max');

The sensitivity of an FBA solution is indicated by either shadow prices or reduced costs. Shadow
prices are the derivative of the objective function with respect to the exchange flux of a metabolite.
They indicate how much the addition of that metabolite will increase or decrease the objective.
Reduced costs are the derivatives of the objective function with respect to an internal reaction with 0
flux, indicating how much each particular reaction affects the objective. In the COBRA Toolbox,
shadow prices and reduced costs can be calculated by optimizeCbModel. The vector of m
shadow prices is FBAsolution.y and the vector of n reduced costs is FBAsoltuion.w.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 6 of 28

ATP production is limited by cellular proton balancing. The shadow price of cytosolic
protons (h[c]) is -0.25, indicating that the addition of 4 mol protons/mol glucose to the system reduces
ATP yield by 1 mol ATP/mol glucose. Protons are produced by various metabolic reactions and are
also pumped into the cell by the ATP synthase reaction (ATPS4r). In order for the system to be at
steady-state (Sv = 0), an equal number of protons must be pumped out by the electron transport chain
reactions or by excreting metabolites with symporters. If more ATP were to be produced by ATP
synthase, it would import additional protons that have no way to escape the cell. The flux distribution
for optimal ATP production is shown in Supplementary Figure 3.

NADH and NADPH production are also ultimately limited by proton balancing. For
maximum NADH yield, the proton shadow price is -0.1429. For maximum NADPH yield, the proton
shadow price is -0.1111. The protons produced in metabolism are removed by ATPS4r in reverse
(with a negative flux), which consumes ATP. The stoichiometry of the network also limits the
production of NADH and NADPH. Glucose has 12 electron pairs that can be donated to redox
carriers such as NAD+ or NADP+, but when the TCA cycle is used, two of these electron pairs are used
to reduce the quinone q8[c] in the succinate dehydrogenase reaction (SUCDi), and thus cannot be
used to produce NADH or NADPH. The only pathway that can reduce 12 redox carriers with one
molecule glucose is the pentose phosphate pathway, but this is infeasible because this pathway
generates no ATP, which is needed to pump out the protons that are produced.
 The production of these cofactors can also be computed under anaerobic conditions by setting
the lower bound of the oxygen exchange reaction (EX_o2(e)) to 0 mmol gDW-1 hr-1. The results of
these calculations are shown in Supplementary Table 3.
 The core E. coli model contains 12 basic biosynthetic precursor compounds that are used to
build macromolecules such as nucleic acids and proteins. The maximum yield of each of these
precursor metabolites from glucose can be calculated by adding a demand reaction for each one (a
reaction that consumes the compound without producing anything) and setting these as the objectives
for FBA. Maximum yields of each of the 12 precursors are listed in Supplementary Table 4. Note that
the drain reactions for acetyl-CoA (accoa[c]) and succinyl-CoA (succoa[c]) produce coenzyme-A
(coa[c]), since this carrier molecule is not produced from glucose in the core model.

Supplementary Table 2 The maximum yields of the cofactors ATP, NADH, and NADPH from glucose under aerobic
conditions. ATP Shadow Price is the shadow price of the metabolite atp[c], and indicates how much the addition of
ATP to the system will increase the yield of the cofactor. Constraint indicates what is limiting constraints on the yields
are. Energy constraints are due to the limited availability of ATP, while stoichiometry constraints indicate that the
structure of the network prevents maximum yield.

Cofactor Yield (mol/mol glc) ATP Shadow Price Constraint
ATP 17.5 0 H+ balancing
NADH 10 0.5714 Energy, Stoichiometry
NADPH 8.778 0.4444 Energy, Stoichiometry

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 7 of 28

Supplementary Figure 3 Flux map for maximum ATP yield from glucose under aerobic conditions. Thick blue lines
indicate reactions carrying flux in this particular solution vector. This is a unique solution (see Supplementary
Example 3).

Supplementary Table 3 The maximum yields of the cofactors ATP, NADH, and NADPH from glucose under anaerobic
conditions. ATP Shadow Price is the shadow price of the metabolite atp[c], and indicates how much the addition of
ATP to the system will increase the yield of the cofactor. Constraint indicates what is limiting constraints on the yields
are.

Cofactor Yield (mol/mol glc) ATP Shadow Price Constraint

ATP 2.75 0 H+ balancing
NADH 6 1 Energy
NADPH 4 1.333 Energy

Supplementary Table 4 The maximum yields of different biosynthetic precursors from glucose under aerobic
conditions. The precursors are 3pg (3-phospho-D-glycerate), pep (phosphoenolpyruvate), pyr (pyruvate), oaa
(oxaloacetate), g6p (D-glucose-6-phosphate), f6p (D-fructose-6-phosphate), r5p (� -D-ribose-5-phosphate), e4p (D-
erythrose-4-phosphate), g3p (glyceraldehyde-3-phosphate), accoa (acetyl-CoA), akg (2-oxoglutarate), and succoa
(succinyl-CoA). Carbon Conversion indicates what percentage of the carbon atoms in glucose are converted to the

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 8 of 28

precursor compound. ATP Shadow Price is the shadow price of the metabolite atp[c]. Constraint indicates what the
limiting constraints on the yields are, preventing a yield of at least 100%. Some precursors have a yield of over 100%
because carbon from CO2 can be fixed in some reactions.

Precursor Yield (mol/mol glc)
Carbon
Conversion

ATP Shadow
Price Constraint

3pg 2 100% 0 -
pep 2 100% 0 -
pyr 2 100% 0 -
oaa 2 133.33% 0 -
g6p 0.8916 89.16% 0.0482 Energy
f6p 0.8916 89.16% 0.0482 Energy
r5p 1.0571 88.10% 0.0571 Energy
e4p 1.2982 86.55% 0.0702 Energy
g3p 1.6818 84.09% 0.0909 Energy
accoa 2 66.67% 0 Stoichiometry
akg 1 83.33% 0 Stoichiometry
succoa 1.64 109.33% 0 -

Supplementary Example 3. Alternate optimal solutions
As discussed in the main text, the flux distribution calculated by FBA is often not unique. In many
cases, it is possible for a biological system to achieve the same objective value by using alternate
pathways, so phenotypically different alternate optimal solutions are possible. A method that uses
FBA to identify alternate optimal solutions is Flux Variability Analysis (FVA)14. This is a method that
identifies the maximum and minimum possible fluxes through a particular reaction with the objective
value constrained to be close to or equal to its optimal value. Performing FVA on a single reaction
using the basic COBRA Toolbox functions is simple. First, use functions changeRxnBounds,
changeObjective, and optimizeCbModel to perform FBA as described in the previous
examples. Get the optimal objective value Z (FBAsolution.f), and then set both the lower and
upper bounds of the objective reaction to exactly this value. Next, set the reaction of interest as the
objective, and use FBA to minimize and maximize this new objective in two separate steps. This will
give the minimum and maximum possible fluxes through this reaction while contributing to the
optimal objective value.
 For example, consider the variability of the malic enzyme reaction (ME1) in E. coli growing on
succinate. The minimum possible flux through this reaction is 0 mmol gDW-1 hr-1 and the maximum
is 6.49 mmol gDW-1 hr-1. In one alternate optimal solution, the ME1 reaction is used, but in another, it
is not used at all. The full code to set the model to these conditions and perform FVA on this reaction
is:

model = changeRxnBounds(model,'EX_glc(e)',0,'l');
model = changeRxnBounds(model,'EX_succ(e)',-20,'l');
FBAsolution = optimizeCbModel(model,'max');
model = changeRxnBounds(model,'Biomass_Ecoli_core_w_GAM',FBAsolution.f,'b');
model = changeObjective(model,'ME1');
FBAsolutionMin = optimizeCbModel(model,'min');
FBAsolutionMax = optimizeCbModel(model,'max');

The COBRA Toolbox includes a built in function for performing FVA called fluxVariability.
This function is useful because it performs FVA on every reaction in a model. When FVA is
performed on every reaction in the E. coli core model for growth on succinate, eight reactions are

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 9 of 28

found to be variable (Supplementary Table 5). Inspection of the variable reactions shows that
conversion of L-matate to pyruvate may occur through several different pathways, each leading to the
same maximum growth rate. Flux distributions using combinations of these pathways are also valid
solutions. Two of these alternate solutions are shown in Supplementary Figure 4.

Supplementary Table 5 Variable reactions for growth on succinate (uptake rate = 20 mmol gDW-1 hr-1) under aerobic
conditions. The minimum and maximum possible flux for every reaction was calculated at the maximum growth rate
and only reactions with variable fluxes are shown here. FRD7 (fumarate reductase) and SUCDi (succinate
dehydrogenase) always have highly variable fluxes in this model because they form a cycle that can carry any flux.
Physiologically, these fluxes are not relevant. The other variable reactions are MDH (malate dehydrogenase), ME1
(malic enzyme (NAD)), ME2 (malic enzyme (NADP)), NADTRHD (NAD transhydrogenase), PPCK
(phosphoenolpyruvate carboxykinase), and PYK (pyruvate kinase).

Reaction
Minimum Flux
(mmol gDW-1 hr-1)

Maximum Flux
(mmol gDW-1 hr-1)

FRD7 0 972.77
MDH 13.56 20.06
ME1 0 6.49
ME2 7.17 13.67
NADTRHD 0 6.49
PPCK 3.93 10.42
PYK 0 6.49
SUCDi 27.23 1000

Supplementary Figure 4 Flux maps for two alternate solutions for maximum aerobic growth on succinate. In (a), the
reaction ME1 is used to convert L-malate to pyruvate, but in (b), this reaction is not used at all, and the reaction PYK is
used. The two alternative reactions are highlighted in red.

Supplementary Example 4. Robustness analysis
Another method that uses FBA to analyze network properties is robustness analysis15. In this method,
the flux through one reaction is varied and the optimal objective value is calculated as a function of
this flux. This reveals how sensitive the objective is to a particular reaction. There are many insightful
combinations of reaction and objective that can be investigated with robustness analysis. One example

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 10 of 28

is examination of the effects of nutrient uptake on growth rate. To determine the effect of varying
glucose uptake on growth, first use changeRxnBounds to set the oxygen uptake rate (EX_o2(e)) to
17 mmol gDW-1 hr-1, a realistic uptake rate. Then, use a for loop to set both the upper and lower
bounds of the glucose exchange reaction to values between 0 and -20 mmol gDW-1 hr-1, and use
optimizeCbModel to perform FBA with each uptake rate. Be sure to store each growth rate in a
vector or other type of Matlab list. The COBRA Toolbox also contains a function for performing
robustness analysis (robustnessAnalysis) that can perform these functions. The full code to
perform this robustness analysis is:

model = changeRxnBounds(model,'EX_o2(e)',-17,'b');
growthRates = zeros(21,1);
for i = 0:20
 model = changeRxnBounds(model,'EX_glc(e)',-i,'b');
 FBAsolution = optimizeCbModel(model,'max');
 growthRates(i+1) = FBAsolution.f;
end

The results can then be plotted, as in Supplementary Figure 5. As expected, with a glucose uptake of 0
mmol gDW-1 hr-1, the maximum possible growth rate is 0 hr-1. Growth remains at 0 hr-1 until a glucose
uptake rate of about 2.83 mmol gDW-1 hr-1, because with such a small amount of glucose, the system
cannot make 8.39 mmol gDW-1 hr-1 ATP to meet the default lower bound of the ATP maintenance
reaction (ATPM). This reaction simulates the consumption of ATP by non-growth associated
processes such as maintenance of electrochemical gradients across the cell membrane. Once enough
glucose is available to meet this ATP requirement, growth increases rapidly as glucose uptake
increases. At an uptake rate of about 7.59 mmol gDW-1 hr-1, growth does not increase as rapidly. It is
at this point that oxygen and not glucose limits growth. Excess glucose cannot be fully oxidized, so the
fermentation pathways are used.

The oxygen uptake rate can also be varied with the glucose uptake rate held constant. With
glucose uptake fixed at 10 mmol gDW-1 hr-1, growth rate increases steadily as oxygen uptake increases
(Supplementary Figure 6). At an oxygen uptake of about 21.80 mmol gDW-1 hr-1, growth actually
begins to decrease as oxygen uptake increases. This is because glucose becomes limiting at this point,
and glucose that would have been used to produce biomass must instead be used to reduce excess
oxygen. In the previous example, growth rate continues to increase once oxygen become limiting
because E. coli can grow on glucose without oxygen. In this example, E. coli cannot grow with oxygen
but not glucose (or another carbon source), so growth decreases when excess oxygen is added.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 11 of 28

Supplementary Figure 5 Robustness analysis for maximum growth rate while varying glucose uptake rate with oxygen
uptake fixed at 17 mmol gDW-1 hr-1.

Supplementary Figure 6 Robustness analysis for maximum growth rate while varying oxygen uptake rate with glucose
uptake fixed at 10 mmol gDW-1 hr-1.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 12 of 28

Supplementary Example 5. Phenotypic phase plane analysis
When performing robustness analysis, one parameter is varied and the network state is calculated. It is
also possible to vary two parameters simultaneously and plot the results as a phenotypic phase plane16.
These plots can reveal the interactions between two reactions in interesting ways. As an example, the
phenotypic phase plane for maximum growth while varying glucose and oxygen uptake rates will be
calculated. Although more sophisticated methods for computing phenotypic phase planes exist17, they
can be easily computed in a manner similar to the calculations for robustness analysis. Instead of
using one for loop to vary one reaction, two nested for loops are used to vary two reactions. In this
case, use for loops to vary the bounds of the glucose exchange reaction (EX_glc(e)) and oxygen
exchange reaction (EX_o2(e)) between 0 and -20 mmol gDW-1 hr-1. Use optimizeCbModel to
perform FBA at each combination of glucose and oxygen uptake rates. The full code to perform the
calculations is:

growthRates = zeros(21);
for i = 0:20
 for j = 0:20
 model = changeRxnBounds(model,'EX_glc(e)',-i,'b');
 model = changeRxnBounds(model,'EX_o2(e)',-j,'b');
 FBAsolution = optimizeCbModel(model,'max');
 growthRates(i+1,j+1) = FBAsolution.f;
 end
end

The resulting growth rates can be plotted as a 2-D graph or as a 3-D surface (Supplementary Figure 7).
It is clear from these plots that this surface has 5 distinct regions, and each one is a flat plane. This is a
general feature of phenotypic phase planes. They do not form curved surfaces or other shapes. Each
of these phases has a qualitatively distinct phenotype, and all of the shadow prices
(FBAsolution.y) are constant within each phase. Phase 1 (on the far left of the plots) is
characterized by 0 growth. There is not enough glucose to meet the ATP maintenance requirement
imposed by the ATPM reaction. In phase 2, growth is limited by oxygen. o2[e] has a shadow price of
-0.0229 because there is not enough glucose to reduce all of the oxygen and produce biomass
optimally. The line between phase 2 and phase 3 is where glucose and oxygen are perfectly balanced
and growth yield is highest. In phases 3, 4, and 5, oxygen and glucose are both limiting growth. There
is not enough oxygen to fully oxidize glucose, so various compounds are produced by fermentation.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 13 of 28

Supplementary Figure 7 Phenotypic phase planes for growth with varying glucose and oxygen uptake rates. In phase 1,
no growth is possible. In phase 2, growth is limited by excess oxygen. In phase 3, acetate is secreted; in phase 4, acetate
and formate are secreted; and in phase 5, acetate, formate, and ethanol are secreted. The 3-D plot was created using the
Matlab function surfl and the 2-D plot was created with pcolor.

Supplementary Example 6. Simulating gene knockouts

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 14 of 28

Just as growth in different environments can be simulated with FBA, gene knockouts can also be
simulated by changing reaction bounds. To simulate the knockout of any gene, its associated reaction
or reactions can simply be constrained to not carry flux. By setting both the upper and lower bounds
of a reaction to 0 mmol gDW-1 hr-1, a reaction is essentially knocked out, and is restricted from
carrying flux. The E. coli core model, like many other constraint-based models, contains a list of gene-
protein-reaction interactions (GPRs), a list of Boolean rules that dictate which genes are connected
with each reaction in the model. When a reaction is catalyzed by isozymes (two different enzymes that
catalyze the same reaction), the associated GPR contains an “or” rule, where either of two or more
genes may be knocked out but the reaction will not be constrained. For example, the GPR for
phosphofructokinase (PFK) is “b1723 (pfkB) or b3916 (pfkA),” so according to this Boolean rule, both
pfkB and pfkA must be knocked out to restrict this reaction. When a reaction is catalyzed by a protein
with multiple essential subunits, the GPR contains an “and” rule, and if any of the genes are knocked
out the reaction will be constrained to 0 flux. Succinyl-CoA synthetase (SUCOAS), for example, has
the GPR “b0728 (sucC) and b0729 (sucD),” so knocking out either of these genes will restrict this
reaction. Some reactions are catalyzed by a single gene product, while others may be associated with
ten or more genes in complex associations.
 The COBRA Toolbox contains a function called deleteModelGenes that uses the GPRs to
constrain the correct reactions. Then FBA may be used to predict the model phenotype with gene
knockouts. For example, growth can be predicted for E. coli growing aerobically on glucose with the
gene b1852 (zwf), corresponding to the reaction glucose-6-phospahte dehydrogenase (G6PDH2r),
knocked out. The FBA predicted growth rate of this strain is 1.6329 hr-1, which is slightly lower than
the growth rate of 1.6531 hr-1 for wild-type E. coli because the cell can no longer use the oxidative
branch of the pentose phosphate pathway to generate NADPH. Using FBA to predict the phenotypes
of gene knockouts is especially useful in predicting essential genes. When the gene b2779 (eno),
corresponding to the enolase reaction (ENO), is knocked out, the resulting growth rate on glucose is 0
hr-1. Growth is no longer possible because there is no way to convert glucose into TCA cycle
intermediates without this glycolysis reaction, so this gene is predicted to be essential. Because FBA
can compute phenotypes very quickly, it is feasible to use it for large scale computational screens for
gene essentiality, including screens for two or more simultaneous knockouts. Supplementary Figure 8
shows the results of a double knockout screen, in which every pairwise combination of the 136 genes in
the E. coli core model were knocked out. The code to produce this figure is:

[grRatio,grRateKO,grRateWT] = doubleGeneDeletion(model);
imagesc(grRatio)
xlabel('gene knockout 1')
ylabel('gene knockout 2')

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 15 of 28

Supplementary Figure 8 Gene knockout screen on glucose under aerobic conditions. Each of the 136 genes in the core
E. coli model were knocked out in pairs, and the resulting relative growth rates were plotted. In this figure, genes are
ordered by their b number. Some genes are always essential, and result in a growth rate of 0 when knocked out no
matter which other gene is also knocked out. Other genes form synthetic lethal pairs, where knocking out only one of
the genes has no effect on growth rate, but knocking both out is lethal. Growth rates in this figure are relative to wild-
type.

Supplementary Example 7. Which genes are essential for which biomass precursor?
Earlier, we saw how to determine essential genes for growth. Here we will repeat the same analysis but
instead of optimizing for the biomass production, we will optimize for the synthesis of all biomass
precursors individually. Therefore, we have to add a demand reaction for each biomass precursor to
the model and perform a gene deletion study for each demand reaction. First, the components of the
biomass reaction can be identified and demand reactions can be added by using the
addDemandReaction function:

[biomassComponents,biomassFraction] = printBiomass(model,13);
[modelBiomass,rxnNames] =
addDemandReaction(model,biomassComponents);

Next, gene knockout screens can be performed with each of these demand reactions set as the
objective, one at a time:

for i = 1:length(rxnNames)
 modelBiomass = changeObjective(modelBiomass,rxnNames{i});

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 16 of 28

 [grRatio,grRateKO,grRateWT,hasEffect,delRxns,fluxSolution] =
singleGeneDeletion(modelBiomass);
 biomassPrecursorGeneEss(:,i) = grRateKO;
 biomassPrecursorGeneEssRatio(:,i) = grRatio;
end

The resulting matrix biomassPrecursorGeneEssRatio is plotted with the imagesc function
in Supplementary Figure 9, and indicate which biomass precursors become blocked by certain gene
knockouts. Some precursors (like atp[c]) cannot be produced by any of the gene knockout strains
because of the demand reactions that consume them. The addDemandReacton function produces
a demand reaction that does not regenerate ADP when ATP is consumed or NAD+ when NADH is
consumed, so these reactions cannot carry flux at steady-state.

Supplementary Figure 9 Gene essentiality for biomass precursor synthesis. Heat map shows the relative biomass
precursor synthesis rate of mutant compared to wild-type. The 23 biomass precursors are 3pg, accoa, adp, akg, atp, coa,
e4p, f6p, g3p, g6p, gln-L, glu-L, h2o, h, nad, nadh, nadp, nadph, oaa, pep, pi, pyr, r5p.

Supplementary Example 8. Which non-essential gene knockouts have the greatest
effect on the network flexibility?
Another question one might be interested in asking is what are the consequences for the network of
deleting a non-essential gene? To address this question, first delete the network genes individually (a
single gene deletion study) and then perform FVA (Supplementary Example 3) on non-essential gene
deletion strains. In many cases one would expect that the deletion of a gene has only minor

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 17 of 28

consequences to the network, especially if the deletion does not alter the maximal growth rate. In some
cases however, the deletion may reduce the overall network flexibility or maybe even increase the flux
range through specific reactions. In fact, this latter property is used to design optimal production
strains (e.g., using OptKnock10), by redirecting fluxes through the network.

The absolute flux span is a measure of flux range for each reaction. It is calculated as fi =
abs(vmax,i – vmin,i), where vmin,i and vmax,i are the minimal and maximal flux rate as determined using
FVA. First, calculate wild-type flux variability:

[minFluxAll(:,1),maxFluxAll(:,1)] = fluxVariability(model);

Next, calculate the knockout strain flux variablities and flux spans:

genes=model.genes([2,14,16,23,42,48]);
for i = 1 : length(genes)
 [modelDel] = deleteModelGenes(model,genes{i});
 [minFluxAll(:,i+1),maxFluxAll(:,i+1)] =
fluxVariability(modelDel);
end

fluxSpan = abs(maxFluxAll - minFluxAll);
for i = 1 : size(fluxSpan,2)
 fluxSpanRelative(:,i) = fluxSpan(:,i)./fluxSpan(:,1);
end

Finally, histograms can be plotted to show how many reactions have increased or decreased flux spans
for each knockout:

for i =2:7
 subplot(2,3,i-1)
 hist(fluxSpanRelative(:,i),20);
 title(genes{i-1});
end

This example with six mutant strains shows that the majority of the network reactions have reduced
flux span compared to wild-type (Supplementary Figure 10). However, some of these knockout strains
have a few reactions which have much higher flux span than wildtype. For example, in one of the
knockout strains (� sucA), the flux span is increased 14 times through the phosphoenolpyruvate
carboxykinase reaction (PPCK).

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 18 of 28

Supplementary Figure 10 Histograms of relative flux spans for 6 gene knockout mutants.

Supplementary Example 9. Topological features of the S matrix: metabolite
connectivity and reaction participation

Visualization of the S matrix
The core E. coli model S matrix can be visualized by using the spy command in Matlab. This
command will represent all non-zero entries in S with a dot, as shown in Supplementary Figure 11.
The code to produce this figure is:

spy(model.S);

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 19 of 28

Supplementary Figure 11 The (72*95) S matrix of the E. coli core model. All non-zero entries are marked with a dot.

Determination of the number of reactions the metabolites occur in
The S matrix can be converted into a binary matrix (Sbin), by replacing all non-zero elements in S with
a ‘1’ in Sbin. Then, all ones in each row of the Sbin can be summed to determine the number of
reactions a metabolite occurs in. The full code to binarize the S matrix and calculate and plot
metabolite connectivity is:

Sbin = zeros(size(model.S));
Sbin(find(model.S))=1;

for i = 1 : length(model.mets)
metConnectivity(i,1) = sum(Sbin(i,:));
end

loglog(sort(metConnectivity,'descend'),'*')
xlabel('metabolite number (rank ordered) - log scale’);
ylabel('number of reactions - log scale')

As Supplementary Figure 12 shows, there are very few metabolites that are highly connected, while
most metabolites participate only in a few reactions. The approximate linear appearance of the curve
of connectivities is surprising and corresponds to a power law distribution of metabolite connectivity.
The few highly connected metabolites are “global” players, similar to hubs in protein-protein-
interaction networks, while the low connectivity metabolites are “local” players, many of which only
occur in linear pathways. The power law distribution indicates that the networks are scale-free18, 19.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 20 of 28

Supplementary Figure 12 Connectivity of the core E. coli metabolites (loglog plot).

Reaction participation is the number of metabolites per reaction
To determine reaction participation for every reaction, the number of non-zero elements per column
in Sbin is counted:

for i = 1 : length(model.rxns)

rxnParticipation(i,1) = sum(Sbin(:,i));
end

In the E. coli core model, there are on average 3.8 metabolites per reaction
(mean(rxnParticipation)). The most common type of reaction in the E. coli core metabolic
network is the bi-linear reaction involving two substrates and two products.

How many metabolites are co-occurring in two reactions?
To determine the number of metabolites common to two reactions, one needs to calculate the
compound adjacency matrix (Acomp): Acomp = Sbin * Sbin

T. This multiplication leads to a square matrix of
size m*m, where m is the number of metabolites in the network.

Acomp = Sbin*Sbin';

The diagonal elements correspond to the metabolite connectivity (computed above), and can be
extracted as follows:

metConnectivity = diag(Acomp);

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 21 of 28

The off-diagonal elements correspond to the number of reactions two metabolites are co-occurring in.
The cofactor pair nad[c] and nadh[c] occurs in 12 reactions together. Moreover, the connectivity of
both metabolites is 12, thus, they only occur as pairs in the core E. coli model.

Is there any correlation between reaction essentiality and metabolite connectivity20?
One way to address this question is to delete all reactions in the network that are associated with a
metabolite and ask if the network can still produce biomass. To find all reactions associated with a
metabolite, one has to just scan through the corresponding rows in the S matrix. Then the associated
genes can be knocked out, and FBA can be used to predict if growth is possible. The full code to
perform these calculations and plot the results is:

growthDel = zeros(length(model.mets),1);
for i = 1 : length(model.mets)
 rxnID = find(model.S(i,:));
 for j = 1 : length(rxnID)
 modelDel = deleteModelRxn(model,model.rxns(rxnID(j)));
 FBAsolutionDel = optimizeCbModel(modelDel);
 if FBAsolutionDel.f <= 1e-6
 growthDel(i,1) = growthDel(i,1) + 1;
 end
 end
end

lethalityFraction = growthDel./metConnectivity;
semilogx(metConnectivity,lethalityFraction,'*')
xlabel('metabolite connectivity - log scale');
ylabel('average lethality fraction');

The results for the E. coli core model (Supplementary Figure 13) show that some less connected
metabolites have a higher lethality fraction than highly connected metabolites. This has been found to
be true for other, more complex metabolic networks20. In fact, for the E. coli core model, the average
lethality fraction lies between 0.2 and 0.5 for the majority of the metabolites, regardless of their
connectivity. There are a few compounds that have a connectivity of 2 and have a lethality fraction of 1
(e.g., cit[c], glc-D[e]). These metabolites often occur in a linear pathway, at the end of which an
essential biomass precursor is produced.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 22 of 28

Supplementary Figure 13 Correlation between metabolite connectivity and average lethality of reactions producing or
consuming a particular metabolite. Less connected metabolites tend to occur in a higher fraction of essential reactions.

Supplementary Example 10. Characterization of functional states by random
sampling

How probable is a flux through a reaction?
While flux variability analysis determines the minimum and maximum value of a reaction flux given
some network constraints, Monte-Carlo-sampling can be used to determine a probability flux
distribution for each network reaction21, 22.

Sampling is an unbiased method, compared to many other biased methods in constraint-based
modeling. Monte-Carlo-sampling involves a random walk from a starting point through the entire
space. As the network size increases the number of steps required to reach all regions of the high-
dimensional space will increase, making unbiased sampling more time-consuming. Consequently, a
slightly biased approach (hit-and-run sampling) has been adapted for sampling of metabolic
networks22 that provides the sampling algorithm with a set of ‘warm up points’ (warmupPts)which are
randomly generated within the feasible steady-state solution space. The hit-and-run sampler
determines the geometric center (cg) of the high-dimensional solution space. Using this geometric
center, the direction from a point x to the next step is biased by choosing a point x1 along the line of x
and cg, whereby the step size to x1 is randomly determined. This approach has been shown to
accelerate the random walk through the space. To ensure that the set of sampling points does indeed
represent the solution space, i) there must be sufficient points (i.e., as the size of the solution space
increases the number of stored points must increase, nFiles*pointsPerFile gives the total number
of stored points to the ACHRSampler); and ii) all points must be random, i.e., the chosen path
between two subsequent sampling points has to be untraceable. Therefore, the number of points
between two stored points (stepsPerPoint) must be chosen appropriately. For this latter property, it
is also the case that the number of steps per points must increase as the dimensionality of the steady-
state solution space increases. Note that the following calculations can be quite time consuming, even
with a small scale model.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 23 of 28

To sample the solution space of the E. coli core model with its default constraints (growth on
glucose, aerobic):

warmupPts= createHRWarmupRand(model,500);
ACHRSampler(model,warmupPts,'samplingResults',10,5000,1000,warmupPts(:,1));

To the load the calculated data:

samples = loadSamples('samplingResults', 10, 5000);

Next, FVA (Supplementary Example 3) can be used to determine the minimum and maximum possible
fluxes so the sampling results can be plotted for the first nine reactions in the model (Supplementary
Figure 14):

[minFlux,maxFlux] = FluxVariability(model,0);

figure;
for i = 1 : 9
 subplot(3,3,i)
 hist(samples(i,:),10);
 hold on
 plot([minFlux(i) maxFlux(i)], [0 1],'*r');
 title(model.rxns{i});
end

The error of Sv = 0 for the sampled flux distributions can be calculated, and these errors are plotted in
Supplementary Figure 15. The errors are all very small, indicating that these sampling results are valid:

errors = max(abs(model.S*samples));
plot(errors)

The correlation between the first ten network reactions can be calculated and plotted (Supplementary
Figure 16) with:

sampleScatterMatrix(model.rxns(1:10),model,samples);

This scatter plot allows us to visualize the interaction between two network reactions. For example, the
aconitase reactions ACONTa and ACONTb are perfectly correlated in the tested condition (sample
points between the two reactions align on a line). In contrast, the flux through the adenylate kinase
reaction (ADK1) seems mostly independent from the flux through the acetaldehyde dehydrogenase
reaction (ACALD). Considering the locations of these reactions on the metabolic map of the E. coli
core model (Supplementary Figure 1), this observation is not astonishing.

Which network reactions are perfectly correlated? Once the samples points have been
calculated they can readily used to determine the correlation between any two reactions in the
network. To obtain the list of perfectly correlated reactions (e.g., as in the example above, ACONTa
and ACONTb), the following commands can be used:

[setsSorted,setNoSorted,setSize] =
identifyCorrelSets(model,samples);
setNames = [];
setNumbers = [];
for i = 1 : length(setsSorted)
 setNames = [setNames; setsSorted{i}.names];

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 24 of 28

 setNumbers = [setNumbers;
i*ones(length(setsSorted{i}.names),1)];
end

Two vectors will be returned (setNames, setNumbers) which can be copied into a spreadsheet to
obtain a table view (see Supplementary Table 6). Interestingly, only 37 of the 95 network reactions are
grouped into 17 perfectly correlated reaction sets. A main reason for this is that we did not require the
growth rate to have a minimum value. Hence, many functional states are possible, some of which
support growth while others don´t.

Supplementary Figure 14 Histograms of sampled fluxes for nine reactions.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 25 of 28

Supplementary Figure 15 Error of Sv = 0 for the sampled fluxes.

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 26 of 28

Supplementary Figure 16 Scatter matrix of sample points in the E. coli core model, simulated in minimal medium
glucose under aerobic conditions.

Supplementary Table 6: Correlated reaction sets in the E. coli core model, when grown on glucose minimal medium,
aerobic conditions. Reactions that are not part of a correlated reaction set with more than one member are not listed.
Correlated
Set #

Reaction
Name

Correlated
Set #

Reaction
Name

Correlated
Set #

Reaction
Name

Nature Biotechnology: doi: 10.1038/nbt.1614

Page 27 of 28

1 CYTBD 6 GND 12 EX_for(e)
1 EX_o2(e) 6 PGL 12 PFL

1 O2t 7 GAPD 13 ENO

2 ACONTa 7 PGK 13 PGM

2 ACONTb 8 FBA 14 D_LACt2
2 CS 8 TPI 14 LDH_D

3 ACKr 9 EX_pi(e) 15 CO2t
3 ACt2r 9 PIt2r 15 EX_co2(e)

3 PTAr 10 EX_nh4(e) 16 ALCD2x

4 TALA 10 NH4t 16 ETOHt2r

4 TKT1 11 EX_h2o(e) 17 ADK1

5 ICL 11 H2Ot 17 PPS

5 MALS

Nature Biotechnology: doi: 10.1038/nbt.1614

28

Supplementary References

1. Becker, S.A. et al. Quantitative prediction of cellular metabolism with constraint-based models:

The COBRA Toolbox. Nat. Protocols 2, 727-738 (2007).
2. Orth, J.D., Fleming, R.M. & Palsson, B.O. in EcoSal - Escherichia coli and Salmonella Cellular

and Molecular Biology. (ed. P.D. Karp) (ASM Press, Washington D.C.; 2009).
3. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-

throughput and computational data elucidates bacterial networks. Nature 429, 92-96 (2004).
4. Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed

metabolic networks. Proceedings of the National Academy of Sciences of the United States of
America 99, 15112-15117 (2002).

5. Shlomi, T., Berkman, O. & Ruppin, E. Regulatory on/off minimization of metabolic flux
changes after genetic perturbations. Proceedings of the National Academy of Sciences of the United
States of America 102, 7695-7700 (2005).

6. Reed, J.L., Famili, I., Thiele, I. & Palsson, B.O. Towards multidimensional genome
annotation. Nat Rev Genet 7, 130-141 (2006).

7. Herrgard, M.J., Fong, S.S. & Palsson, B.O. Identification of genome-scale metabolic network
models using experimentally measured flux profiles. PLoS computational biology 2, e72 (2006).

8. Satish Kumar, V., Dasika, M.S. & Maranas, C.D. Optimization based automated curation of
metabolic reconstructions. BMC bioinformatics 8, 212 (2007).

9. Kumar, V.S. & Maranas, C.D. GrowMatch: an automated method for reconciling in silico/in
vivo growth predictions. PLoS Comput Biol 5, e1000308 (2009).

10. Burgard, A.P., Pharkya, P. & Maranas, C.D. Optknock: a bilevel programming framework for
identifying gene knockout strategies for microbial strain optimization. Biotechnology and
bioengineering 84, 647-657 (2003).

11. Patil, K.R., Rocha, I., Forster, J. & Nielsen, J. Evolutionary programming as a platform for in
silico metabolic engineering. BMC bioinformatics 6, 308 (2005).

12. Pharkya, P., Burgard, A.P. & Maranas, C.D. OptStrain: a computational framework for redesign
of microbial production systems. Genome research 14, 2367-2376 (2004).

13. Varma, A. & Palsson, B.O. Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic
precursors and cofactors. Journal of Theoretical Biology 165, 477-502 (1993).

14. Mahadevan, R. & Schilling, C.H. The effects of alternate optimal solutions in constraint-based
genome-scale metabolic models. Metabolic engineering 5, 264-276 (2003).

15. Edwards, J.S. & Palsson, B.O. Robustness analysis of the Escherichia coli metabolic network.
Biotechnology Progress 16, 927-939 (2000).

16. Edwards, J.S., Ramakrishna, R. & Palsson, B.O. Characterizing the metabolic phenotype: a
phenotype phase plane analysis. Biotechnology and bioengineering 77, 27-36. (2002).

17. Bell, S.L. & Palsson, B.O. Phenotype phase plane analysis using interior point methods.
Computers & Chemical Engineering 29, 481-486 (2005).

18. Palsson, B.O. Systems biology: properties of reconstructed networks. (Cambridge University
Press, New York; 2006).

19. Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional
organization. Nat Rev Genet 5, 101-113 (2004).

20. Mahadevan, R. & Palsson, B.O. Properties of metabolic networks: structure versus function.
Biophysical journal 88, L07-09 (2005).

21. Price, N.D., Schellenberger, J. & Palsson, B.O. Uniform Sampling of Steady State Flux Spaces:
Means to Design Experiments and to Interpret Enzymopathies. Biophysical journal 87, 2172-
2186 (2004).

22. Thiele, I., Price, N.D., Vo, T.D. & Palsson, B.O. Candidate metabolic network states in human
mitochondria: Impact of diabetes, ischemia, and diet. The Journal of biological chemistry 280,
11683-11695 (2005).

Nature Biotechnology: doi: 10.1038/nbt.1614

