

Base populations and breeding schemes

Prof. Roberto Fritsche-Neto
roberto.neto@usp.br

Piracicaba, May 11 ${ }^{\text {th }}, 2018$

Building a base population

- Combine high mean and large variability
- Open mating among parents
- Closed system - since the begin, all the alleles are in the base population
- HWE - binomial and multinomial distributions (\% heterozygosity)
- How many parents?
- Variability vs. Mean vs. Heterosigozyty
- Number of cycles $v s$. Ne
- What is the maximum of RS? $\quad R S=2 . N e . i . r_{a P} . \sigma_{a}$
- Choosing parents:
- Breeding program objectives
- Heterotic Groups (SCA and GCA)

Which is the best base population?

- Combine mean and variability (divergence)
- $\mathrm{L}_{1}=\mathrm{AABBCC}$
- $\mathrm{L}_{2}=$ aabbCC
- $\mathrm{L}_{1}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{a}}+\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $\mathrm{L}_{2}=\mathrm{u}-\boldsymbol{\alpha}_{\mathrm{a}}-\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $X_{P(12)}=u+\boldsymbol{\alpha}_{c}$
- Which are the best populations to obtain lines?
- $X_{S}=u+(p-q) a+2 p q d-2 p q d F$
- $X_{S 0}=u+(p-q) a+2 p q d$
- $X_{S 1}=u+(p-q) a+p q d$
- The best can be estimated by $=2 . \mathrm{X}_{\mathrm{S} 1}-\mathrm{X}_{\mathrm{S} 0}$
- $2 \mathrm{u}+2(\mathrm{p}-\mathrm{q}) \mathrm{a}+2 \mathrm{pqd}-(\mathrm{u}+(\mathrm{p}-\mathrm{q}) \mathrm{a}+2 \mathrm{pqd})$
- $\mathrm{u}+(\mathrm{p}-\mathrm{q}) \mathrm{a}$ (estimated value for $\mathrm{F}=1)$
- $\mathrm{L}_{1}=\mathrm{AABBCC}$
- $\mathrm{L}_{2}=\mathrm{AAbbCC}$
- $\mathrm{L}_{3}=\mathrm{aaBBCC}$
- $\mathrm{L}_{4}=$ aabbCC
- $\mathrm{L}_{1}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{a}}+\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $\mathrm{L}_{2}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{a}}-\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $L_{3}=u-\boldsymbol{\alpha}_{\mathrm{a}}+\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $\mathrm{L}_{4}=\mathrm{u}-\boldsymbol{\alpha}_{\mathrm{a}}-\boldsymbol{\alpha}_{\mathrm{b}}+\boldsymbol{\alpha}_{\mathrm{c}}$
- $\mathrm{X}_{\mathrm{P}(1234)}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{c}}$

Why after so many cycles there is Va?

- Two-locus model $=\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}} / \mathrm{B}_{\mathrm{k}} \mathrm{B}_{1}$
- $\mathrm{G}_{\mathrm{ijkl}}=\left(\boldsymbol{\alpha}_{\mathrm{i}}+\boldsymbol{\alpha}_{\mathrm{j}}+\boldsymbol{S}_{\mathrm{ij}}\right)+\left(\boldsymbol{\alpha}_{\mathrm{k}}+\boldsymbol{\alpha}_{1}+\boldsymbol{S}_{\mathrm{kl}}\right)+\mathrm{I}_{\mathrm{ijkl}}$
- $\mathrm{G}_{\mathrm{ij} \mathrm{jk}}=\mathrm{u}+\mathrm{A}_{\mathrm{ij}}+B_{\mathrm{kl}}+\mathrm{I}_{\mathrm{ijkl}}$
- The epistatic effect is
- $\mathrm{I}_{\mathrm{ijkl}}=\mathrm{G}_{\mathrm{ijkl}}-\left(\mathrm{u}+\mathrm{A}_{\mathrm{ij}}+B_{\mathrm{k} 1}\right)$
- 1 or 2 dominant allele $=13$
- Otherwise $=1$
- $\mathrm{p}=\mathrm{q}=0.5$
- Population mean
- $u=p^{2} p^{2} G_{1111}+p^{2} 2 p q G G_{1112}+\ldots+q^{2} q^{2} G_{2222}$
- $=1 / 4.1 / 4.13+1 / 4.1 / 2.13+\ldots+1 / 4.1 / 4.1=121 / 4$
- $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}$ and $\mathrm{B}_{\mathrm{k}} \mathrm{B}_{1}$ effects
- $\mathrm{G}_{22} . .=\mathrm{p}^{2} 13+2 \mathrm{pq} 13+\mathrm{q}^{2} 1=10$
- $\mathrm{A}_{22}=\mathrm{Gij} . .-\mathrm{u}=10-121 / 4=-9 / 4$
- $\mathrm{I}_{\mathrm{ijk} \mathrm{l}}$ effect
- $\mathrm{I}_{1111}=\mathrm{G}_{1111}-\left(\mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{11}\right)$
- $=13-(12+1 / 4)-3 / 4-3 / 4=-3 / 4$

	$\mathrm{B}_{1} \mathrm{~B}_{1}$	$\mathrm{B}_{1} \mathrm{~B}_{2}$	$\mathrm{B}_{2} \mathrm{~B}_{2}$	$\mathrm{G}_{\mathrm{ij} \cdot}$.	$\mathbf{A}_{\text {ij. }}$	
$\mathrm{A}_{1} \mathrm{~A}_{1}$	$\mathrm{G}_{1111}=13$	$\mathrm{G}_{1112}=13$	$\mathrm{G}_{1122}=13$	$\mathrm{G}_{11 . .}=13$	$\mathrm{A}_{11}=3 / 4$	
	$\mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{11}=133 / 4$	$\mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{12}=133 / 4$	$\mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{22}=103 / 4$			
	$\mathrm{I}_{1111}=-3 / 4$	$\mathrm{I}_{1112}=-3 / 4$	$\mathrm{I}_{1122}=9 / 4$			
$\mathrm{A}_{1} \mathrm{~A}_{2}$	$\mathrm{G}_{1211}=13$	$\mathrm{G}_{1212}=13$	$\mathrm{G}_{1222}=13$	$\mathrm{G}_{12 . .}=13$	$\mathrm{A}_{12}=3 / 4$	
	$\mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{11}=133 / 4$	$\mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{12}=133 / 4$	$\mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{22}=103 / 4$			
	$\mathrm{I}_{1211}=-3 / 4$	$I_{1212}=-3 / 4$	$\mathrm{I}_{1222}=9 / 4$			
$\mathrm{A}_{2} \mathrm{~A}_{2}$	$\mathrm{G}_{2211}=13$	$\mathrm{G}_{2221}=13$	$\mathrm{G}_{2222}=1$	$\mathrm{G}_{22 . .}=10$	$A_{22}=-9 / 4$	
	$\mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{11}=103 / 4$	$\mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{21}=103 / 4$	$\mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{22}=73 / 4$			
	$\mathrm{I}_{2211}=9 / 4$	$\mathrm{I}_{2221}=9 / 4$	$\mathrm{I}_{2222}=-27 / 4$			
G..kl	$\mathrm{G}_{. .11}=13$	$\mathrm{G}_{. .12}=13$	$\mathrm{G}_{. .22}=10$	$\mathbf{u}=1 \mathbf{2}^{1 / 4}$		
B_{kl}	$\mathrm{B}_{11}=3 / 4$	$\mathrm{B}_{12}=3 / 4$	$B_{22}=-9 / 4$			

Why after so many cycles there is Va?

- Considering $\mathrm{AA}=\mathrm{Aa}=13$ and $\mathrm{aa}=10$
- $a=d=3 / 2$
- $V a=2 p q[a+(p-q) d)]^{2}$
- $\quad=21 / 21 / 2[3 / 2+(1 / 2-1 / 2) 3 / 2)$
- $\quad=9 / 8=1.12$
- $\mathrm{Vd}=(2 \mathrm{pqd})^{2}$
- $\quad=\left(2^{1 / 2} 1 / 23 / 2\right)^{2}$
- $\quad=9 / 16=0.56$
- The same values are found for B . Thus,
- $\mathrm{Va}=\mathrm{VaA}+\mathrm{VaB}=2.25$
- $\mathrm{Vd}=\mathrm{VdA}=\mathrm{VdB}=1.12$
- $\operatorname{Vg}=1 / 41 / 4(13-(12+1 / 4))^{2}+\ldots+1 / 4 / 4\left(1-12^{1 / 4}\right)^{2}$
- $\quad=135 / 16=8.44$
- $\mathrm{Vi}=\mathrm{Vg}-\mathrm{Va}-\mathrm{Vd}=81 / 16=5.06$
- $\mathrm{Va}=13.33 \%$

	$\mathrm{B}_{1} \mathrm{~B}_{1}$	$\mathrm{B}_{1} \mathrm{~B}_{2}$	$\mathrm{B}_{2} \mathrm{~B}_{2}$	$\mathrm{G}_{\mathrm{ij} \cdot}$.	$\mathbf{A}_{\text {ij. }}$.	
$\mathrm{A}_{1} \mathrm{~A}_{1}$	$\mathrm{G}_{1111}=13$	$\mathrm{G}_{1112}=13$	$\mathrm{G}_{1122}=13$	$\mathrm{G}_{11 . .}=13$	$\mathrm{A}_{11}=3 / 4$	
	$\begin{gathered} \mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{11}= \\ 13^{3 / 4} \end{gathered}$	$\begin{gathered} \mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{12}= \\ 13^{3} / 4 \end{gathered}$	$\begin{gathered} \mathrm{u}+\mathrm{A}_{11}+\mathrm{B}_{22}= \\ 10^{3 / 4} \end{gathered}$			
	$\mathrm{I}_{1111}=-3 / 4$	$\mathrm{I}_{1112}=-3 / 4$	$\mathrm{I}_{1122}=9 / 4$			
$\mathrm{A}_{1} \mathrm{~A}_{2}$	$\mathrm{G}_{1211}=13$	$\mathrm{G}_{1212}=13$	$\mathrm{G}_{1222}=13$	$\mathrm{G}_{12 . .}=13$	$\mathrm{A}_{12}=3 / 4$	
	$\begin{gathered} \mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{11}= \\ 13^{3 / 4} \end{gathered}$	$\begin{gathered} \mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{12}= \\ 13^{3 / 4} \end{gathered}$	$\begin{gathered} \mathrm{u}+\mathrm{A}_{12}+\mathrm{B}_{22}= \\ 10^{3 / 4} \end{gathered}$			
	$\mathrm{I}_{1211}=-3 / 4$	$\mathrm{I}_{1212}=-3 / 4$	$\mathrm{I}_{1222}=9 / 4$			
$\mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{2}}$	$\mathrm{G}_{2211}=13$	$\mathrm{G}_{2221}=13$	$\mathrm{G}_{2222}=1$	$\mathrm{G}_{22 . .}=10$	$\mathrm{A}_{22}=-9 / 4$	
	$\begin{gathered} \mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{11}= \\ 10^{3 / 4} \end{gathered}$	$\begin{gathered} \mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{21}= \\ 10^{3 / 4} \end{gathered}$	$\underset{73 / 4}{\mathrm{u}+\mathrm{A}_{22}+\mathrm{B}_{22}}=$			
	$\mathrm{I}_{2211}=9 / 4$	$\mathrm{I}_{2221}=9 / 4$	$\mathrm{I}_{2222}=-27 / 4$			
G...kl	$\mathrm{G}_{. .11}=13$	$\mathrm{G}_{. .12}=13$	$\mathrm{G}_{. .22}=10$	$\mathbf{u}=12^{1 / 4}$		
B_{kl}	$\mathrm{B}_{11}=3 / 4$	$\mathrm{B}_{12}=3 / 4$	$B_{22}=-9 / 4$			

- $\mathrm{Vd}=6.66 \%$
- $\mathrm{Vi}=80.01 \%$

Why after so many cycles there is Va?

- Considering $\mathrm{B}_{2} \mathrm{~B}_{2}$ fixed, $\mathrm{AA}=\mathrm{Aa}=13$, and $\mathrm{aa}=10$
- $\mathrm{u}=\mathrm{p}^{2} \mathrm{G}_{1122}+2 \mathrm{pqG}_{1222}+\mathrm{q}^{2} \mathrm{G}_{2222}$
- $=1 / 4.13+2.1 / 2.1 / 2.13+1 / 4.1=10$
- $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}$ effect
- $\mathrm{G}_{22 . .}=1$
- $\mathrm{A}_{22}=\mathrm{G}_{\mathrm{ij} \cdot} .-\mathrm{u}=1-10=-9$
- $\mathrm{I}_{\mathrm{ijkl}}=\mathrm{G}_{\mathrm{ijkl}}-\left(\mathrm{u}+\mathrm{A}_{\mathrm{ij}}+B_{\mathrm{kl}}\right)$
- $\mathrm{I}_{1111}=13-10-3+0=0$
- Variances
- $\operatorname{Vg}=1 / 4(13-10)^{2}+2.1 / 2.1 / 2(13-10)^{2}+1 / 4(1-10)^{2}=27$
- $a=d=6$
- $V a=2 p q[a+(p-q) d)]^{2}=18=66.66 \%$
- $\mathrm{Vd}=(2 \mathrm{pqd})^{2}=9=33.33 \%$
- $\mathrm{Vi}=\mathrm{Vg}-\mathrm{Va}-\mathrm{Vd}=0=0 \%$

Main criteria to choose the breeding method

- Propagation system - Sexual (cross-pollination or self-pollination) or clonal propagated
- Trait - Qualitative vs. Quantitative
- Heritability - Low or high
- Genetic control-Additive vs. non-additive
- Proportion explored of the additive genetic variance - Cov between evaluated and improved population
- Resources available - time, money, labor, ...
- Product to be developed - lines, hybrid, variety, etc.

How can we maximize the genetic gain per time?

- Increasing the intensity of selection (i)

$$
\begin{gathered}
R S=i . r_{a P} \cdot \sigma_{a} / T \\
r_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{\sigma_{a}^{2}}{\sigma_{a} \sigma_{P}}=\frac{\sigma_{a}}{\sigma_{P}} \\
R S=i \frac{\sigma_{a}}{\sigma_{P}} \cdot \sigma_{a} \quad R S=i \frac{\sigma_{a}^{2}}{\sigma_{P}}
\end{gathered}
$$

- Minimizing the environment effect - replicates and randomize

$$
\sigma_{F}^{2}=\sigma_{G}^{2}+\sigma_{E}^{2}+2 C O V_{G E} \quad h_{A}^{2}=\frac{\sigma_{A}^{2}}{\sigma_{G}^{2}+\frac{\sigma_{e}^{2}}{r}}
$$

- Increasing the genetic variability
- Using more accurate or less time-consuming breeding schemes
- For instance, combining GS and HTP
- Maximizing the additive genetic covariance between evaluated and improved population
- $\mathrm{c}=$ pathway between the unit of selection (US) and improved population $\left(\mathrm{Y}_{\mathrm{M}}\right)$ - indirect selection

$$
R S(u s, Y m)=i \frac{\sigma_{G Y m}^{2}}{\sigma_{P Y m}} \cdot \frac{\operatorname{COV}_{G(u s, Y m)}}{\sigma_{G Y m}^{2}} \quad R S=i \frac{\operatorname{COV}_{G(u s, Y m)}}{\sigma_{P Y m}} \quad R S=i \frac{r_{g(u s, Y m)} \sigma_{a(u s)} \sigma_{a(Y m)}}{\sigma_{P Y m}} \quad R S=i . c \cdot \frac{\sigma_{a}^{2}}{\sigma_{P Y m}}
$$

Massal selection

- Harvest together similar and superior phenotypes
- They will form the newest improved population
- Only one sex (female)
- Little gains

- Easy, cheap, and no time-consuming
- Species little improved and high heritable traits

Massal selection

- Both parents

US
male

$$
\begin{aligned}
& G S=k_{1} \cdot \frac{1}{2} \cdot \frac{\sigma_{A}^{2}}{\sigma_{F}}+k_{2} \cdot \frac{1}{2} \cdot \frac{\sigma_{A}^{2}}{\sigma_{F}} \\
& k_{1}=k_{2} \quad G S=k \frac{\sigma_{A}^{2}}{\sigma_{F}} \\
& \sigma_{F}^{2}=\sigma_{G}^{2}+\sigma_{E}^{2}+2 C O V_{G E}
\end{aligned}
$$

- Better gains but still low

Selection based on progenies

- Among half-sibs (only one sex)

$$
c=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \quad G S=k \cdot \frac{1}{4} \cdot \frac{\sigma_{A}^{2}}{\sigma_{F}}
$$

Selection based on progenies

- Half-sibs but in both parents

Recurrent selection - HS / S

Comparison between breeding methods

- Response to selection per time

$$
R S=\frac{i \cdot r_{a P} \cdot \sigma_{a}}{T} \quad E F_{X / Y}=\frac{R S_{X} \cdot T_{Y}}{R S_{Y} \cdot T_{X}} \cdot 100
$$

- It is possible simulate innumerous breeding schemes
- There is no "the best method"

