
Nios II Custom Instruction User Guide
2015-11-02

UG-N2CSTNST Subscribe Send Feedback

You can accelerate time-critical software algorithms by adding custom instructions to the Nios II
processor.

Custom instructions allow you to reduce a complex sequence of standard instructions to a single instruc‐
tion implemented in hardware. You can use this feature for a variety of applications: for example, to
optimize software inner loops for digital signal processing (DSP), packet header processing, and computa‐
tion-intensive applications. Each custom instruction is a component in the Qsys system. You can add as
many as 256 custom instructions to your system.

Nios II Custom Instruction Overview
Custom instructions give you the ability to tailor the Nios II processor to meet the needs of a particular
application. You can accelerate time critical software algorithms by converting them to custom hardware
logic blocks. Because it is easy to alter the design of the FPGA-based Nios II processor, custom instruc‐
tions provide an easy way to experiment with hardware-software tradeoffs at any point in the design
process.

The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in the
following figure.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-N2CSTNST
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-N2CSTNST%202015-11-02)%20Nios%20II%20Custom%20Instruction%20User%20Guide&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 1: Custom Instruction Logic Connects to the Nios II ALU

Nios II Embedded Processor

+
–

&

<<
>>

Result

A
Nios II

ALU

B

Custom
Logic

Related Information

• Implementing a Nios II Custom Instruction in Qsys on page 17
Step-by-step instructions for implementing a custom instruction

• Software Interface on page 12
Information about the custom instruction software interface

Custom Instruction Implementation
Nios II custom instructions are custom logic blocks adjacent to the arithmetic logic unit (ALU) in the
processor’s datapath.

When custom instructions are implemented in a Nios II system, each custom operation is assigned a
unique selector index. The selector index allows software to specify the desired operation from among up
to 256 custom operations. The selector index is determined at the time the hardware is instantiated with
the Qsys software. Qsys exports the selection index value to system.h for use by the Nios II software build
tools.

2 Custom Instruction Implementation
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom Instruction Hardware Implementation

Figure 2: Hardware Block Diagram of a Nios II Custom Instruction

Combinatorial

Conduit interface to external
memory, FIFO, or other logic

Multi-cycle

result [31..0]

Extended

Internal
Register File

done

dataa[31..0]

datab[31..0]

clk
clk_en

reset
start

n[7..0]

a[4..0]
readra

b[4..0]
readrb

c[4..0]
writerc

Combinational

Custom
Logic

A Nios II custom instruction logic block interfaces with the Nios II processor through three ports: dataa,
datab, and result.

The custom instruction logic provides a result based on the inputs provided by the Nios II processor. The
Nios II custom instruction logic receives input on its dataa port, or on its dataa and datab ports, and
drives the result to its result port.

The Nios II processor supports several types of custom instructions. The figure above shows all the ports
required to accommodate all custom instruction types. Any particular custom instruction implementation
requires only the ports specific to its custom instruction type.

The figure above also shows a conduit interface to external logic. The interface to external logic allows you
to include a custom interface to system resources outside of the Nios II processor datapath.

Custom Instruction Software Implementation
The Nios II custom instruction software interface is simple and abstracts the details of the custom
instruction from the software developer.

For each custom instruction, the Nios II Embedded Design Suite (EDS) generates a macro in the system
header file, system.h. You can use the macro directly in your C or C++ application code, and you do not
need to program assembly code to access custom instructions. Software can also invoke custom instruc‐
tions in Nios II processor assembly language.

UG-N2CSTNST
2015-11-02 Custom Instruction Hardware Implementation 3

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Software Interface on page 12
More information about the custom instruction software interface

Custom Instruction Types
Different types of custom instructions are available to meet the requirements of your application. The
type you choose determines the hardware interface for your custom instruction.

Table 1: Custom Instruction Types, Applications, and Hardware Ports

Instruction Type Application Hardware Ports

Combinational Single clock cycle custom logic blocks. • dataa[31:0]

• datab[31:0]

• result[31:0]

Multicycle Multi-clock cycle custom logic blocks of
fixed or variable durations.

• dataa[31:0]

• datab[31:0]

• result[31:0]

• clk

• clk_en (1)
• start

• reset

• done

Extended Custom logic blocks that are capable of
performing multiple operations

• dataa[31:0]

• datab[31:0]

• result[31:0]

• clk

• clk_en (1)

• start

• reset

• done

• n[7:0]

(1) The clk_en input signal must be connected to the clk_en signals of all the registers in the custom
instruction, in case the Nios II processor needs to stall the custom instruction during execution.

4 Custom Instruction Types
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Type Application Hardware Ports

Internal register
file

Custom logic blocks that access internal
register files for input or output or both.

• dataa[31:0]

• datab[31:0]

• result[31:0]

• clk

• clk_en(1)

• start

• reset

• done

• n[7:0]

• a[4:0]

• readra

• b[4:0]

• readrb

• c[4:0]

• writerc

External
interface

Custom logic blocks that interface to logic
outside of the Nios II processor’s datapath

Standard custom instruction ports, plus
user-defined interface to external logic.

Combinational Custom Instructions
A combinational custom instruction is a logic block that completes its logic function in a single clock
cycle.

A combinational custom instruction must not have side effects. In particular, a combinational custom
instruction cannot have an external interface. This restriction exists because the Nios II processor issues
combinational custom instructions speculatively, to optimize execution. It issues the instruction before
knowing whether it is necessary, and ignores the result if it is not required.

A basic combinational custom instruction block, with the required ports shown in "Custom Instruction
Types", implements a single custom operation. This operation has a selection index determined when the
instruction is instantiated in the system using Qsys.

You can further optimize combinational custom instructions by implementing the extended custom
instruction. Refer to “Extended Custom Instructions”.

Related Information

• Extended Custom Instructions on page 8
• Custom Instruction Types on page 4

List of standard custom instruction hardware ports, to be used as signal types

Combinational Custom Instruction Ports
A combinational custom instruction must have a result port, and may have optional dataa and datab
ports.

UG-N2CSTNST
2015-11-02 Combinational Custom Instructions 5

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3: Combinational Custom Instruction Block Diagram

dataa[31..0]

datab[31..0]
Combinational result[31..0]

In the figure above, the dataa and datab ports are inputs to the logic block, which drives the results on
the result port. Because the logic function completes in a single clock cycle, a combinational custom
instruction does not require control ports.

Table 2: Combinational Custom Instruction Ports

Port Name Direction Required Description

dataa[31:0] Input No Input operand to custom instruction

datab[31:0] Input No Input operand to custom instruction

result[31:0] Output Yes Result of custom instruction

The only required port for combinational custom instructions is the result port. The dataa and datab
ports are optional. Include them only if the custom instruction requires input operands. If the custom
instruction requires only a single input port, use dataa.

Combinational Custom Instruction Timing

The processor presents the input data on the dataa and datab ports on the rising edge of the processor
clock. The processor reads the result port on the rising edge of the following processor clock cycle.

Figure 4: Combinational Custom Instruction Timing Diagram

clk
T0 T1 T3T2 T4

dataa[]

datab[]

result[]

dataa[] valid

datab[] valid

result valid

Related Information
Combinational Custom Instruction Ports on page 5
Block diagram showing the dataa, datab, and result ports

Multicycle Custom Instructions
Multicycle (sequential) custom instructions consist of a logic block that requires two or more clock cycles
to complete an operation.

6 Combinational Custom Instruction Timing
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5: Multicycle Custom Instruction Block Diagram

dataa[31..0]
datab[31..0]
clk
clk_en
reset
start

Multi-cycle
done

result[31..0]

Multicycle custom instructions complete in either a fixed or variable number of clock cycles. For a custom
instruction that completes in a fixed number of clock cycles, you specify the required number of clock
cycles at system generation. For a custom instruction that requires a variable number of clock cycles, you
instantiate the start and done ports. These ports participate in a handshaking scheme to determine when
the custom instruction execution is complete.

A basic multicycle custom instruction block, with the required ports shown in "Custom Instruction
Types", implements a single custom operation. This operation has a selection index determined when the
instruction is instantiated in the system using Qsys.

You can further optimize multicycle custom instructions by implementing the extended internal register
file, or by creating external interface custom instructions.

Related Information

• Extended Custom Instructions on page 8
• Internal Register File Custom Instructions on page 10
• External Interface Custom Instructions on page 11
• Custom Instruction Types on page 4

List of standard custom instruction hardware ports, to be used as signal types

Multicycle Custom Instruction Ports

Table 3: Multicycle Custom Instruction Ports

Port Name Direction Required Description

clk Input Yes System clock

clk_en Input Yes Clock enable

reset Input Yes Synchronous reset

start Input No Commands custom instruction logic to start execution

done Output No Custom instruction logic indicates to the processor that
execution is complete

dataa[31:0] Input No Input operand to custom instruction

datab[31:0] Input No Input operand to custom instruction

result[31:0] Output No Result of custom instruction

UG-N2CSTNST
2015-11-02 Multicycle Custom Instruction Ports 7

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The clk, clk_en, and reset ports are required for multicycle custom instructions. The start, done,
dataa, datab, and result ports are optional. Implement them only if the custom instruction requires
them.

The Nios II system clock feeds the custom logic block’s clk port, and the Nios II system’s master reset
feeds the active high reset port. The reset port is asserted only when the whole Nios II system is reset.

The custom logic block must treat the active high clk_en port as a conventional clock qualifier signal,
ignoring clk while clk_en is deasserted.

Multicycle Custom Instruction Timing

Figure 6: Multicycle Custom Instruction Timing Diagram

clk

dataa[]

datab[]

result[]

valid

valid

T0 T1 T3T2 T4 T5 T6

valid
done

clk_en

start

reset

The processor asserts the active high start port on the first clock cycle of the custom instruction
execution. At this time, the dataa and datab ports have valid values and remain valid throughout the
duration of the custom instruction execution. The start signal is asserted for a single clock cycle.

For a fixed length multicycle custom instruction, after the instruction starts, the processor waits the
specified number of clock cycles, and then reads the value on the result signal. For an n-cycle operation,
the custom logic block must present valid data on the nth rising edge after the custom instruction begins
execution.

For a variable length multicycle custom instruction, the processor waits until the active high done signal is
asserted. The processor reads the result port on the same clock edge on which done is asserted. The
custom logic block must present data on the result port on the same clock cycle on which it asserts the
done signal.

Extended Custom Instructions
An extended custom instruction allows a single custom logic block to implement several different
operations.

Extended custom instruction components occupy multiple select indices. The selection indices are
determined when the custom instruction hardware block is instantiated in the system using Qsys.

Extended custom instructions use an extension index to specify which operation the logic block performs.
The extension index can be up to eight bits wide, allowing a single custom logic block to implement as
many as 256 different operations.

The following block diagram shows an extended custom instruction with bit-swap, byte-swap, and half-
word swap operations.

8 Multicycle Custom Instruction Timing
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7: Extended Custom Instruction with Swap Operations

dataa[31..0]

0

1

2

n[1..0]

result[31..0]

bit-swap
operation

byte-swap
operation

Custom
Instruction

half-word-swap
operation

The custom instruction in the preceding figure performs swap operations on data received at the dataa
port. The instruction hardware uses the two bit wide n port to select the output from a multiplexer,
determining which result is presented to the result port.

Note: This logic is just a simple example, using a multiplexer on the output. You can implement function
selection based on an extension index in any way that is appropriate for your application.

Extended custom instructions can be combinational or multicycle custom instructions. To implement an
extended custom instruction, add an n port to your custom instruction logic. The bit width of the n port is
a function of the number of operations the custom logic block can perform.

An extended custom instruction block occupies several contiguous selection indices. When the block is
instantiated, Qsys determines a base selection index. When the Nios II processor decodes a custom
instruction, the custom hardware block's n port decodes the low-order bits of the selection index. Thus,
the extension index extends the base index to produce the complete selection index.

For example, suppose the custom instruction block in Figure 7 is instantiated in a Nios II system with a
base selection index of 0x1C. In this case, individual swap operations are selected with the following
selection indices:

• 0x1C—Bit swap
• 0x1D—Byte swap
• 0x1E—Half-word swap
• 0x1F—reserved

Therefore, if n is <m> bits wide, the extended custom instruction component occupies 2<m> select indices.

For example, the custom instruction illustrated above occupies four indices, because n is two bits wide.
Therefore, when this instruction is implemented in a Nios II system, 256 - 4 = 252 available indices
remain.

UG-N2CSTNST
2015-11-02 Extended Custom Instructions 9

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Custom Instruction Assembly Language Interface on page 14
Information about the custom instruction index

Extended Custom Instruction Timing
All extended custom instruction port operations are identical to those for the combinational and
multicycle custom instructions, with the exception of the n port.

The n port timing is the same as that of the dataa port. For example, for an extended variable multicycle
custom instruction, the processor presents the extension index to the n port on the same rising edge of the
clock at which start is asserted, and the n port remains stable during execution of the custom instruction.

The n port is not present in combinational and multicycle custom instructions.

Internal Register File Custom Instructions
The Nios II processor allows custom instruction logic to access its own internal register file.

Internal register file access gives you the flexibility to specify whether the custom instruction reads its
operands from the Nios II processor’s register file or from the custom instruction’s own internal register
file. In addition, a custom instruction can write its results to the local register file rather than to the Nios II
processor’s register file.

Custom instructions containing internal register files use readra, readrb, and writerc signals to
determine if the custom instruction should use the internal register file or the dataa, datab, and result
signals. Ports a, b, and c specify the internal registers from which to read or to which to write. For
example, if readra is deasserted (specifying a read operation from the internal register), the a signal value
provides the register number in the internal register file. Ports a, b, and c are five bits each, allowing you
to address as many as 32 registers.

Related Information
Instruction Set Reference
For further details about Nios II custom instruction implementation, refer to the Instruction Set Reference
chapter of the Nios II Processor Reference Guide.

Internal Register File Custom Instruction Example

Figure 8: Multiply-accumulate Custom Logic Block

dataa[31..0]

datab[31..0]

writerc

result[31..0]

Multiplier Adder
D Q

CLR

This example shows how a custom instruction can access the Nios II internal register file.

10 Extended Custom Instruction Timing
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://documentation.altera.com/#/link/iga1420498949526/iga1409764012031/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When writerc is deasserted, the Nios II processor ignores the value driven on the result port. The
accumulated value is stored in an internal register. Alternatively, the processor can read the value on the
result port by asserting writerc. At the same time, the internal register is cleared so that it is ready for a
new round of multiply and accumulate operations.

Internal Register File Custom Instruction Ports
To access the Nios II internal register file, you must implement several custom instruction-specific ports.

The following table lists the internal register file custom instruction-specific optional ports. Use the
optional ports only if the custom instruction requires them.

Table 4: Internal Register File Custom Instruction Ports

Port Name Direction Required Description

readra Input No If readra is high, Nios II processor register a supplies dataa. If
readra is low, custom instruction logic reads internal register a.

readrb Input No If readrb is high, Nios II processor register b supplies datab. If
readrb is low, custom instruction logic reads internal register b.

writerc Input No If writerc is high, the Nios II processor writes the value on the
result port to register c. If writerc is low, custom instruction
logic writes to internal register c.

a[4:0] Input No Custom instruction internal register number for data source A.

b[4:0] Input No Custom instruction internal register number for data source B.

c[4:0] Input No Custom instruction internal register number for data destination.

The readra, readrb, writerc, a, b, and c ports behave similarly to dataa. When the custom instruction
begins, the processor presents the new values of the readra, readrb, writerc, a, b, and c ports on the
rising edge of the processor clock. All six of these ports remain stable during execution of the custom
instructions.

To determine how to handle the register file, custom instruction logic reads the active high readra,
readrb, and writerc ports. The logic uses the a, b, and c ports as register numbrs. When readra or
readrb is asserted, the custom instruction logic ignores the corresponding a or b port, and receives data
from the dataa or datab port. When writerc is asserted, the custom instruction logic ignores the c port
and writes to the result port.

All other custom instruction port operations behave the same as for combinational and multicycle custom
instructions.

External Interface Custom Instructions
Nios II external interface custom instructions allow you to add an interface to communicate with logic
outside of the processor’s datapath.

At system generation, conduits propagate out to the top level of the Qsys system, where external logic can
access the signals. By enabling custom instruction logic to access memory external to the processor,
external interface custom instructions extend the capabilities of the custom instruction logic.

UG-N2CSTNST
2015-11-02 Internal Register File Custom Instruction Ports 11

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9: Custom Instruction with External Interface

dataa[31..0]
datab[31..0]
clk
clk_en
reset
start

Conduit Interface

done

result[31..0]

Custom instruction logic can perform various tasks such as storing intermediate results or reading
memory to control the custom instruction operation. The conduit interface also provides a dedicated path
for data to flow into or out of the processor. For example, custom instruction logic with an external
interface can feed data directly from the processor’s register file to an external first-in first-out (FIFO)
memory buffer.

Software Interface
The Nios II custom instruction software interface abstracts logic implementation details from the
application code.

During the build process the Nios II software build tools generate macros that allow easy access from
application code to custom instructions.

Custom Instruction Software Examples
These examples illustrate how the Nios II custom instruction software interface fits into your software
code.

The following example shows a portion of the system.h header file that defines a macro for a bit-swap
custom instruction. This bit-swap example accepts one 32 bit input and performs only one function.

#define ALT_CI_BITSWAP_N 0x00
#define ALT_CI_BITSWAP(A) __builtin_custom_ini(ALT_CI_BITSWAP_N,(A))

In this example, ALT_CI_BITWSWAP_N is defined to be 0x0, which is the custom instruction’s selection
index. The ALT_CI_BITSWAP(A) macro accepts a single argument, abstracting out the selection index
ALT_CI_BITWSWAP_N. The macro maps to a GNU Compiler Collection (GCC) Nios II built-in function.

The next example illustrates application code that uses the bit-swap custom instruction.

#include "system.h"

int main (void)
{
 int a = 0x12345678;

12 Software Interface
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 int a_swap = 0;

 a_swap = ALT_CI_BITSWAP(a);
 return 0;
}

The code in this example includes the system.h file to enable the application software to use the custom
instruction macro definition. The example code declares two integers, a and a_swap. Integer a is passed as
input to the bit swap custom instruction and the results are loaded in a_swap.

The example above illustrates how most applications use custom instructions. The macros defined by the
Nios II software build tools use C integer types only. Occasionally, applications require input types other
than integers. In those cases, you can use a custom instruction macro to process non-integer return
values.

Note: You can define custom macros for Nios II custom instructions that allow other 32 bit input types
to interface with custom instructions.

Related Information
Custom Instruction Built-in Functions on page 33
More information about the GCC built-in functions

Built-in Functions and User-defined Macros
The Nios II processor uses GCC built-in functions to map to custom instructions.

By default, the integer type custom instruction is defined in a system.h file. However, by using built-in
functions, software can use 32 bit non-integer types with custom instructions. Fifty-two built-in functions
are available to accommodate the different combinations of supported types.

Built-in function names have the following format:

__builtin_custom_<return type>n<parameter types>

<return type> and <parameter types> represent the input and output types, encoded as follows:

• i—int

• f—float

• p—void *

The following example shows the prototype definitions for two built-in functions.

void __builtin_custom_nf (int n, float dataa);
float __builtin_custom_fnp (int n, void * dataa);

n is the selection index. The built-in function __builtin_custom_nf() accepts a float as an input, and
does not return a value. The built-in function__builtin_custom_fnp() accepts a pointer as input, and
returns a float.

To support non-integer input types, define macros with mnemonic names that map to the specific built-
in function required for the application.

The following example shows user-defined custom instruction macros used in an application.

1. /* define void udef_macro1(float data); */
2. #define UDEF_MACRO1_N 0x00
3. #define UDEF_MACRO1(A) __builtin_custom_nf(UDEF_MACRO1_N, (A));
4. /* define float udef_macro2(void *data); */
5. #define UDEF_MACRO2_N 0x01

UG-N2CSTNST
2015-11-02 Built-in Functions and User-defined Macros 13

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. #define UDEF_MACRO2(B) __builtin_custom_fnp(UDEF_MACRO2_N, (B));
7.
8. int main (void)
9. {
10. float a = 1.789;
11. float b = 0.0;
12. float *pt_a = &a;
13.
14. UDEF_MACRO1(a);
15. b = UDEF_MACRO2((void *)pt_a);
16. return 0;
17. }

On lines 2 through 6, the user-defined macros are declared and mapped to the appropriate built-in
functions. The macro UDEF_MACRO1() accepts a float as an input parameter and does not return
anything. The macro UDEF_MACRO2() accepts a pointer as an input parameter and returns a float. Lines
14 and 15 show code that uses the two user-defined macros.

Related Information
Custom Instruction Built-in Functions on page 33

Custom Instruction Assembly Language Interface
The Nios II custom instructions are accessible in assembly code as well as C/C++.

Custom Instruction Assembly Language Syntax
Nios II custom instructions use a standard assembly language syntax:

custom <selection index>, <Destination>, <Source A>, <Source B>
• <selection index>—The 8-bit number that selects the particular custom instruction
• <Destination>—Identifies the register where the result from the result port (if any) will be placed
• <Source A>—Identifies the register that provides the first input argument from the dataa port (if any)
• <Source B>—Identifies the register that provides the first input argument from the datab port (if any)

You designate registers in one of two formats, depending on whether you want the custom instruction to
use a Nios II register or an internal register:

• r<i>—Nios II register <i>
• c<i>—Custom register <i> (internal to the custom instruction component)

The use of r or c controls the readra, readrb, and writerc fields in the the custom instruction word.

Custom registers are only available with internal register file custom instructions.

Related Information
Custom Instruction Word Format on page 15
Detailed information about instruction fields and register file selection

Custom Instruction Assembly Language Examples
These examples demonstrate the syntax for custom instruction assembly language calls.

custom 0, r6, r7, r8

14 Custom Instruction Assembly Language Interface
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example above shows a call to a custom instruction with selection index 0. The input to the instruc‐
tion is the current contents of the Nios II processor registers r7 and r8, and the results are stored in the
Nios II processor register r6.

custom 3, c1, r2, c4

The example above shows a call to a custom instruction with selection index 3. The input to the instruc‐
tion is the current contents of the Nios II processor register r2 and the custom register c4, and the results
are stored in custom register c1.

custom 4, r6, c9, r2

The example above shows a call to a custom instruction with selection index 4. The input to the instruc‐
tion is the current contents of the custom register c9 and the Nios II processor register r2, and the results
are stored in Nios II processor register r6.

Related Information
custom
Refer to "custom" in the Instruction Set Reference chapter of the Nios II Processor Reference Guide for more
information about the binary format of custom instructions.

Custom Instruction Word Format
Custom instructions are R-type instructions.

The instruction word specifies the 8-bit custom instruction selection index and register usage.

Figure 10: Custom Instruction Word Format

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NCBA OP=0x32

writerc
readrb
readra

Custom instruction fields:

Table 5: Custom Instruction Fields

Field Name Purpose Corresponding Signal

A Register address of input operand A
B Register address of input operand B
C Register address of output operand C
readra Register file selector for input operand A readra

readrb Register file selector for input operand B readrb

writerc Register file selector for ouput operand C writerc

N Custom instruction select index (optionally
includes an extension index)

UG-N2CSTNST
2015-11-02 Custom Instruction Word Format 15

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1420498949526/iga1409765329512/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Name Purpose Corresponding Signal

OP custom opcode, 0x32 n/a

The register file selectors determine whether the custom instruction component accesses Nios II
processor registers or custom registers, as follows:

Table 6: Register File Selection

Register File Selector Value Register File

0 Custom instruction component internal register file
1 Nios II processor register file

Related Information

• R-Type
Refer to "R-Type" in the Instruction Set Reference chapter of the Nios II Processor Reference Guide for
information about R-type instructions.

• custom
Refer to "custom" in the Instruction Set Reference chapter of the Nios II Processor Reference Guide for
more information about the binary format of custom instructions.

Select Index Field (N)
The custom instruction N field, bits 13:6, is the custom instruction select index. The select index determine
which custom instruction executes.

The Nios II processor supports up to 256 distinct custom instructions through the custom opcode. A
custom instruction component can implement a single instruction, or multiple instructions.

In the case of a simple (non-extended) custom instruction, the select index is a simple 8-bit value,
assigned to the custom instruction block when it is instantiated in Qsys.

Components that implement multiple instructions possess an n port, as described in "Extended Custom
Instructions". The n port implements an extension index, which is a subfield of the select index, as shown
in the following figure.

Figure 11: Select Index Format

 7 wn wn-1 0

N
wn = width of n

.

n

Note: Do not confuse N, the selection index field of the custom instruction, with n, the extension index
port. Although n can be 8 bits wide, it generally corresponds to the low-order bits of N.

16 Select Index Field (N)
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://documentation.altera.com/#/link/iga1420498949526/iga1409763873456/en-us
https://documentation.altera.com/#/link/iga1420498949526/iga1409765329512/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Implementing a Nios II Custom Instruction in Qsys
You use the Qsys component editor to instantiate a Nios II custom instruction based on your custom
hardware.

The Qsys component editor enables you to create new Qsys components, including Nios II custom
instructions.

Related Information

• Creating Qsys Components
For detailed information about the Qsys component editor, refer to "Creating Qsys Components" in
the Quartus Prime Pro Edition Handbook Volume 1: Design and Synthesis.

• Creating Qsys Components
For detailed information about the Qsys component editor, refer to "Creating Qsys Components" in
the Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis.

Design Example: Cyclic Redundancy Check
The cyclic redundancy check (CRC) algorithm is a useful example of a Nios II custom instruction.

The CRC algorithm detects the corruption of data during transmission. It detects a higher percentage of
errors than a simple checksum. The CRC calculation consists of an iterative algorithm involving XOR and
shift operations. These operations are carried out concurrently in hardware and iteratively in software.
Because the operations are carried out concurrently, the execution is much faster in hardware.

The CRC design files demonstrate the steps to implement an extended multicycle Nios II custom instruc‐
tion.

Related Information
Nios II Custom Instruction Design Example
The design files are available for you to download from the Nios II Custom Instruction Design Example
web page.

Implementing Custom Instruction Hardware in Qsys
Implementing a Nios II custom instruction involves using the custom instruction tool flow.

Implementing a Nios II custom instruction hardware entails the following tasks:

1. Opening the component editor
2. Specify the custom instruction component type
3. Displaying the custom instruction block symbol
4. Adding the HDL files
5. Configuring the custom instruction parameter type
6. Setting up the custom instruction interfaces
7. Configuring the custom instruction signal type
8. Saving and adding the custom instruction
9. Generating the system and compiling in the Quartus® Prime software

UG-N2CSTNST
2015-11-02 Implementing a Nios II Custom Instruction in Qsys 17

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/jbr1437426657605/mwh1409958777068/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958777068/en-us
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-custom-instruction.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting up the Design Environment for the Design Example
Before you start the design example, you must set up the design environment to accommodate the custom
instruction implementation process.

To set up the design example environment, follow these steps:

1. Download the ug_custom_instruction_files.zip file from the Nios II Custom Instruction Design
Example web page.

2. Open the ug_custom_instruction_files.zip file and extract all the files to a new directory.
3. Follow the instructions in the Quartus Prime Project Setup section in the readme_qsys.txt file in the

extracted design files. The instructions direct you to determine a <project_dir> working directory for
the project and to open the design example project in the Quartus Prime software.

Related Information
Nios II Custom Instruction Design Example
The design files are available for you to download from the Nios II Custom Instruction Design Example
web page.

Opening the Component Editor
After you finish setting up the design environment, you can open Qsys and the component editor.

Before performing this task, you must perform the steps in “Setting up the Design Environment for the
Design Example”. After performing these steps, you have a Quartus Prime project located in the
<project_dir> directory and open in the Quartus Prime software.

To open the component editor, follow these steps:

1. To open Qsys, on the Tools menu, click Qsys.
2. In Qsys, on the File menu, click Open.
3. Browse to the <project_dir> directory if necessary, select the .qsys file, and click Open.
4. On the Qsys Component Library tab, click New. The component editor appears, displaying the

Introduction tab.

Related Information
Setting up the Design Environment for the Design Example on page 18
Instructions for setting up the design environment

Specifying the Custom Instruction Component Type
To specify the custom instruction component type, you specify a name, a display name, a version, and
optionally a group, description (recommended), creator, and icon. These steps help define the _hw.tcl file
for the new custom component.

First, make sure that the component editor displays the Component Type tab.

To specify the initial details in the custom instruction parameter editor, follow these steps:

1. For Name and for Display Name, type CRC.
2. For Version, type 1.0.
3. Leave the Group field blank.
4. Optionally, set the Description, Created by, and Icon fields as you prefer.

18 Setting up the Design Environment for the Design Example
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-custom-instruction.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12: Setting Custom Instruction Name and Version

UG-N2CSTNST
2015-11-02 Specifying the Custom Instruction Component Type 19

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Displaying the Block Symbol

Click Next to display the custom component in the Block Symbol tab.

Figure 13: Viewing the Custom Instruction as a Block Symbol

Adding the Custom Instruction HDL Files
To specify the synthesis HDL files for your custom instruction, you browse to the HDL logic definition
files in the design example.

20 Displaying the Block Symbol
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the synthesis files, follow these steps:

1. Click Next to display the Files tab.
2. Under Synthesis Files, click Add Files.
3. Browse to <project_dir>/crc_hw, the location of the HDL files for this design example.
4. Select the CRC_Custom_Instruction.v and CRC_Component.v files and click Open.

Figure 14: Browsing to Custom Instruction HDL Files

Note: The Quartus Prime Analysis and Synthesis program checks the design for errors when you add
the files. Confirm that no error message appears.

UG-N2CSTNST
2015-11-02 Adding the Custom Instruction HDL Files 21

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Open the File Attributes dialog box by double-clicking the Attributes column in the
CRC_Custom_Instruction.v line.

Figure 15: File Attributes Dialog Box

6. In the File Attributes dialog box, turn on the Top-level File attribute, as shown in the figure above.
This attribute indicates that CRC_Custom_Instruction.v is the top-level HDL file for this custom
instruction.

7. Click OK.

22 Adding the Custom Instruction HDL Files
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Quartus Prime Analysis and Synthesis program checks the design for errors when you
select a top-level file. Confirm that no error message appears.

8. Click Analyze Synthesis Files to synthesize the top-level file.
9. To simulate the system with the ModelSim™ simulator, you can add your simulation files under

Verilog Simulation Files or VHDL Simulation Files in the in the Files tab.

Configuring the Custom Instruction Parameter Type

To configure the custom instruction parameter type, follow these steps:

1. Click Next to display the Parameters tab. The parameters in the .v files are displayed.

UG-N2CSTNST
2015-11-02 Configuring the Custom Instruction Parameter Type 23

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16: Custom Instruction Parameters

The Editable checkbox next to each parameter indicates whether the parameter will appear in the
custom component's parameter editor. By default, all parameters are editable.

2. To remove a parameter from the custom instruction parameter editor, you can turn off Editable next
to the parameter. For the CRC example, you can leave all parameters editable.
When Editable is off, the user cannot see or control the parameter, and it is set to the value in the
Default Value column. When Editable is on, the user can control the parameter value, and it defaults
to the value in the Default Value column.

3. To see a preview of the custom component's parameter editor, you can click Preview the GUI.

24 Configuring the Custom Instruction Parameter Type
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Up the Custom Instruction Interfaces
To set up the custom instruction interfaces, you use the Interfaces tab.

To set up the custom instruction interfaces, follow these steps:

1. In the View menu, click Interfaces to display the Interfaces tab.
Figure 17: Opening the Interfaces Tab

2. If the Remove Interfaces With No Signals button is active, click it.
3. Ensure that a single interface remains, with Name set to the name in the Signals tab. For the design

example, maintain the interface name nios_custom_instruction_slave.
4. Ensure the Type for this interface is Custom Instruction Slave.
5. For Clock Cycles, type 0. This is the correct value for a variable multicycle type custom instruction,

such as the CRC module in the design example. For other designs, use the correct number of clock
cycles for your custom instruction logic.

6. For Operands, type 1, because the CRC custom instruction has one operand. For other designs, type
the number of operands used by your custom instruction.

Note: If you rename an interface by changing the value in the Name field, the Signals tab Interface
column value changes automatically. The value shown in the block diagram updates when you
change tabs and return to the Interfaces tab.

Note: If the interface includes a done signal and a clk signal, the component editor infers that the
interface is a variable multicycle type custom instruction interface, and sets the value of Clock
Cycles to 0.

Specifying Additional Interfaces
You can specify additional interfaces in the Interfaces tab.

You can specify additional interfaces if your custom instruction logic requires special interfaces, either to
the Avalon-MM fabric or outside the Qsys system. The design example does not require additional
interfaces.

Note: Most custom instructions use some combination of standard custom instruction ports, such as
dataa, datab, and result, and do not require additional interfaces.

The following instructions provide the information you need if a custom instruction in your own design
requires additional interfaces. You do not need these steps if you are implementing the design example.

UG-N2CSTNST
2015-11-02 Setting Up the Custom Instruction Interfaces 25

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify additional interfaces on the Interfaces tab, follow these steps:

1. Click Add Interface. The new interface has Custom Instruction Slave interface type by default.
2. For Type, select the desired interface type.
3. Set the parameters for the newly created interface according to your system requirements.

Configuring the Custom Instruction Signal Type

To configure the custom instruction signal type, follow these steps:

1. In the View menu, click Signals to open the Signals tab.
Figure 18: Custom Instruction Signal Types

2. For each signal in the list, follow these steps:
a. Select the signal name.
b. In the Interface column, select the name of the interface to which you want to assign the signal.

In the design example, select nios_custom_instruction_slave for all signals. These selections
ensure that the signals appear together on a single interface, and that the interface corresponds to
the design example files in the crc_hw folder.

c. In the Signal Type column, select one of the standard hardware ports listed in “Custom Instruction
Types”. In the design example, each signal must be mapped to the signal type of the same name.

3. Open the Signals and Interfaces tab.

26 Configuring the Custom Instruction Signal Type
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19: Signals and Interfaces

The parameters for Clock Cycle Type automatically change to "Variable" because the design example
builds a variable multicycle type custom instruction. For other designs, you enter the correct clock
cycle type for your custom instruction design:

• "Variable" for a variable multicycle type custom instruction
• "Multicycle" for a fixed multicycle type custom instruction
• "Combinatorial" for a combinational type custom instruction.

If the interface does not include a clk signal, the component editor automatically infers that the
interface is a combinational type interface. If the interface includes a clk signal, the component editor
automatically infers that the interface is a multicycle interface. If the interface does not include a done
signal, the component editor infers that the interface is a fixed multicycle type interface. If the interface
includes a done signal, the component editor infers that the interface is a variable multicycle type
interface.

Related Information
Custom Instruction Types on page 4
List of standard custom instruction hardware ports, to be used as signal types

Saving and Adding the Custom Instruction
When your custom instruction is fully defined, you save it and add it to your Qsys system.

UG-N2CSTNST
2015-11-02 Saving and Adding the Custom Instruction 27

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To save the custom instruction and add it to your Nios II processor, follow these steps:

1. Click Finish. A dialog box prompts you to save your changes before exiting.
2. Click Yes, Save. The new custom instruction appears in the Qsys Component Library.
3. In the Qsys Component Library, under Library, select CRC, the new custom instruction you created in

the design example.
4. Click Add to add the new instruction to the Qsys system.

Qsys automatically assigns an unused selection index to the new custom instruction. You can see this
index in the System Contents tab, in the Base column, in the form "Opcode <N>". <N> is represented
as a decimal number. The selection index is exported to system.h when you generate the system.

5. In the Connections panel, connect the new CRC_0 component’s nios_custom_instruction_slave
interface to the cpu component’s custom_instruction_master interface.

6. Optional: You can change the custom instruction's selection index in the System Contents tab. In the
Base column across from the custom instruction slave, click on "Opcode <N>", and type the desired
selection index in decimal.

Generating the System and Compiling in the Quartus Prime Software
After you add the custom instruction logic to the system, you can generate the Qsys system and compile it
in the Quartus Prime software.

To generate the system and compile, follow these steps:

1. In Qsys, on the Generation tab, turn on Create HDL design files for synthesis.
2. Click Generate. System generation may take several seconds to complete.
3. After system generation completes, on the File menu, click Exit.
4. In the Quartus Prime software, on the Project menu, click Add/Remove Files in Project.
5. Ensure that the .qip file in the synthesis subdirectory is added to the project.
6. On the Processing menu, click Start Compilation.

Related Information

• Creating a System with Qsys (Pro Edition)
For detailed information about the Qsys component editor, refer to "Creating a System with Qsys" in
the Quartus Prime Pro Edition Handbook Volume 1: Design and Synthesis.

• Creating a System with Qsys (Standard Edition)
For detailed information about the Qsys component editor, refer to "Creating a System with Qsys" in
the Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis.

Accessing the Custom Instruction Example from Software
Next you create and build a new software project using the Nios II software build flow, and run the
software that accesses the custom instruction.

The downloadable design files include the software source files. The following table lists the CRC applica‐
tion software source files and their corresponding descriptions.

Table 7: CRC Application Software Source Files

File Name Description

crc_main.c Main program that populates random test data, executes the CRC both in software and
with the custom instruction, validates the output, and reports the processing time.

28 Generating the System and Compiling in the Quartus Prime Software
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://documentation.altera.com/#/link/jbr1437426657605/mwh1409958596582/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958596582/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

crc.c Software CRC algorithm run by the Nios II processor.

crc.h Header file for crc.c.

ci_crc.c Program that accesses CRC custom instruction.

ci_crc.h Header file for ci_crc.c.

To run the application software, you must create an Executable and Linking Format File (.elf) first. To
create the .elf file, follow the instructions in the "Nios II Software Build Flow" section in the readme_
qsys.txt file in the extracted design files.

The application program runs three implementations of the CRC algorithm on the same pseudo-random
input data: an unoptimized software implementation, an optimized software implementation, and the
custom instruction CRC. The program calculates the processing time and throughput for each of the
versions, to demonstrate the improved efficiency of a custom instruction compared to a software
implementation.

Custom Instruction Example Software Output

The following example shows the output from the application program run on a Cyclone V E FPGA
Development Kit with a 5CEFA7F31I7N speed grade device. This example was created using the Quartus
Prime software v15.1 and Nios II Embedded Design Suite (EDS) v15.1.

The output shows that the custom instruction CRC is 68 times faster than the unoptimized CRC
calculated purely in software and is 39 times faster than the optimized version of the software CRC. The
results you see using a different target device and board may vary depending on the memory characteris‐
tics of the board and the clock speed of the device, but these ratios are representative.

Output of the CRC Design Example Software Run on a Cyclone V E FPGA Development Kit using the
Quartus Prime Software v15.1.

**
Comparison between software and custom instruction CRC32
**
System specification

System clock speed = 50 MHz
Number of buffer locations = 32
Size of each buffer = 256 bytes

Initializing all of the buffers with pseudo-random data

Initialization completed

Running the software CRC

Completed

Running the optimized software CRC

Completed

Running the custom instruction CRC

Completed

Validating the CRC results from all implementations

UG-N2CSTNST
2015-11-02 Custom Instruction Example Software Output 29

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All CRC implementations produced the same results

Processing time for each implementation

Software CRC = 34 ms
Optimized software CRC = 19 ms
Custom instruction CRC = 00 ms

Processing throughput for each implementation

Software CRC = 2978 Mbps
Optimized software CRC = 32768 Mbps
Custom instruction CRC = 949 Mbps

Speedup ratio

Custom instruction CRC vs software CRC = 68
Custom instruction CRC vs optimized software CRC = 39
Optimized software CRC vs software CRC = 1

Using the User-defined Custom Instruction Macro
The design example software uses a user-defined macro to access the CRC custom instruction.

The following example shows the macro that is defined in the ci_crc.c file.

#define CRC_CI_MACRO(n, A) \
__builtin_custom_ini(ALT_CI_CRC_CUSTOM_COMPONENT_0_N + (n & 0x7), (A))

This macro accepts a single int type input operand and returns an int type value. The CRC custom
instruction has extended type; the n value in the macro CRC_CI_MACRO() indicates the operation to be
performed by the custom instruction.

ALT_CI_CRC_CUSTOM_COMPONENT_0_N is the custom instruction selection index for the first instruction in
the component. ALT_CI_CRC_CUSTOM_COMPONENT_0_N is added to the value of n to calculate the selection
index for a specific instruction. The n value is masked because the n port of the custom instruction has
only three bits.

To initialize the custom instruction, for example, you can add the initialization code in the following
example to your application software.

/* Initialize the custom instruction CRC to the initial remainder value: */
CRC_CI_MACRO (0,0);

For details of each operation of the CRC custom instruction and the corresponding value of n, refer to the
comments in the ci_crc.c file.

The examples above demonstrate that you can define the macro in your application to accommodate your
requirements. For example, you can determine the number and type of input operands, decide whether to
assign a return value, and vary the extension index value, n. However, the macro definition and usage
must be consistent with the port declarations of the custom instruction. For example, if you define the
macro to return an int value, the custom instruction must have a result port.

Related Information

• Implementing a Nios II Custom Instruction in Qsys on page 17
Step-by-step instructions for implementing a custom instruction

30 Using the User-defined Custom Instruction Macro
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Software Interface on page 12
Information about the custom instruction software interface

Custom Instruction Templates
The Nios II EDS includes VHDL and Verilog HDL custom instruction wrapper file templates that you can
reference when writing custom instructions in VHDL and Verilog HDL.

Full sets of template files are available in the following directories:

• <nios2eds installation directory>/examples/verilog/custom_instruction_templates

• <nios2eds installation directory>/examples/vhdl/custom_instruction_templates

VHDL Custom Instruction Template
The Nios II EDS includes a VHDL custom instruction template for an internal register type custom
instruction.

-- VHDL Custom Instruction Template File for Internal Register Logic

library ieee;
use ieee.std_logic_1164.all;

entity custominstruction is
port(
 signal clk: in std_logic;
 -- CPU system clock (required for multicycle or extended multicycle)
 signal reset: in std_logic;
 -- CPU master asynchronous active high reset
 -- (required for multicycle or extended multicycle)
 signal clk_en: in std_logic;
 -- Clock-qualifier (required for multicycle or extended multicycle)
 signal start: in std_logic;
 -- Active high signal used to specify that inputs are valid
 -- (required for multicycle or extended multicycle)
 signal done: out std_logic;
 -- Active high signal used to notify the CPU that result is valid
 -- (required for variable multicycle or extended variable multicycle)
 signal n: in std_logic_vector(7 downto 0);
 -- N-field selector (required for extended);
 -- Modify width to match the number of unique operations in the instruction
 signal dataa: in std_logic_vector(31 downto 0); -- Operand A (always required)
 signal datab: in std_logic_vector(31 downto 0); -- Operand B (optional)
 signal a: in std_logic_vector(4 downto 0);
 -- Internal operand A index register
 signal b: in std_logic_vector(4 downto 0);
 -- Internal operand B index register
 signal c: in std_logic_vector(4 downto 0);
 -- Internal result index register
 signal readra: in std_logic;
 -- Read operand A from CPU (otherwise use internal operand A)
 signal readrb: in std_logic;
 -- Read operand B from CPU (otherwise use internal operand B)
 signal writerc: in std_logic;
 -- Write result to CPU (otherwise write to internal result)
 signal result: out std_logic_vector(31 downto 0) -- result (always required)
);
end entity custominstruction;
architecture a_custominstruction of custominstruction is
 -- local custom instruction signals
begin

UG-N2CSTNST
2015-11-02 Custom Instruction Templates 31

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 -- custom instruction logic (note: external interfaces can be used as well)
 -- Use the n[7..0] port as a select signal on a multiplexer
 -- to select the value to feed result[31..0]

end architecture a_custominstruction;

Verilog HDL Custom Instruction Template Example
The Nios II EDS includes a Verilog HDL custom instruction template for an internal register type custom
instruction.

// Verilog Custom Instruction Template File for Internal Register Logic

module custominstruction(
 clk, // CPU system clock (required for multicycle or extended multicycle)
 reset, // CPU master asynchronous active high reset
 // (required for multicycle or extended multicycle)
 clk_en, // Clock-qualifier (required for multicycle or extended multicycle)
 start, // Active high signal used to specify that inputs are valid
 // (required for multicycle or extended multicycle)
 done, // Active high signal used to notify the CPU that result is valid
 // (required for variable multicycle or extended variable multicycle)
 n, // N-field selector (required for extended)
 dataa, // Operand A (always required)
 datab, // Operand B (optional)
 a, // Internal operand A index register
 b, // Internal operand B index register
 c, // Internal result index register
 readra, // Read operand A from CPU (otherwise use internal operand A)
 readrb, // Read operand B from CPU (otherwise use internal operand B)
 writerc, // Write result to CPU (otherwise write to internal result)
 result // Result (always required)
);

//INPUTS
input clk;
input reset;
input clk_en;
input start;
input [7:0] n; // modify width to match the number of unique operations
 // in the instruction
input [4:0] a;
input [4:0] b;
input [4:0] c;
input readra;
input readrb;
input writerc;
input [31:0] dataa;
input [31:0] datab;

//OUTPUTS
output done;
output [31:0] result;

// custom instruction logic (note: external interfaces can be used as well)
// Use the n[7..0] port as a select signal on a multiplexer
// to select the value to feed result[31..0]

endmodule

32 Verilog HDL Custom Instruction Template Example
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom Instruction Built-in Functions
The Nios II GCC compiler, nios2-elf-gcc, is customized with built-in functions to support custom
instructions.

Nios II custom instruction built-in functions have the following return types:

• void

• int

• float

• void*

Related Information
https://gcc.gnu.org
More information about GCC built-in functions

Built-in Functions with No Return Value
The following built-in functions in the Nios II GCC compiler have no return value. n represents the
custom instruction selection index, and dataa and datab represent the input arguments, if any.

• void __builtin_custom_n (int n);

• void __builtin_custom_ni (int n, int dataa);

• void __builtin_custom_nf (int n, float dataa);

• void __builtin_custom_np (int n, void *dataa);

• void __builtin_custom_nii (int n, int dataa, int datab);

• void __builtin_custom_nif (int n, int dataa, float datab);

• void __builtin_custom_nip (int n, int dataa, void *datab);

• void __builtin_custom_nfi (int n, float dataa, int datab);

• void __builtin_custom_nff (int n, float dataa, float datab);

• void __builtin_custom_nfp (int n, float dataa, void *datab);

• void __builtin_custom_npi (int n, void *dataa, int datab);

• void __builtin_custom_npf (int n, void *dataa, float datab);

• void __builtin_custom_npp (int n, void *dataa, void *datab);

Built-in Functions that Return a Value of Type Int
The following built-in functions in the Nios II GCC compiler return a value of type int. n represents the
custom instruction selection index, and dataa and datab represent the input arguments, if any.

• int __builtin_custom_in (int n);

• int __builtin_custom_ini (int n, int dataa);

• int __builtin_custom_inf (int n, float dataa);

• int __builtin_custom_inp (int n, void *dataa);

• int __builtin_custom_inii (int n, int dataa, int datab);

• int __builtin_custom_inif (int n, int dataa, float datab);

• int __builtin_custom_inip (int n, int dataa, void *datab);

• int __builtin_custom_infi (int n, float dataa, int datab);

• int __builtin_custom_inff (int n, float dataa, float datab);

• int __builtin_custom_infp (int n, float dataa, void *datab);

UG-N2CSTNST
2015-11-02 Custom Instruction Built-in Functions 33

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

https://gcc.gnu.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• int __builtin_custom_inpi (int n, void *dataa, int datab);

• int __builtin_custom_inpf (int n, void *dataa, float datab);

• int __builtin_custom_inpp (int n, void *dataa, void *datab);

Built-in Functions that Return a Value of Type Float
The following built-in functions in the Nios II GCC compiler return a value of type float. n represents
the custom instruction selection index, and dataa and datab represent the input arguments, if any.

• float __builtin_custom_fn (int n);

• float __builtin_custom_fni (int n, int dataa);

• float __builtin_custom_fnf (int n, float dataa);

• float __builtin_custom_fnp (int n, void *dataa);

• float __builtin_custom_fnii (int n, int dataa, int datab);

• float __builtin_custom_fnif (int n, int dataa, float datab);

• float __builtin_custom_fnip (int n, int dataa, void *datab);

• float __builtin_custom_fnfi (int n, float dataa, int datab);

• float __builtin_custom_fnff (int n, float dataa, float datab);

• float __builtin_custom_fnfp (int n, float dataa, void *datab);

• float __builtin_custom_fnpi (int n, void *dataa, int datab);

• float __builtin_custom_fnpf (int n, void *dataa, float datab);

• float __builtin_custom_fnpp (int n, void *dataa, void *datab);

Built-in Functions that Return a Pointer Value
The following built-in functions in the Nios II GCC compiler return a pointer value. n represents the
custom instruction selection index, and dataa and datab represent the input arguments, if any.

• void *__builtin_custom_pn (int n);

• void *__builtin_custom_pni (int n, int dataa);

• void *__builtin_custom_pnf (int n, float dataa);

• void *__builtin_custom_pnp (int n, void *dataa);

• void *__builtin_custom_pnii (int n, int dataa, int datab);

• void *__builtin_custom_pnif (int n, int dataa, float datab);

• void *__builtin_custom_pnip (int n, int dataa, void *datab);

• void *__builtin_custom_pnfi (int n, float dataa, int datab);

• void *__builtin_custom_pnff (int n, float dataa, float datab);

• void *__builtin_custom_pnfp (int n, float dataa, void *datab);

• void *__builtin_custom_pnpi (int n, void *dataa, int datab);

• void *__builtin_custom_pnpf (int n, void *dataa, float datab);

• void *__builtin_custom_pnpp (int n, void *dataa, void *datab);

Floating Point Custom Instructions
The Nios II EDS includes floating point custom instructions to access the Altera floating point hardware
soft IP cores.

34 Built-in Functions that Return a Value of Type Float
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software offers two predefined floating point units:

• Floating Point Hardware—Supports single precision floating point add, subtract, multiply, and divide
instructions.

• Floating Point Hardware 2—Supports floating point add, subtract, multiply, divide, square root,
floating point conversion and comparison, and several other useful operations, with improved
performance and resource usage.

Floating Point Hardware Component
The Floating Point Hardware component supports single-precision floating point hardware add, subtract,
multiply, and optional divide instructions.

When you add the Floating Point Hardware component to your system, a parameter editor appears, and
you can turn on an option to include a floating point divider.

Figure 20: Floating Point Hardware Custom Instruction Parameter Editor

Note: The selection indices must be as shown in "Supporting Double-Precision Constants". Qsys enforces
this rule when you instantiate the component.

When you add a floating point custom instruction to your system, the Nios II software build tools add
flags to the nios2-elf-gcc command line which are determined by specific custom instructions used by
the software. These flags select the appropriate version of newlib to support the floating point operations
that are in use, omitting code supporting unused operations.

UG-N2CSTNST
2015-11-02 Floating Point Hardware Component 35

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The software build tools add one of the following compiler flags:

• -mcustom-fpu-cfg=60-1--system does not include a custom instruction floating point divider
• -mcustom-fpu-cfg=60-2--system includes a custom instruction floating point divider

The -mcustom-fpu-cfg option bundles several command-line options into one and allows the GCC
linker to choose the precompiled newlib that supports the selected floating point operations.

Related Information
Creating a Custom Version of newlib
How to compile newlib for the Nios II Gen2 processor

Supporting Double-Precision Constants
The -mcustom-fpu-cfg flag forces the use of single-precision constants. To allow double-precision
constants, you must modify the nios2-elf-gcc command in your makefiles. You must remove the -
mcustom-fpu-cfg flag and replace it with individual compiler flags.

To enable double-precision floating point constants, in the nios2-elf-gcc command line, replace the
-mcustom-fpu-cfg option with the individual options shown in the following table.

Table 8: Individual Floating Point Compiler Options

-mcustom-fpu-cfg Option Individual Options

-mcustom-fpu-cfg=60-1 • -mcustom-fmuls=252

• -mcustom-fadds=253

• -mcustom-fsubs=254

-mcustom-fpu-cfg=60-2 • -mcustom-fmuls=252

• -mcustom-fadds=253

• -mcustom-fsubs=254

• -mcustom-fdivs=255

For example, if you instantiated the floating point handware without the divider, the nios2-elf-gcc
command in your makefiles resembles the following:

nios2-elf-gcc -mcustom-fpu-cfg=60-1 ...

To enable double-precision floating point constants, your modified command resembles the following:

nios2-elf-gcc -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 ...

Note: Replace the -mcustom-fpu-cfg flag only if required. Replacing the -mcustom-fpu-cfg flag
disables floating point custom instruction support in newlib functions, forcing the library to use
the slower, software-emulated instructions.

Floating Point Hardware 2 Component
The Floating Point Hardware 2 component implements add, subtract, multiply, divide, square root,
integer/floating point conversions, min, max, arithmetic invert, absolute value, and comparison
instructions.

36 Supporting Double-Precision Constants
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://documentation.altera.com/#/link/lro1419794938488/mwh1416946696947/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Floating Point Hardware 2 component is the second generation of the floating point hardware, with
better performance and lower resource usage than the Floating Point Hardware component.

When you add the Floating Point Hardware 2 component to your system, a parameter editor appears
showing the operations that it supports and the number of cycles to execute each operation. You can
choose to enable or disable the square root instruction.

Figure 21: Floating Point Hardware 2 Custom Instruction Parameter Editor

Note: The selection indices must be as shown the table below. Qsys enforces this rule when you
instantiate the component.

With Floating Point Hardware 2, Altera recommends that you compile your newlib library from source
code. In the nios2-elf-gcc command line, specify the hardware floating point operations that your code
needs. This method allows newlib to take advantage of all Floating Point Hardware 2 functions required
by your code, without incurring overhead for unnecessary functions.

The -mcustom-fpu-cfg option is available and compatible with the Floating Point Hardware 2
component, but it is not recommended.

Table 9: Individual nios2-elf-gcc Command Line Options

Function Command Line Option

Add -mcustom-fadds=253

UG-N2CSTNST
2015-11-02 Floating Point Hardware 2 Component 37

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Command Line Option

Subtract -mcustom-fsubs=254

Multiply -mcustom-fmuls=252

Divide -mcustom-fdivs=255

Square root -mcustom-fsqrts=251

Convert integer to floating point -mcustom-floatis=250

Convert floating point to integer -mcustom-fixsi=249

Minimum -mcustom-fmins=233

Maximum -mcustom-fmaxs=232

Arithmetic invert -mcustom-fnegs=225

Absolute value -mcustom-fabss=224

Compare a < b -mcustom-fcmplts=231

Compare a <= b -mcustom-fcmples=230

Compare a > b -mcustom-fcmpgts=229

Compare a >= b -mcustom-fcmpges=228

Compare a == b -mcustom-fcmpeqs=227

Compare a != b -mcustom-fcmpnes=226

Related Information

• Floating Point Hardware Component on page 35
• Creating a Custom Version of newlib

How to compile newlib for the Nios II Gen2 processor

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

November 2015 2015.11.02 • Updated for Quartus Prime software v15.1.
• Updated for Floating Point Custom Instructions 2
• Remove SOPC Builder system integration tool flow.
• Name change: the Quartus II software is now known as the Quartus

Prime software

January 2011 2.0 • Updated for Quartus II software v10.1.
• Updated for new Qsys system integration tool flow.
• Updated with formatting changes.

38 Document Revision History
UG-N2CSTNST

2015-11-02

Altera Corporation Nios II Custom Instruction User Guide

Send Feedback

https://documentation.altera.com/#/link/lro1419794938488/mwh1416946696947/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 1.5 • Add new tutorial design.
• Describe new custom instruction import flow.
• Minor corrections to terminology and usage.

May 2007 1.4 Add title and core version number to page footers.
May 2007 1.3 • Describe new component editor import flow.

• Remove tutorial design.
• Minor corrections to terminology and usage.

December 2004 1.2 Updates for Nios II processor vresion 1.1.
September 2004 1.1 Updates for Nios II processor version 1.01.
May 2004 1.0 Initial release.

UG-N2CSTNST
2015-11-02 Document Revision History 39

Nios II Custom Instruction User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Custom%20Instruction%20User%20Guide%20(UG-N2CSTNST%202015-11-02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Custom Instruction User Guide
	Nios II Custom Instruction Overview
	Custom Instruction Implementation
	Custom Instruction Hardware Implementation
	Custom Instruction Software Implementation

	Custom Instruction Types
	Combinational Custom Instructions
	Combinational Custom Instruction Ports
	Combinational Custom Instruction Timing

	Multicycle Custom Instructions
	Multicycle Custom Instruction Ports
	Multicycle Custom Instruction Timing

	Extended Custom Instructions
	Extended Custom Instruction Timing

	Internal Register File Custom Instructions
	Internal Register File Custom Instruction Example
	Internal Register File Custom Instruction Ports

	External Interface Custom Instructions

	Software Interface
	Custom Instruction Software Examples
	Built-in Functions and User-defined Macros
	Custom Instruction Assembly Language Interface
	Custom Instruction Assembly Language Syntax
	Custom Instruction Assembly Language Examples
	Custom Instruction Word Format
	Select Index Field (N)

	Implementing a Nios II Custom Instruction in Qsys
	Design Example: Cyclic Redundancy Check
	Implementing Custom Instruction Hardware in Qsys
	Setting up the Design Environment for the Design Example
	Opening the Component Editor
	Specifying the Custom Instruction Component Type
	Displaying the Block Symbol
	Adding the Custom Instruction HDL Files
	Configuring the Custom Instruction Parameter Type
	Setting Up the Custom Instruction Interfaces
	Specifying Additional Interfaces

	Configuring the Custom Instruction Signal Type
	Saving and Adding the Custom Instruction
	Generating the System and Compiling in the Quartus Prime Software

	Accessing the Custom Instruction Example from Software
	Custom Instruction Example Software Output

	Using the User-defined Custom Instruction Macro

	Custom Instruction Templates
	VHDL Custom Instruction Template
	Verilog HDL Custom Instruction Template Example

	Custom Instruction Built-in Functions
	Built-in Functions with No Return Value
	Built-in Functions that Return a Value of Type Int
	Built-in Functions that Return a Value of Type Float
	Built-in Functions that Return a Pointer Value

	Floating Point Custom Instructions
	Floating Point Hardware Component
	Supporting Double-Precision Constants

	Floating Point Hardware 2 Component

	Document Revision History

