"MECANISMOS DE AÇÃO DOS HERBICIDAS

Prof. Dr. RICARDO VICTORIA FILHO

ÁREA DE BIOLOGIA E MANEJO DE PLANTAS DANINHAS DEPARTAMENTO DE PRODUÇÃO VEGETAL ESALQ/USP – PIRACICABA/SP

rvictori@esalq.usp.br

MECANISMO DE AÇÃO DOS HERBICIDAS

- 1- Introdução
- 2- Mecanismo de ação
- 3- Tipos de classificação
- 4. Classificação de acordo com o mecanismo de ação

1. HERBICIDAS E O MEIO AMBIENTE

- Mudanças na composição florística e resistência de plantas daninhas
- Resíduos de herbicidas no alimento e no ambiente
- Controle absoluto x controle aceitável (considerando níveis de danos)
- Práticas de controle que levem em conta a conservação do solo.

Tabela 1. Principais grupos químicos de herbicidas e a época de descobrimento.

Ano de descobrimento	Grupo químico	Número de herbicidas no grupo
1945	Fenoxiacéticos	17
1954	Carbamatos	16
1956	Triazinas	29
1965	Dimitroanilinas	22
1970	Difenileteres	29
1980	Sulfonilureias	16

TABELA 2. Venda de agroquímicos no período de 1960 a 1990, com estimativa para 2000 em milhões de dólares (Hopkins, 1994).

Agroquímico	1960	1970	1980	1990	2000
Herbicidas	160	918	4.756	12.600	16.560
Inseticidas	288	945	3.944	7.840	9.360
Fungicidas	320	702	2.204	5.600	7.560
Outros	32	135	696	1.960	2.520
Total	800	2.700	11.600	28.000	36.000

TABELA 3. Evolução do mercado de herbicidas nos países do Mercosul. Brasil, 2000 (valores em 1000 US\$).

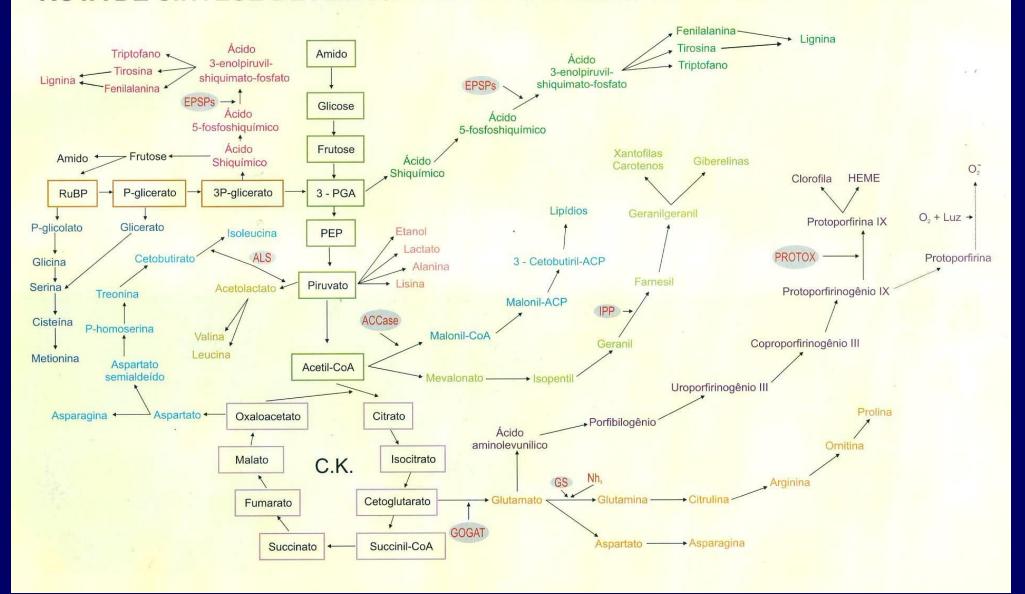
Países	95/96	96/97	97/98	98/99	99/00
Argentina	447.000	545.000	594.700	505.400	435.000
Brasil	834.976	1.004.408	1.214.819	1.369.272	1.173.600
Paraguai	-	-	44.000	46.000	45.100
Uruguai	13.700	19.900	27.000	26.600	22.300
Mercosul	1.295.676	1.569.308	1.875.519	1.947.272	1.676.000

Obs: As bases de cálculos são os preços praticados pelas registrantes dos produtos aos canais de distribuição.

Tabela 4 - Venda de defensivos agrícolas por classes — 2003-2007

Ingrediente ativo						
	2003	2004	2005	2006	2007	
Herbicidas	110.215	124.060	136.853	144.986	189.101	62,19
Fungicidas	19.363	25.631	26.999	24.707	27.734	9,12
Inseticidas	24.422	33.291	36.347	33.750	42.838	14,09
Acaricidas	9.627	9.901	7.416	11.685	14.583	4,79
Outras	18.819	21.842	24.616	23.588	29.775	9,79
Total	182446	214.2725	232.232	238.716	304.031	

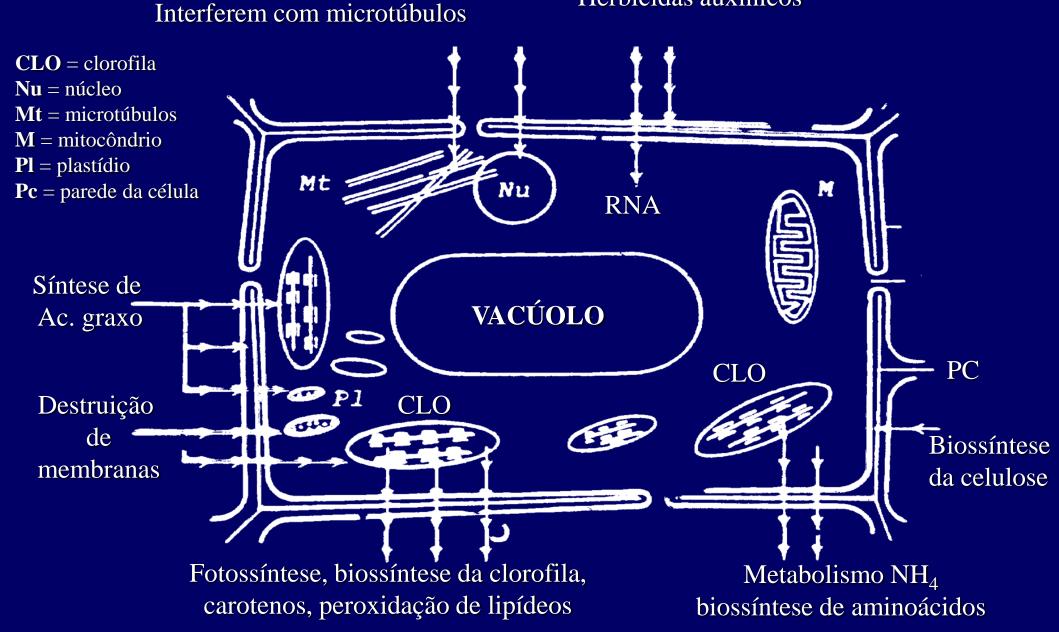
Tabela 5. Herbicidas comercializados por cultura no Brasil durante o ano de 1998 (Conceição, 2000).


	Ingridientes Ativos		Valor	
	Ton	%	US\$ milhões	%
Soja	27.887	40,3	728	53,2
Cana-de-Açúcar	9.138	13,2	173	12,7
Milho	13.487	19,5	146	10,7
Arroz	4.296	6,2	80	5,8
Café	3.799	5,5	43	3,2
Algodão	1.663	2,4	33	2,4
Citros	1.936	2,8	22	1,6

2 - MECANISMOS DE AÇÃO

Mecanismo de ação — é o mecanismo bioquímico ou biofísico afetado pelo herbicida e que resulta na alteração do crescimento e desenvolvimento normal da planta podendo levar a morte.

Modo de ação — sequência de todas as reações que ocorrem desde o contato do herbicida com a planta até a sua ação final que pode levar a planta a morte.


ROTA DE SÍNTESE DE AMINOÁCIDOS E ENZIMAS INIBIDAS POR HERBICIDAS

PROCESSOS METABÓLICOS

- CRESCIMENTO
- FOTOSSÍNTESE
- DIVISÃO CELULAR
- SÍNTESE DA CLOROFILA
- SÍNTESE DE CAROTENO
- SÍNTESE DE AMINOÁCIDOS
- SÍNTESE DE LIPÍDEOS

foram com microtúbulos Herbicidas auxinicos

PRINCIPAIS MECANISMOS DE AÇÃO

LOCAL DE APLICAÇÃO

Inibidores da divisão celular Solo

Inibidores de crescimento inicial Solo

Inibidores da fotossíntese Solo

Inibidores da síntese de pigmentos Solo

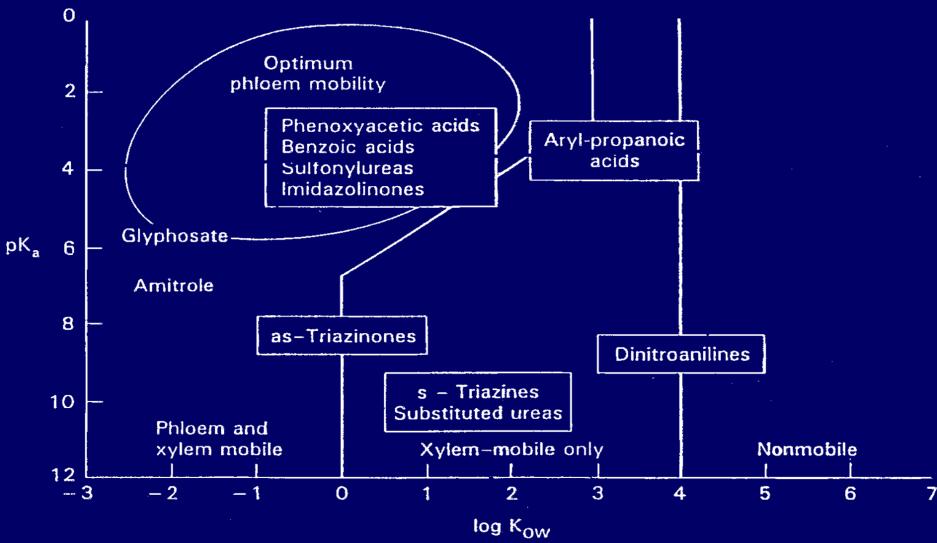
Mimetizadores de auxina Folha

Destruidores de membrana Folha/Solo

Inibidores da ALS Folha

Inibidores da ACCase Folha

Inibidores da EPSP Folha


MOBILIDADE DOS HERBICIDAS NAS PLANTAS

Mobilidade Fácil

APOPLASTO	SIMPLASTO	AMBOS
Cloroacetamidas	Glifosate	Dicanoba
Norflurazon		MSMA
Triazinas		Picloram
Uréias		Glifosate
Uracilas		Imidazolinonas
		Sulfonilureias

Mobilidade Limitada

APOPLASTO	SIMPLASTO	AMBOS
Bipiridilios	Fenoxis	Propanil Fenoxis Difenileter Dinitroanilinas

Mobilidade no floema e xilema de compostos orgânicos influenciada por parâmetros físico-químicos.

3 – TIPOS DE CLASSIFICAÇÃO

3.1. Classificação de acordo com a época de aplicação

Normalmente a época está relacionada a planta cultivada, todavia para melhor recomendação é importante citar o estádio de desenvolvimento da planta daninha

Épocas

PP – Pré-plantio

PPI - Pré-plantio incorporado

PRE - Pré-emergência

PÓS – Pós-emergência inicial ou tardia

PÓS - Dirigida

3.2. Classificação de acordo com a seletividade

- Herbicidas seletivos

- Herbicidas não seletivos

 Importante conhecer os fatores envolvidos na seletividade dos herbicidas as plantas cultivadas

3.3. Classificação de acordo com o grupo químico

- Baseia-se na estrutura molecular

Exemplos:

- sulfonilureias, triazinas, imidazolinonas, dinitroanilinas, etc.

4 - CLASSIFICAÇÃO DE ACORDO COM O MECANISMOS DE AÇÃO

4.1. Herbicidas inibidores da enzima EPSPS (5-enolpiruvilshikimate-3-fosfato-sintase

a) Características gerais

CARACTERÍSTICAS PRINCIPAIS – GLYPHOSATE

- SOLUBILIDADE

12.000 ppm

- TRANSLOCAÇÃO

SIMPLASTICA

- ADSORÇÃO NO SOLO

FORTE

- SINTOMAS

5 a 10 DIAS APÓS A APLICAÇÃO

AMARELECIMENTO

- MEIA VIDA

< 60 DIAS

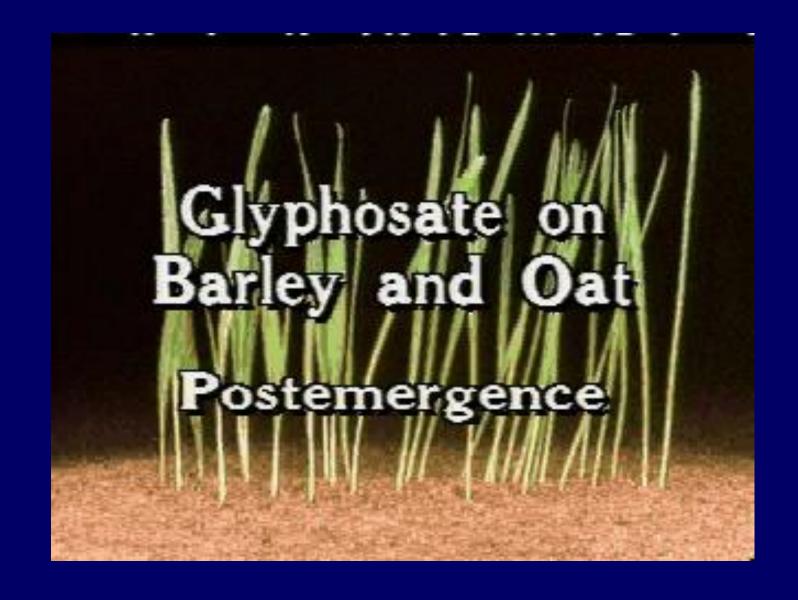
- ÉPOCA DE APLICAÇÃO

PLANTA EM CONDIÇÕES DE TRANSPORTE

b) ATIVIDADE BIOLÓGICA - GLYPHOSATE

- são aplicados em pós-emergência controlando plantas daninhas anuais e perenes
- A eficácia é diminuída em condições de estresse de umidade, assim como em condições extremas de temperatura
- Uso de sulfato de amônio como aditivo aumenta a atividade para algumas espécies.
- O crescimento é inibido logo após a aplicação, e sintomas de clorose surgem nas regiões meristemáticas ou nas folhas mais jovens, seguida de necrose foliar entre uma e três semanas após a aplicação.

MECANISMO DE AÇÃO DOS INIBIDORES DA EPSPS



C) Seletividade

- São herbicidas não seletivos
- Ocorrem plantas daninhas tolerantes como Commelina spp, Ipomoea spp; Senna occidentalis, Richardia brasiliensis
- Aplicações dirigidas em cultivos perenes –citros e café
- Culturas resistentes gene da EPSPs insensível ao gliphosate foi identificado em Agrobacterium spp raça CP4 e inserido em culturas.

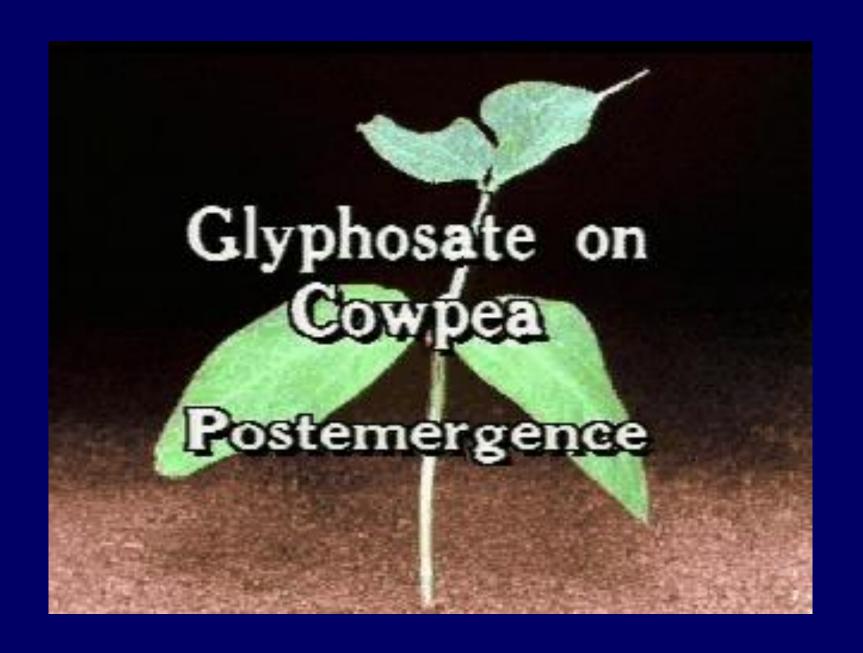


TABELA 6 - Principais herbicidas com as suas principais marcas comerciais.

Grupo	Ingrediente	Nomes	Usos agrícolas no
químico	ativo	comerciais	Brasil
Derivado da Glicina	Glyphosate	Roundup Agrisato Glifosato Agripec Glifosato Fersol Glifosato Nortox Glifosato Atanor Glifosato Nufarm Gliphogan Gliz Rodeo Roundup Transorb Roundup WG Scout Trop	Diversas culturas com aplicações dirigidas plantio direto,

4.2. Herbicidas inibidores da enzima ALS (acetolactato sintase)

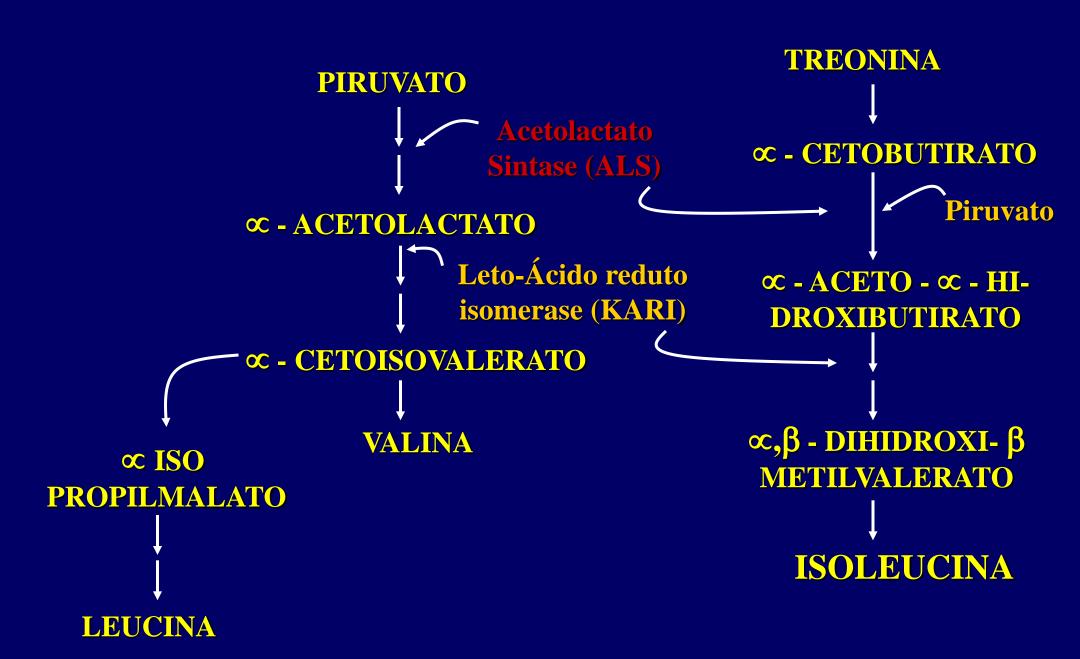
HERBICIDAS DO GRUPO QUÍMICO DAS SULFONILURÉIAS

Histórico

- 1975 descoberto por George Levitt da Du Pont
- 1977 237 patentes nos EUA, sendo 169 da Du Pont
- 1982 CIBA GEIGY iniciou a descoberta de sulfonilureias
- 1985 14 companhias envolvidas na descoberta de sulfonilureias
- Atualmente centenas de registros e milhares de análogos
- Grupo químico com a maior diversidade de herbicidas que controlam desde planta daninhas folhas largas em pré-emergencia de trigo até cyperaceas em várzeas inundadas de arroz

INIBIDORES DA SÍNTESE DE AMINOACIDOS DE CADEIA RAMIFICADA

a) PRINCIPAIS CARACTERÍSTICAS:


- absorvidos rapidamente pelas raízes, caules e folhas
- doses baixas
- degradação por hidrólise e microorganismos
- resistência ocorre rapidamente com uso constante
- maior mobilidade em > pH
- são absorvidas pela folha, caule e raiz

b) **SELETIVIDADE**:

 Metabolismo – hidroxilação e conjugação com glucose

- Posição no solo
- Inseticidas organofosforados reduzem a seletividade

BIOSSÍNTESE DE AMINOÁCIDOS DE CADEIA RAMIFICADA

c) Sintomas – sulfonilureias

- o crescimento da planta é inibido poucas horas após a aplicação
- As plantas tornam-se cloróticas e morrem no prazo de 7 a 14 dias após a aplicação
- Sintomas aparecem nas folhas novas as vezes com coloração vermelha ou roxa nas nervuras
- Em algumas plantas ocorre o encurtamento dos nós.

Usos e doses de aplicação dos herbicidas do tipo sulfoniluréias

Sulfoniluréias	Principais usos	Doses (g i.a./ha)
Metsulfuron-methyl	Cereais	1,8 – 9,0
Chlorimuron-ethyl	Soja	8 – 13
Nicosulfuron	Milho	35 – 70
Halosulfuron	Cana	18 – 35
Flazasulfuron	Cana	25-100

Chlorimuron-ethylon Soybean and Cocklebur

Postemergence

TABELA 7. Principais herbicidas com as suas principais marcas comerciais dos herbicidas inibidores da ALS.

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Sulfoniluréias	Chlorimuron ethyl	Classic Conquest Smart Twister Clorimuron Master No	Soja
	Cyclosulfamuron Ethoxysulfuron	Invest Gladium	Arroz Arroz e Cana-de-açucar
	Flazasulfuron Halosulfuron Metsulfuron-methyl Nicosulfuron	Katana Sempra Ally Sanson Nicosulfuron Nortox	Cana-de-açucar e Tomate Cana-de-açucar Trigo e arroz Milho
	Oxasulfuron Pirazosulfuron ^{thyl}	Chart Sirius	Soja Arroz irrigado

INIBIDORES DA SÍNTESE DE AMINO-ACIDOS DE CADEIA RAMIFICADA IMIDAZOLINONAS

a) PRINCIPAIS CARACTERÍSTICAS:

- são utilizadas em pré ou pós-emergência no controle de dicotiledôneas e algumas gramíneas
- translocam-se pelo floema
- persistência de moderada a alta
- degradação por microorganismos

b) **SELETIVIDADE:**

Metabolismo

• absorção e translocação

TABELA 8. Principais herbicidas com as suas principais marcas comerciais dos herbicidas inibidores da ALS.

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Imidazolinonas	Imazamox	Sweeper	Feijão e Soja
	Imazapic	Plateau	Amendoim
	Imazapyr	Arsenal NA	Cana-de-açucar Áreas não agrícolas,
		Chopper	Pinus, seringueira,
		Contain	Cana-de-açucar
	Imazaquim	Scepter	
		Scepter 70DG	Soja
		Topgan	
	Imazethapyr	Pivot	
		Pivot 70DG	Soja
		Vezir	Soja
		Zethapir 106 SL Dinamaz 70 WDG	
		Imazetapir Plus	
		Nortox	

TABELA 9 - Principais herbicidas com as suas principais marcas comerciais. (continuação)

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Triazolopirimidi	naCloransulam ^{til}	Pacto	Soja
	Diclosulam	Spider	Soja
	Flumetsulam	Scorpion	Soja
Pyridimidinyl	Bispyribasodium	Nominee	Arroz irrigado
Oxibenzoatos	Pyrithibac -sodium	n Staple	Algodão

Sintomas Imidazolinonas (Soja)

Sintomas Imidazolinonas (Milho)

Clorose internerval e morte eventual de plântulas de milho.

(Bradley et al., 2007)

Sintomas Sulfoniluréias (Soja)

Sério atrofiamento, morte dos trifólios mais novos.

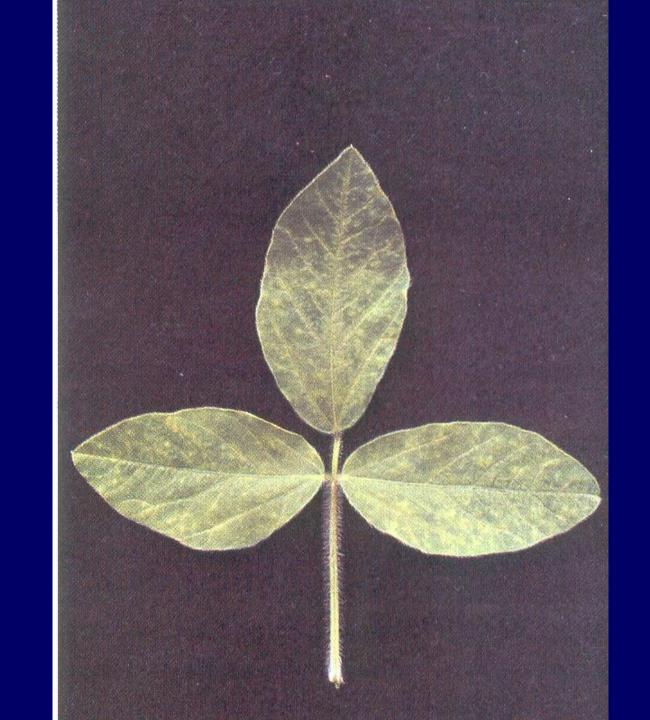
Plantas atrofiadas e clorose nos pontos de crescimento.

(Bradley et al., 2007)

Clorose irregular, veias vermelhas ou pretas no lado abaxial da folha.

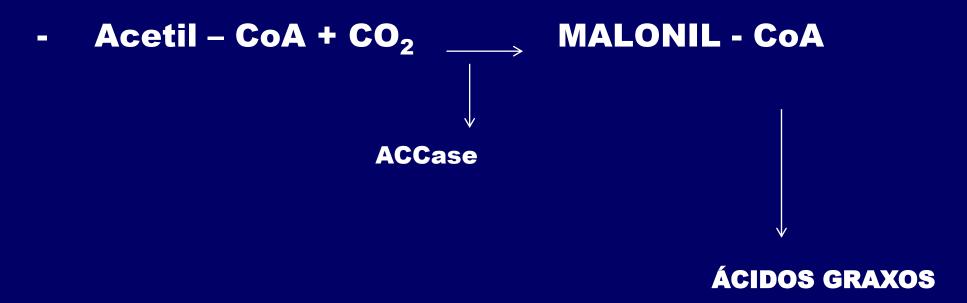
Sintomas Sulfoniluréias (Milho)

Atrofiamento e "amontoamento" de internódios (foramsulfuron).



Clorose na roseta e na parte de baixo das folhas e enrugamento das bordas das folhas próximo dos tecidos cloróticos.

Redução de colheita (aplicações tardias de nicosulfuron e nicosulfuron + rimsulfuron).



4.3. Herbicidas inibidores da enzima ACCase (enzima acetil coenzima A carboxilase

a) Principais características

- São herbicidas que controlam gramíneas sendo recomendados de um modo geral para culturas dicotiledôneas
- Absorção rápida chuvas duas horas após a aplicação não afetam a eficácia.
- Necessitam da adição de um surfactante a calda
- Translocam tanto no simplasto como no apoplasto
- Normalmente não tem atividade no solo. Alguns herbicidas do grupo tem atividade no solo quando usados em doses mais altas
- A adsorção lixiviação e volatilização desses herbicidas de um modo geral são baixos.

b) Mecanismo de ação — herbicidas da ACCase

Bloqueiam a síntese de lipídeos e afetam a formação e manutenção das membranas celulares

c) Seletividade – inibidores de ACCase

 Diferenças na sensibilidade da enzima ACCase – as gramíneas tem um tipo de enzima que é sensível a esses herbicidas.

 Metabolismo diferencial – plantas de trigo gem mostrado tolerância ao diclofop devido a metabolização.

d) Sintomas – inibidores de ACCase

- Sintomas demoram para aparecer
- Paralisação do crescimento de raízes e parte aérea
- Alguns dias após a aplicação os meristemas sofrem descoloração
- Os meristemas ficam com coloração marrom e em seguida ocorre progressiva necrose
- As folhas mais velhas adquirem coloração roxa ou vermelha confundindo-se com deficiência de fósforo

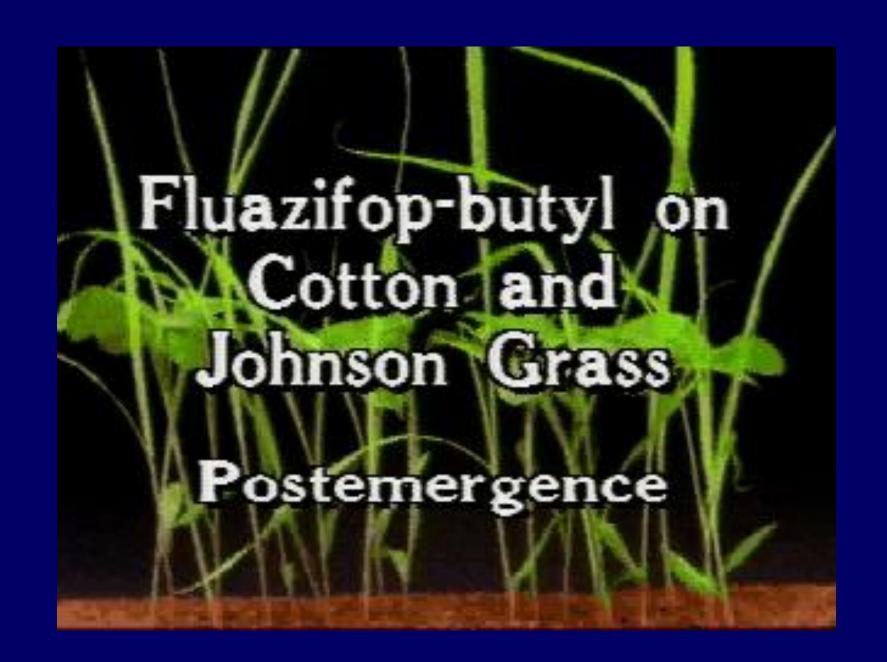
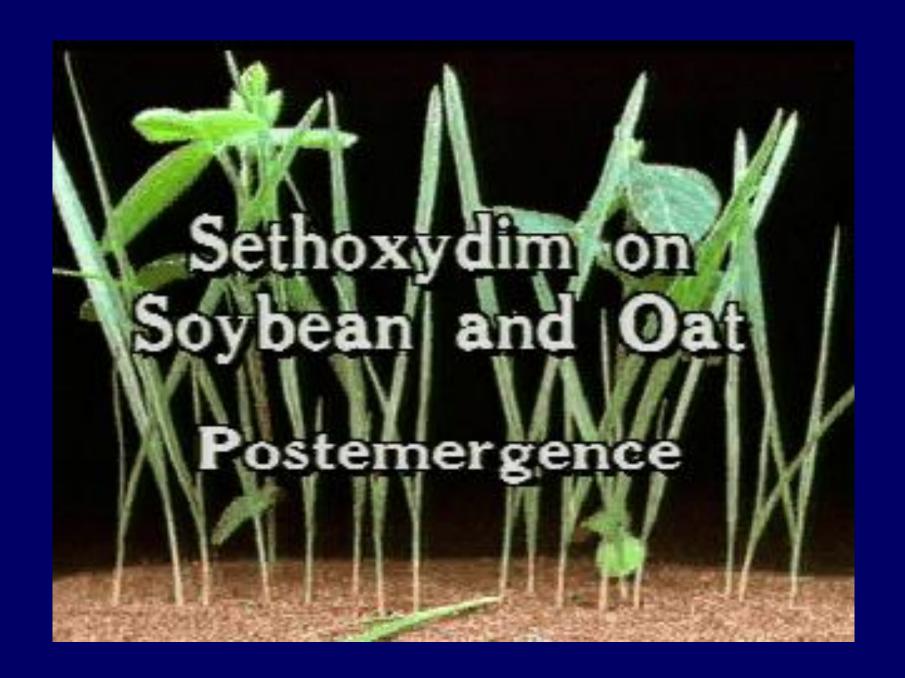



TABELA 10. Principais herbicidas do grupo dos inibidores da biossíntese de lipídeos, e as principais marcas comerciais.

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Axiloxifenoxi Propionato	Diclofopmethyl	Iloxan	Cebola, feijão, soja e trigo
	Fenoxapropethyl	Furore	Arroz, soja, fumo
	Fenoxapropp-	Starice	Alface, batata, cebola,
	ethyl	Rapsode	cenoura,ervilha, feijão e soja
		Whip S	Arroz
	Fluazifop-p-butil	Fuzilade 125	Algodão, alface,café,
		Fuzilade 250EW	cenoura,citrus,soja, tomate, fumo, roseira, crisântemo
	Haloxyfop-methyl	Gallant R	Eucalipto, pinus
		Verdict R	Soja
	Quizalofop-p-ethyl	Targa 50CE	Soja
Quizal	lofop-p-tefuryl	Panther 120 CE	Algodão, Feijão e Soja
Ciclohexanediona	butroxydim	Falcon	Soja
	Clethodium	Select 240 CE	Soja, feijão, algodão, tomate, batata, cebola, alho e cenou-ra
	Setoxydim	Poast	Algodão, eucalipto, feijão, girassol, gla– díolo, soja e fumo

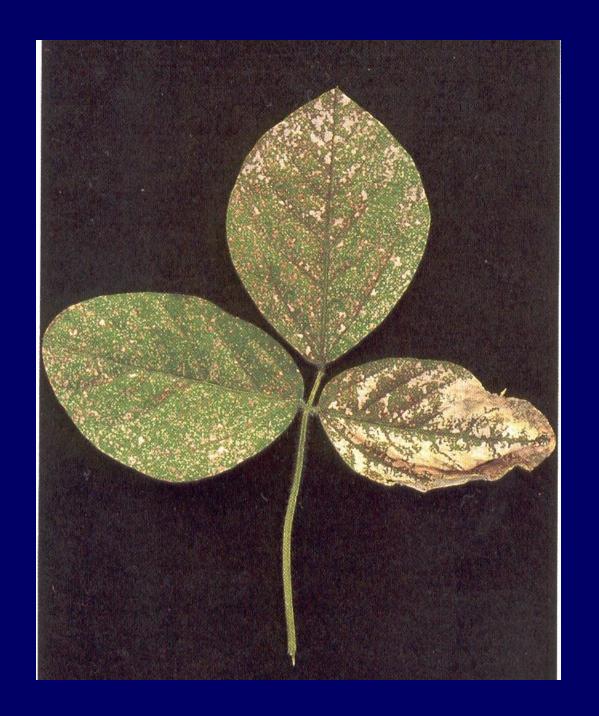
4.4.Herbicidas inibidores da PROTOX (protoporphyrinogen oxidade

INIBIDOR DA SÍNTESE DA CLOROFILA (PROTOX)

a) PRINCIPAIS CARACTERÍSTICAS:

- luz é necessário para ação
- atua em radículas, caulículos e folhas
- não tem translocação
- morrem rapidamente
- fortemente adsorvido pela matéria orgânica
- pouco lixiviáveis

b) SELETIVIDADE:


- metabolização
- - molhamento
- posição no solo
- - sensibilidade diferencial da PROTOX

c) Sintomas – inibidores da PROTOX

 Necrose da folha ocorre de 4 a 6 horas em presença da luz

 Aparecimento de áreas brancas ou cloróticas nas folhas que indicam a ruptura de membranas celulares

TABELA 11 - PRINCIPAIS HERBICIDAS

Grupo		Nome	Formulação	-
Químico	Ingr. Ativo	Comercial	g/l	Empresa
Diphenylether	Oxyfluorfen	Goal BR	240 CE	Rohm & Hass
Triazolinone	Sulfentrazone	Boral 500	500 SC	FMC
		Solara 500	500 SC	FMC

CARACTERÍSTICAS – OXYFLUORFEN

- solubilidade = 0,1 ppm
- $K_o = 100.000 \text{ ml/g}$
- pKa = zero
- translocação → pouca
- adsorção ao solo → forte
- potencial de lixiviação → muito pouca
- época de aplicação → pré
- persistência → 30 a 40 dias

CARACTERÍSTICAS FÍSICO-QUÍMICAS DE ALGUNS HERBICIDAS USADOS NO BRASIL

Herbicida	K _{oc} (mL/g)	T ½ (dias)	GUS
FOMESAFEN	2	180	8,34
TEBUTHIURON	80	360	5,37
METOLACHLOR	99	44	3,29
ATRAZINE	107	74	3,68
SIMAZINE	138	56	3,25
ALACHLOR	161	14	2,06
TRIFLURALIN	7.950	83	0,66
PENDIMETHALIN	16.300	60	-0,38
OXYFLUORFEN	100.000	35	-1,54

FONTE: GUSTAFSON (1989)

GUS > 2,8 - POTENCIAL/POLUIDOR < 1,8 - NÃO APRESENTAM POTENCIAL DE CONTAMINAÇÃO

K_{oc} = Coeficiente de repartição carbono orgânico – água

T $\frac{1}{2}$ = meia vida do herbicida no solo

GUS = escore de contaminação do lençol freático

GUS = Log T $\frac{1}{2}$ x (4 – Log K_{oc})

CARACTERÍSTICAS – SULFENTRAZONE

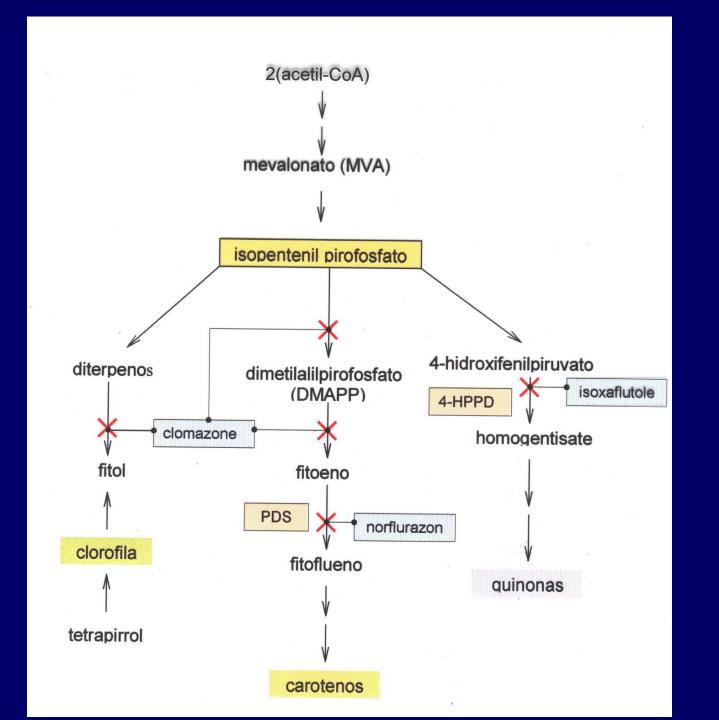
- solubilidade = 490 ppm
- translocação → pequena movimentação pelo floema
- adsorção ao solo → baixa
- potencial de lixiviação → moderada
- época de aplicação → pré
- persistência → meia vida de 180 dias

TABELA 12. Principais herbicidas do grupo dos inibidores da PROTOX, e suas principais marcas comerciais.

Grupo químico	Ingrediente ativo	Nomes comerciai	s Usos agrícolas no Brasil
Difenileteres	Acifluorfen	Blazer	Soja e feijão
	Formesafen Lactofen	Flex Cobra Naja	Soja e feijão Soja
	Oxyfluorfen	Goal BR	Algodão, arroz irrigado, café, cana de açúcar citros, eucalipto e pinus
Ftalimidas	Flumiclraquentil Flumioxazin	Radiant 100 Flumyzin 500 Sumisoya	Soja Soja
oxadiazolinas	Oxadiazon	Ronstar 250 BR Ronstar SC	Algodão, alho, arroz, café, cana -de - açúcar, cebola, cenoura, citros, gladíolo e fumo
Triazolinonas	Sulfentrazone	Boral 500 Solara 500	Cana deaçúcar, soja, eucalipto, áreas não agrícolas.

4.5. Inibidores da biossintese de caroteno

- Principais características
- Mecanismo de ação
- Seletividade


INIBIDORES DA SÍNTESE DE CAROTENO

a) PRINCIPAIS CARACTERÍSTICAS:

- povocam o branqueamento das folhas
- translocação apoplástica
- são adsorvidos
- pouca lixiviação
- degradação por microorganismos

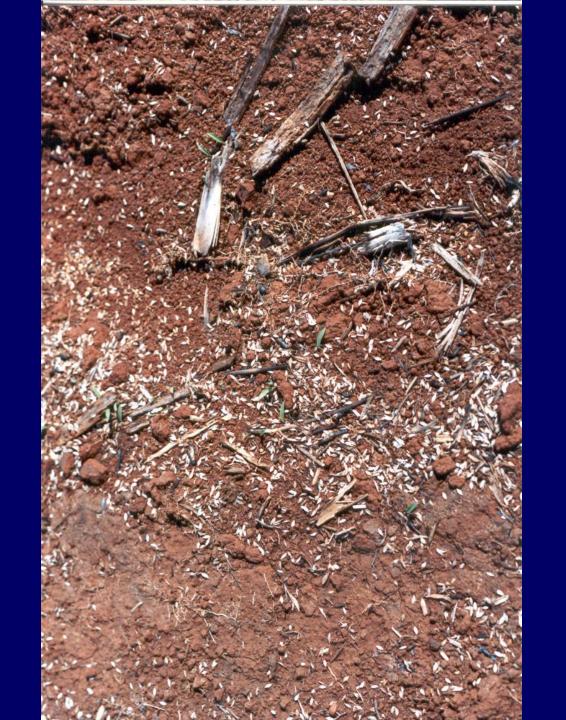
b) Mecanismo de ação – síntese de carotenos

- Os carotenoides e as clorofilas são pigmentos que se localizam no interior das membranas dos cloroplastos captando energia luminosa e transferindo para os centros de reação
- As plantas susceptíveis perdem a cor verde após o tratamento.
- Quando os carotenoides não estão presentes a clorofila não dissipa a energia e inicia a sua degradação como resultado da fotoproteção dada pelos carotenoides

c) Sintomas – sintese de carotenos

- Perda de coloração pelos tecidos novos.
- Após alguns dias as plantas ficam com coloração marrom e depois morrem.
- Deriva pode afetar plantas sensíveis com aparecimento de clorose e/ou branqueamento das folhas

TABELA 13. Principais herbicidas do grupo dos inibidores da biossíntese de carotenóides e suas principais marcas comerciais.

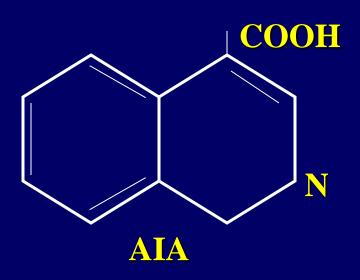

Grupo químico I	ngrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Isoxazolidinona C	Clomazone	Gamit	Soja, arroz
		Gamit 360CS	irrigado, cana-de-açúcar, fumo
Isoxazolidinonas I	soxaflutole	Provence 750WG	e algodão Milho e cana-de-açúcar

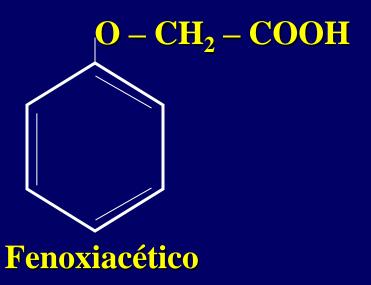
d) **SELETIVIDADE**:

Metabolização

diferenças na sensibilidade da enzima

posição no solo




4.6. Herbicidas reguladores de crescimento ou mimetizadores de auxina

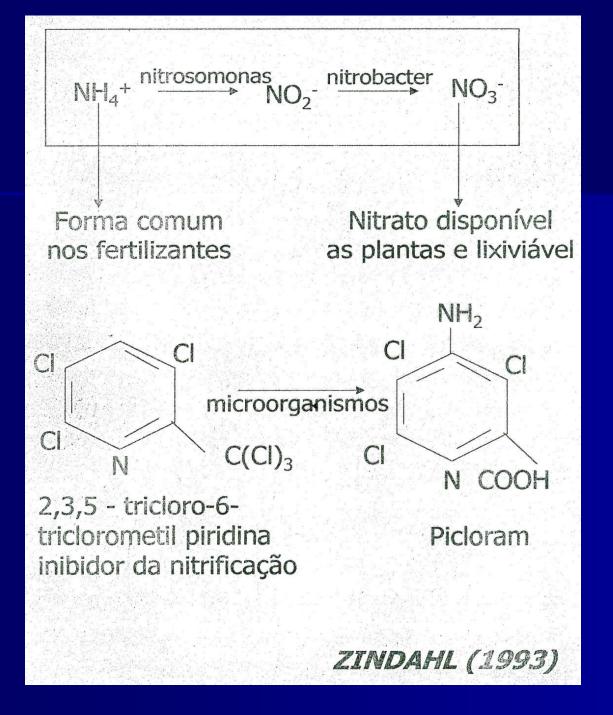
HERBICIDAS MIMETIZADORES DE AUXINA

INTRODUÇÃO

- É o grupo químico de maior área utilizada no mundo.
- Década de 1930 pesquisas com as auxinas naturais AIA.
- Década de 1940 ácido fenoxiacéticos eram mais ativos que o AIA, e não eram rapidamente metabolizados na planta.

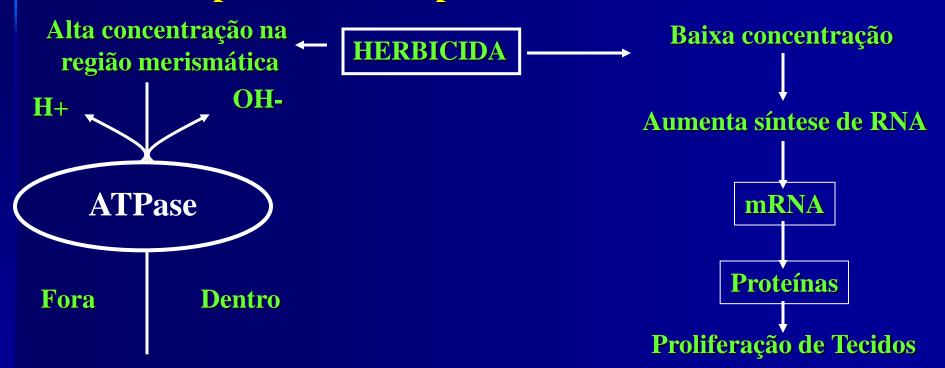
a) CARACTERÍSTICAS - MIMETIZADORES DE AUXINA

- os herbicidas desse grupo agem em locais de ligação da auxina com proteínas nas membranas celulares, provocando um desbalanço hormonal e afetando a síntese de proteínas.
- apresentam translocação predominantemente simplástica, mas podem translocar pelo apoplasto.
- controlam plantas daninhas dicotiledôneas em culturas de gramíneas.
- a volatividade depende da formulação, sendo os ésteres mais voláteis. Os ésteres com pequeno número de átomos de carbono no radical são mais voláteis (metil, etil, propil e butil).


a) CARACTERÍSTICAS - MIMETIZADORES DE AUXINA

- São móveis no solo
- Com exceção do picloram, não persistem de um ano agrícola para outro.
- Picloram é degradado por microrganismos e fotodecomposição
- O tempo para atingir um nivel desprezível no solo de 0,625 ppb pode variar de 4,5 meses a 4 anos dependendo das condições ambientais.
- 2,4-D é rapidamente degradado (1 a 4 semanas em solos quentes e úmidos).
- Triclopyr meia vida de 20 a 45 dias.
- Fluroxypyr meia vida de 1 a 4,5 semanas a 25-26° C.

a) CARACTERÍSTICAS - MIMETIZADORES DE AUXINA


- geralmente são móveis no solo, e a persistência não é alta (exceção para o picloram).
- deve-se tomar cuidado com a deriva quando existem culturas sensíveis próximas, como algodão, tomate, uva e cucurbitaceas.

deve-se adotar procedimentos de descontaminação dos pulverizadores, após o uso com herbicidas desse grupo, utilizando amoníaco a 3% por 24 h, e após lavagem com detergente. Também pode ser usado carvão ativado a 3g/l por 1 a 2 dias e após lavagem com detergente.

b) MECANISMO DE AÇÃO

- Provocam um desbalanço hormonal nas células com consequente crescimento desordenado dos tecidos.
- Interferem com o metabolismo do ácido nucléico e com os aspectos metabólicos da plasticidade da parece celular.

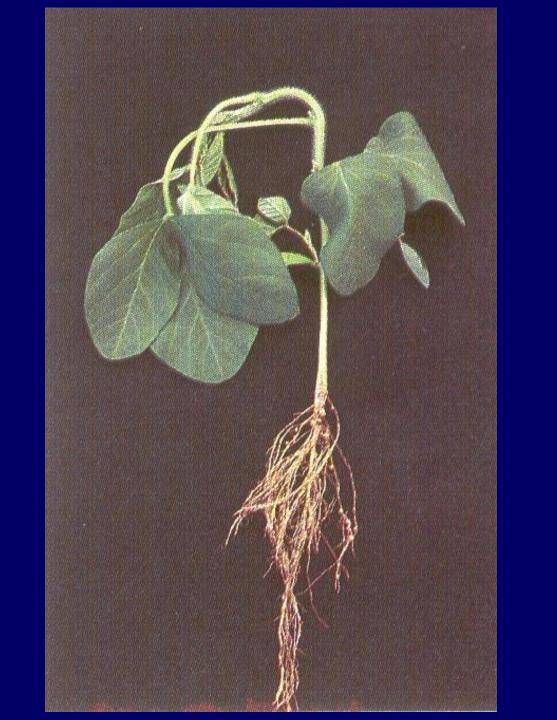
Acidificação do espaço livre que provoca um aumento na plasticidade da parede celular, devido a ativação de enzimas que degradam a parede celular e/ou rompimento de pontes de H⁺

c) SELETIVIDADE

- absorção diferencial
- metabolismo diferencial
- proteção dos feixes pelo esclerenquima
- exudação pelas raízes
- alterações do local de ação da auxina na plasmalema

d) SINTOMAS- MIMETIZADORES DE AUXINA

- epinastia nas folhas;
- retorcimento dos pecíolos, pedúnculos e caules;
- proliferação de tecidos no floema, provocando a redução na translocação de fotoassimilados;
- formação de raízes adventícias; morte de raízes secundárias.



d) Herbicidas mimetizadores de auxina

RESISTÊNCIA

- Existem 6 espécies daninhas resistentes.
- Não há evidencias conclusivas sobre o mecanismo de resistência dos herbicidas hormonais.
- Possibilidades: metabolização do herbicida mais acentuada nos biotipos resistentes (*Carduus nutans*); exudação de herbicidas pelas raizes em maior quantidade nos biotipos resistentes.

e) CULTURAS RESISTENTES

Culturas de algodão, fumo e soja estão sendo estudadas.

 Mutante de fumo (Nicotiana plumbaginifolia) produtores de sub-doses de AIA que tolera altas concentrações de auxina foram produzidos em laboratório

• 2,4-D

Tabela 14 - Principais herbicidas mimetizadores de auxina

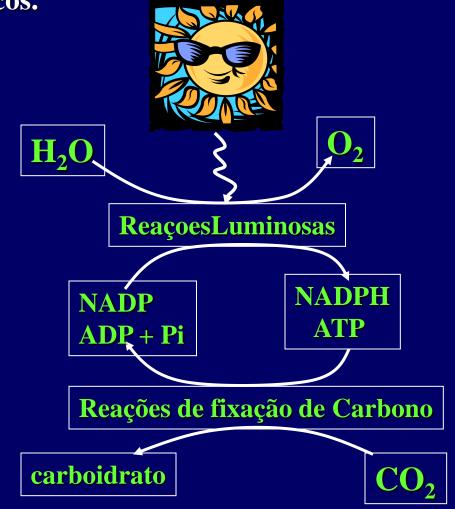
Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Fenoxiacidos	2,4-D	DMA 806BR, Herbi D480, Aminol, Capri, U-46 D- Fluid 2,4-D, Navajo	Café, cana-de-açucar, cereais, milho,gramados, pastagens, plantio direto e áreas não agrícolas
Ac.benzoico	Dicamba	Banvel 480	Trigo, arroz, cana- de-açúcar, grama- dos e áreas não agrícolas
Ac. Piridino- carboxílico	Picloram	Padron	Pastagens
	2,4-D + picloram	Tordon 2,4-D Manejo Dontor	Pastagens Pastagens Pastagens, cana-de-açúcar

Tabela 15 – Principais herbicidas mimetizadores de auxina

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Ac. Piridino- carboxílico	Fluroxypir	Starane 200	Pastagens
	Triclopyr	Garlon 480 BR	Pastagens
	Fluroxypyr +picloram	Plenum	Pastagens
	Aminopiralide+2,4-D	Jaguar	Pastagens
	Aminopiralide + Fluroxypyr	Dominum	Pastagens
Ac.Quinolino carboxílico	Quinclorac	Facet	Arroz irrigado

4.7. Inibidores da fotossíntese

FOTOSSÍNTESE EM PLANTAS


- · A folha é o tecido fotossintetizante mais ativo numa planta.
- Células do mesófilo possuem grande número de cloroplastos.
- Nos cloroplastos estão os pigmentos absorvedores de luz.

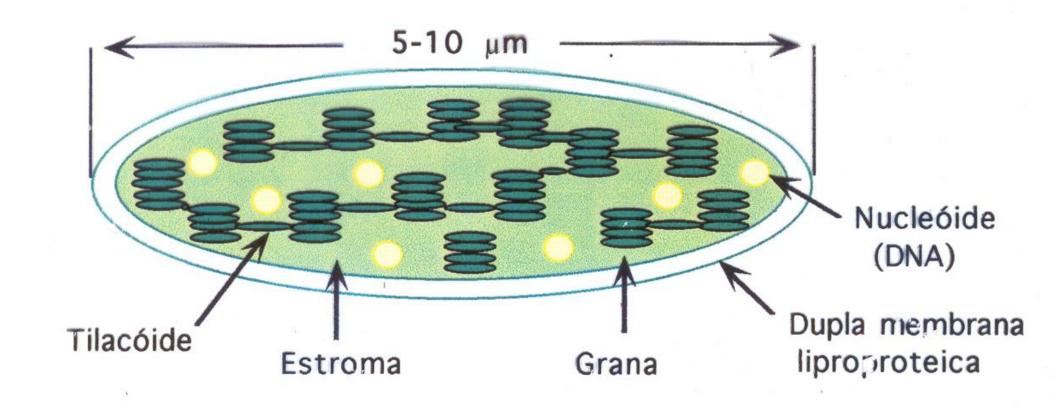
FASE FOTOQUÍMICA DA FOTOSSÍNTESE

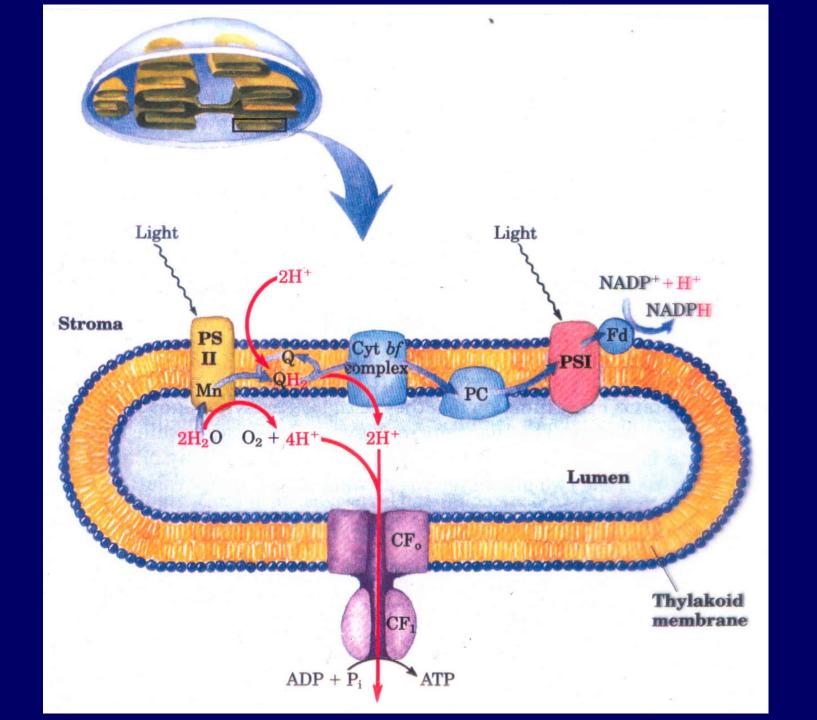
• Fotossíntese significa síntese utilizando a luz

• Toda a vida na Terra está intimamente ligada aos processos fotossintéticos

• Organismos fotossintetizantes usam a energia da luz solar para sintetizar compostos orgânicos.

a) CARACTERÍSTICAS INIBIDORES DO FOTOSSISTEMA II


- inibem a fotossíntese bloqueando o transporte de elétrons na fase luminosa. A taxa de fixação de CO2 declina poucas horas após a aplicação nas plantas sensíveis.
- peralmente são aplicados ao solo, mas em alguns casos podem ser aplicados na parte aérea em pós-emergência com a adição de um adjuvante.
- > a translocação predominante é pelo aploplasto.
- > quando aplicados a folhagem atuam como se fossem herbicidas de ação tópica, e necessitam de uma cobertura uniforme nas folhas.
- > Apresentam maior atividade sobre plantas daninhas dicotiledôneas, mas depende do herbicida utilizado


a) CARCTERÍSTICASINIBIDORES DO FOTOSSISTEMA II

- > aplicados ao solo necessitam serem mobilizados para a zona de germinação das plantas daninhas, através de chuva, irrigação ou então que o solo esteja úmido por ocasião da aplicação.
- > persistência no solo varia de poucas semanas até mais de 2 anos, dependendo do herbicida da dose aplicada, do tipo de solo e das condições climáticas.
- > em geral são adsorvidos ao solo, tendo baixa a moderada lixiviação, mas depende do herbicida, do tipo de solo e da precipitação pluviométrica no local da aplicação.
- > geralmente são produtos de baixa toxicidade para mamíferos.
- > a resistência de plantas daninhas tem ocorrido com os herbicidas desse grupo, após repetidas aplicações anuais.

b) MODO DE AÇÃO INIBIDORES DA FOTOSSÍNTESE

- inibem o fluxo de elétrons através da ligação do herbicida com proteína do complexo proteinaplastoquinona B no PSII
- Taxa de fixação de CO₂ decresce dentro de poucas horas após o tratamento. Em plantas tolerantes a taxa de fotossíntese não chega a ser tão baixa como nas plantas sensíveis, e retorna ao normal dentro de poucos dias.
- Sintomas ocorrem nas folhas poucos dias após o tratamento

INIBIDORES DA FOTOSSÍNTESE – SIMAZINA EM DOSE ALTA EM MAÇÃ

c) **SELETIVIDADE**

- posição no solo essa seletividade denominada toponômica ou de posição, ocorre devido ao herbicida permanecer na camada superficial do solo, acima do sistema radicular da planta cultivada. O diuron por exemplo é um herbicida seletivo a diversas culturas, pela posição no solo.
- absorção diferencial pelas plantas pode ocorrer que devido a morfologia e/ou anatomia das folhas e raízes algumas plantas não absorvem o herbicida em doses suficientes para apresentar efeitos fitotóxicos.
- translocação diferencial entre as plantas algumas plantas podem reter os herbicidas em locais como por exemplo glândulas, não permitindo a translocação para os sítios de ação localizados no cloroplasto.

c) **SELETIVIDADE**

- metabolismo diferencial algumas plantas absorvem os herbicidas, mas metabolizam essas moléculas, transformando em produtos não tóxicos. Exemplo é a atrazina em milho que realizada a metabolização através da hidroxilação da atrazina.
- falha do herbicida em atuar na proteína na membrana do cloroplasto.

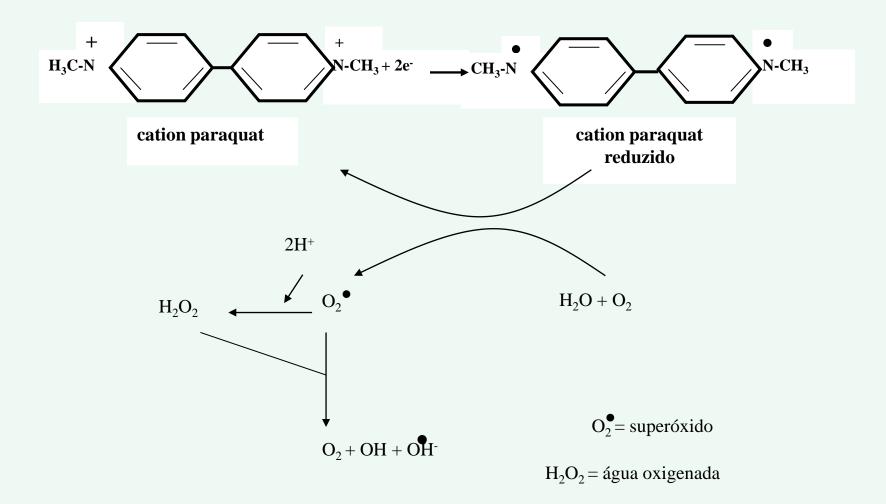
Tabela 16 Principais herbicidas inibidores do fotossistema II, e as principais marcas comerciais

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas No Brasil
Triazina	Simazine	Gesatop 500, Herbazin 500BR, Sipazina 500	Milho, sorgo, café, sisal, seringueira
	Atrazine	Gesaprim 500, Gesaprim GRDA, Atrazina Nortox, Coyote 500, Herbitrin 500BR, Siptram 500, Atrazina Atanor	de-açúcar
	Ametrine	Gesapax 500, Gesapax GRDA, Ametrina Agri- Pec, Herbipak 500,	Abacaxi, banana, café,cana-de-açúcar, citros,milho, uva
	Cyanazine	Bladex 500	Algodão, café, cana- de-açúcar, milho e soja
	Prometryne	Gesagard	Alho, cebola, cenoura, ervilha, gladíolo

Tabela 17 - Principais herbicidas inibidores do fotossistema II, e as principais marcas comerciais

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Triazinona	Hexazinone+diuron	Velpar K, Advance, Hexaron	Cana-de-açúcar
	Metribuzin	Sencor 480	Aspargo, batata, café, cana-de-açúcar,man-dioca, soja, tomate e trigo
Uréia substituída	Diuron	Karmex 500, Cention SC, Diuron 500 Agripec, Diuron Fersol 500, Diuron Nortox 500, Herburon 500	cana-de-açúcar,citros,
	Linuron	Afalon SC, Linurex Agricur 500	Algodão, alho, batata, cebola, cenoura, ervilha, eucalipto, milho, soja e uva
	Tebuthiuron	Perflan 800 BR, Com – bine 500, Tebuthiuron Sanachem	Cana-de-açúcar

Tabela 18 - Principais herbicidas inibidores do fotossistema II, e as principais marcas comerciais

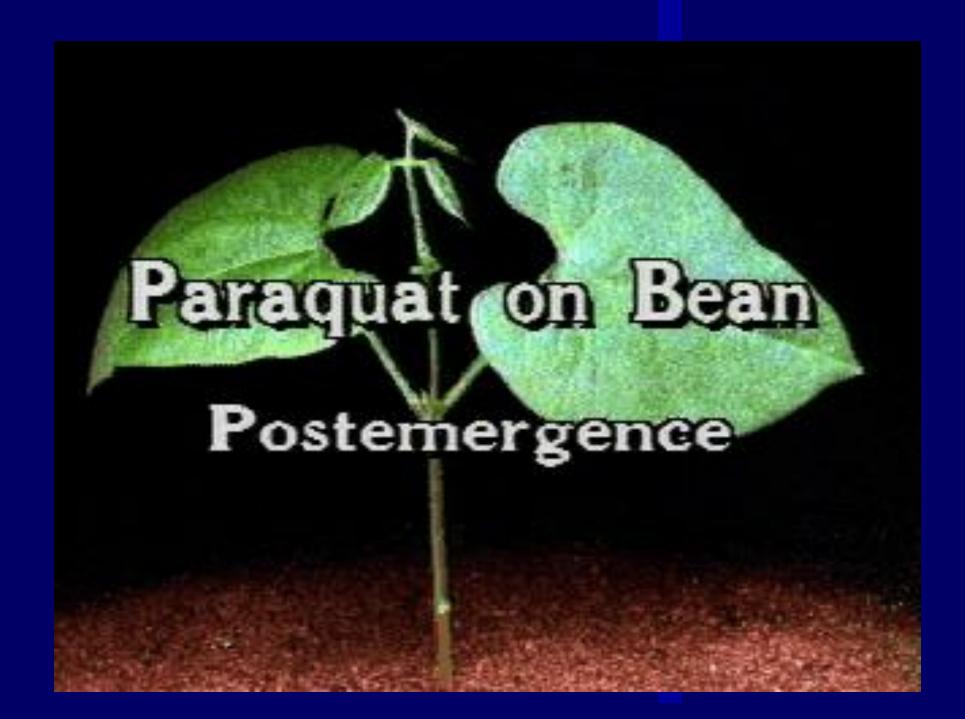

Grupo Químico	Ingrediente ativo	Nomes comerciais	Usos Agrícolas no Brasil
Uracila	Bromacil+diuron	Krovar	Abacaxi, citros
Amida	Propanil	Stam 360, Stam 480,	Arroz
		Grassaid, Grassaid 540,	
		Herbipropanim, Propanil	
		360 Agripec, Propanil	
		Fersol, Propanil Milenia,	
		Spada	
Benzonitrilos	Ioxynil octonoato	Totril	Cebola, alho
Benzotiadiazinas	Bentazon	Basagran 600, Banir	Arroz, feijão, milho,
			soja e trigo
Triazolinona	Amicarbazone	Dinamic	Cana-de-açúcar,
			milho

FOTOSSISTEMA I (P700)

- a) As principais características do grupo são:
- > são cátions fortes, sendo rapidamente adsorvidos ao solo
- » são usados em pós-emergência, sendo rapidamente absorvidos. Chuvas 30 minutos após a aplicação não tem interferido na eficácia.
- as plantas são mortas em 1 a 3 dias após a aplicação, devido a ação rápida, principalmente em presença da luz.
- não são seletivos.
- > Apresentam toxicidade alta por contato ou ingestão.

b) MODO DE AÇÃO-FORMADORES DE RADICAIS LIVRES

- Diquat e paraquat recebem os elétrons da fotossíntese e tornam-se radicais livres
- os radicais livres são instáveis e rapidamente sofrem auto-oxidação voltando ao íon inicial
- Durante a auto-oxidação formam-se H2O2 e O2 que provocam a degradação das membranas (peroxidação de lipídeos).



Reações que ocorrem na redução e oxidação do cátion paraquat nas plantas.

INIBIDORES DO FOTOSSISTEMA I PARAQUAT EM SOJA

Fitotoxicidade causada por Bipiridilios.

Tabela 19. Principais herbicidas inibidores do fotossistema I, e as principais marcas comerciais

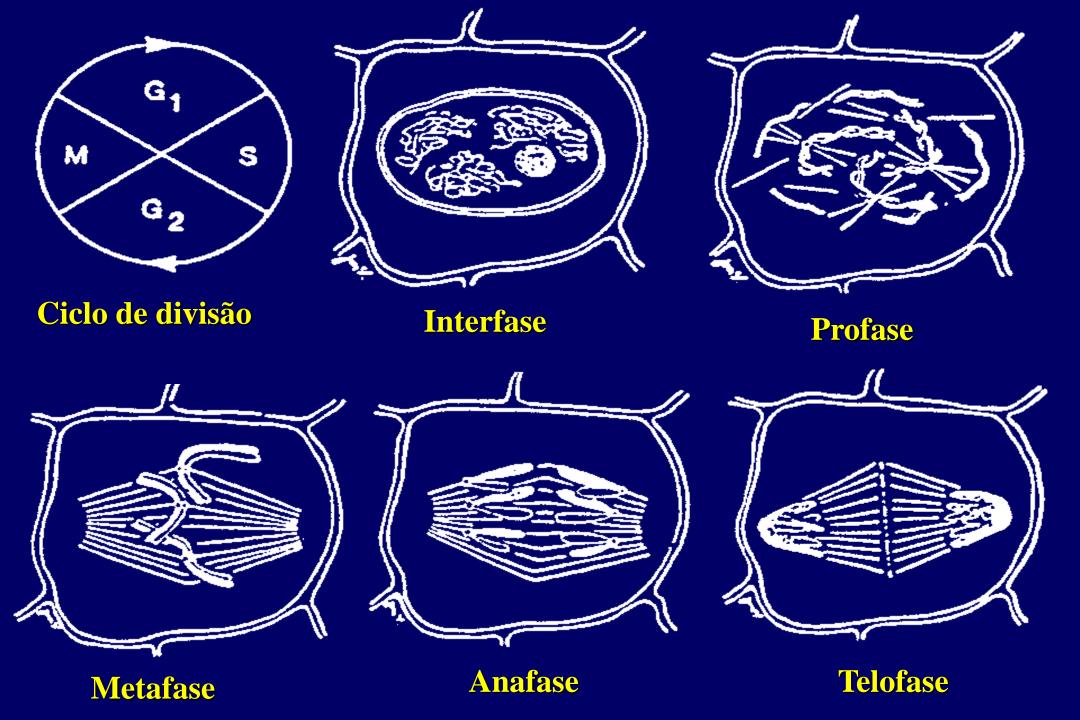
Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Bipiridilios	Paraquat	Gramoxone 200	Em pré-plantio em culturas anuais e jato dirigido em perenes, e dessecação de culturas
	Diquat	Regione	Em pré-semeadura para beterraba, cebola e feijão; jato dirigido para café, citros; dessecante para soja, batata e arroz

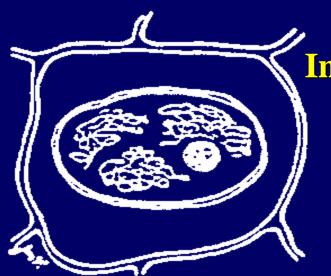
4.8 Herbicidas inibidores da divisão celular

a) CARACTERÍSTICAS: INIBIDORES DA DIVISÃO CELULAR

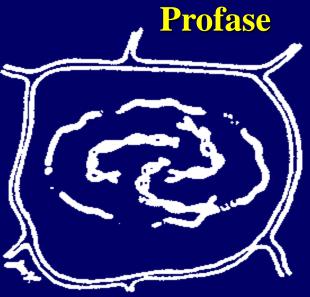
- paralizam o crescimento, principalmente de radículas das plântulas. As partes das radículas de um modo geral, apresentam um entumescimento e o crescimento é paralizado.
- de um modo geral são aplicados ao solo, tendo pouca translocação nas plantas.
- controlam plantas daninhas anuais, principalmente gramíneas, e as perenes quando estão iniciando a germinação pelas sementes na camada superficial do solo.

a) CARACTERÍSTICAS: INIBIDORES DA DIVISÃO CELULAR

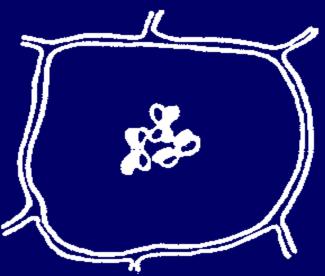

- apresentam baixa solubilidade, e alta volatilidade, exigindo na maioria dos casos incorporação ao solo para evitar as perdas por volatilização e colocação do herbicida na camada superficial, onde encontra-se o banco de sementes das plantas daninhas.
- apresentam de moderada a baixa toxicidade para os mamíferos.

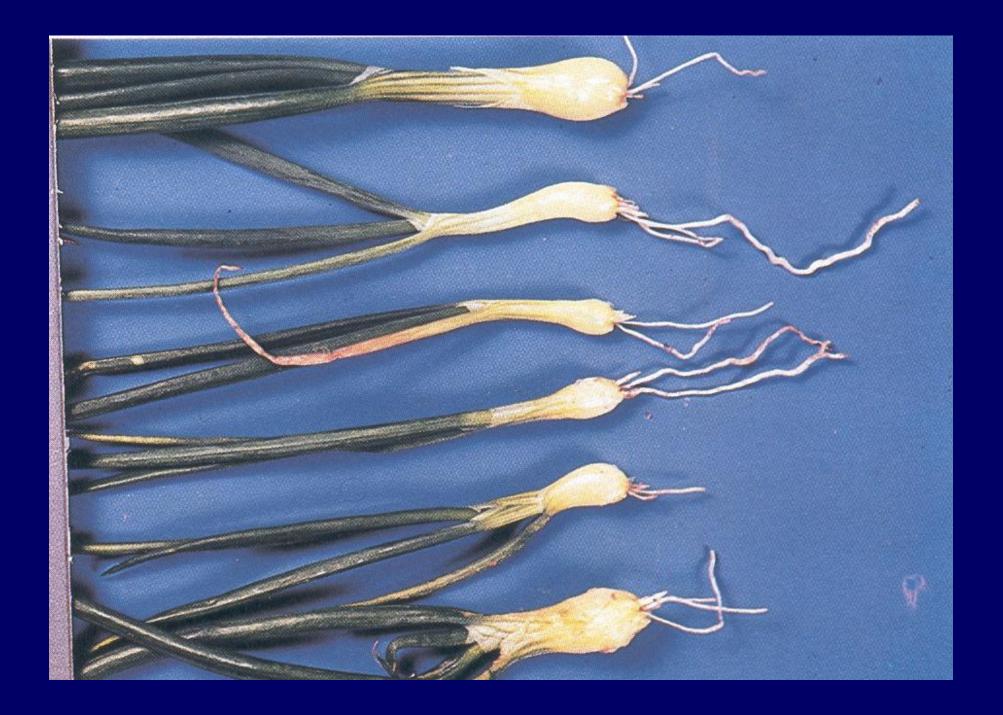

MODO DE AÇÃO -INIBIDORES DA MITOSE

Interferem com o movimento dos cromossomos na mitose


células multinucleadas

Entumescimento da ponta das raizes laterais




Interfase

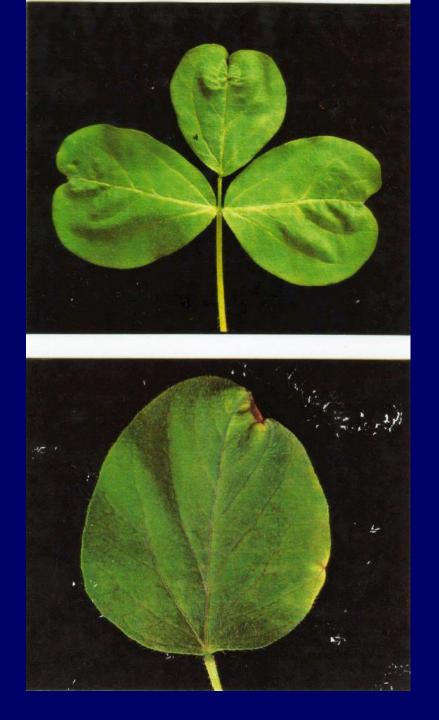
Aberração

d) SELETIVIDADE: INIBIDORES DA DIVISÃO CELULAR

- <u>posição no solo</u> as dinitroanilinas são pouco solúveis e posicionam na camada superficial do solo. As culturas dicotiledôneas cujas sementes germinaram mais profundamente no solo, podem não ser afetadas.
- metabolismo diferencial entre as plantas algumas plantas podem ser tolerantes, devido a diferenças na tubulina (Vanghan e Vanghn, 1988), como ocorre no caso da cenoura.

Tabela 20 - Principais inibidores da mitose com as suas principais

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Dinitroanilina	Trifluralin	Treflan Trifluralina Nortox Trifluralina Nortox Gold Trifluralina Milenia Premerlin 600 Premerlin NA	Soja, algodão, amen — doim, alho, berinjela, brassicas, brócolis, couve-flor, repolho, cebola de transplante, cenoura, citros, feijão, girassol, pimentão, quiabo, tomate, canade-açúcar
	Pendimethalin	Herbadox	Algodão, alho, amen — doim, arroz, batata, café, cana-de-açúcar, cebola, feijão, milho, fumo, trigo.
Piridina	Thiazopyr	Visor 240	Cana-de-açúcar
	Dithiopyr	Dimension	
Carbamatos	Chlorpropham		
	Propham		


4.9. Inibidores do crescimento

a) CARACTERÍSTICAS - CLOROACETAMIDAS

- > os herbicidas desse grupo controlam gramíneas anuais e algumas plantas dicotiledôneas em início de germinação no solo.
- > são pouco translocáveis nas plantas.
- » são herbicidas que atuam mais no caulículo das gramíneas, inibindo a emissão da primeira folha a partir do coleóptilo. A inibição de radículas também tem sido verificado em algumas plantas, principalmente dicotiledôneas.
- a mobilidade e efeito residual no solo depende de condições de umidade e do teor de matéria orgânica no solo.

b) SELETIVIDADE - CLOROACETAMIDAS

- metabolização pelas plantas as plantas tolerantes fazem uma rápida metabolização das cloroacetamidas. A principal reação de detoxificação é a conjugação com glutationa ou glicose. As plantas tolerantes de um modo geral tem um nível maior de glutationa.
- uso de antídotos ou protetores o uso desses produtos aumenta a seletividade das cloroacetamidas para o milho e soja.
- posição no solo também é um fator que posiciona o herbicida em relação a semente da planta cultivada

Inibidores do crescimento inicial

Tabela 21. Principais herbicidas do grupo dos cloroacetamidas, e suas principais marcas comerciais.

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Cloroacetamida	Alachlor	Laço Alachlor Nortox	Algodão, amendoim, café, cana-de-açúcar, girassol, milho e soja
	Metolachlor	Dual	Cana-de-açúcar,feijão, milho e soja
	Acetochlor	Fist Kadett	Milho, soja, café e cana-de-açúcar
	Butachlor	Machete	Arroz
	Dimethamid	Zeta	Soja e milho

Tiocarbamatos

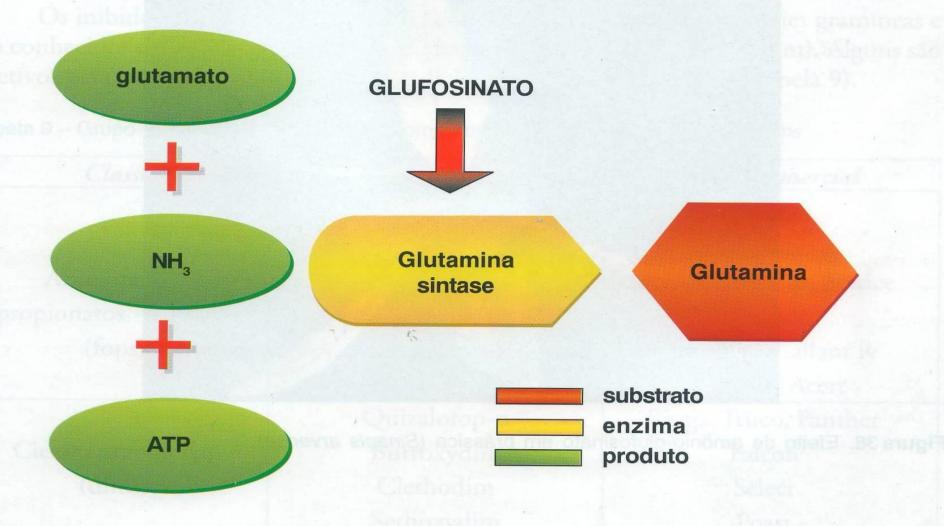
- Principais características
- Mecanismo de ação
- Seletividade

a) CARACTERÍSTICAS - TIOCARBAMATOS

- a persistência no solo é curta, devido a volatilização e decomposição por microorganismos. Aplicações repetidas no mesmo local provocam a redução no período de controle.
- a translocação é principalmente pelo xilema (translocação apoplástica).
- a toxicidade para mamíferos é baixa.

b) **SELETIVIDADE - TIOCARBAMATOS**

- metabolização pelas plantas as plantas tolerantes fazem a detoxificação pela congugação com glutationa.
- uso de antídotos ou protetores o uso de antídotos como dichlormid e R-29148 para os tiocarbamatos aumenta a tolerância do milho.
- posição no solo o posicionamento no solo pode influir na seletividade para algumas culturas.


Tabela 22 - Principais herbicidas do grupo dos tiocarbamatos, e suas principais marcas comerciais

Grupo químico	Ingrediente ativo	Nomes comerciais	Usos agrícolas no Brasil
Tiocarbamato	EPTC	EPTAM Eradicane	Cana-de-açúcar, fei – jão, milho
	Molinate	Ordram 720	Arroz irrigado
	Thiobencarb	Saturn 500	Arroz irrigado

4.10 INIBIDORES DA GLUTAMINA SYNTETASE (GS)

a) CARACTERÍSTICA GERAIS

- É um herbicida não seletivo que controla gramíneas e dicotiledoneas quando aplicados em pós-emergência
- A translocação é mínima nas plantas
- Não é persistente no solo, tendo meia-vida de 40 a 10 dias.
- A resistência ao amônio-glufosinato tem sido introduzida em diversas culturas como soja, algodão, milho e arroz.

O amônio-glufosinato inibe a glutamina sintase, uma enzima que catalisa a combinação do ${\rm NH_3}$ orgânico com o glutamato para formar glutamina.

C) Sintomas – amônio-glufosinato

clorose e o murchamento das plantas ocorre entre três dias após a aplicação, seguido de necrose.

d) Seletividade

- Herbicida não seletivo
- Em plantas geneticamente modificadas há inserção do gen'PAT' isolado de uma bactéria.

5 – PRINCIPAIS CAUSAS DE DANOS

- RESÍDUOS NO SOLO
- DOSE ERRADA
- DERIVA
- CONTAMINAÇÃO DO EQUIPAMENTO
- APLICAÇÃO EM ESTÁDIO INADEQUADO DA CULTURA
- LIXIVIAÇÃO DO HERBICIDA NO SOLO
- INCOMPATIBILIDADE DE MISTURAS

6 – DIAGNOSE DOS DANOS CAUSADOS PELOS HERBICIDAS

PRINCIPAIS ETAPAS:

- A) OBSERVAÇÃO DOS SINTOMAS
- B) CARACTERIZAR OS SINTOMAS FOTOS
- C) COLETA DE INFORMAÇÕES
 - APLICAÇÃO
 - OBSERVAÇÃO DE PLANTAS NA VIZINHANÇA
 - INFORMAÇÕES CLIMÁTICAS
 - PADRÕES DE INJÚRIAS
 - OBSERVAÇÃO DE SINTOMAS CAUSADOS POR FATORES BIOTICOS (INSETOS E PRAGAS) E ABIÓTICOS (MECANICOS, AMBIENTAIS, DESORDENS NUTRICIONAIS

D) COLETA DE AMOSTRAS

ÉPOCA

QUANTIDADE ADEQUADA

EMBALAGEM APROPRIADA

7. METODO DE DIAGNOSE DE DANOS NAS PLANTAS

- 1 DEFINIÇÃO DO PROBLEMA
- 2 VERIFICAÇÃO DOS PADRÕES DE DANOS
- DANOS NÃO UNIFORMES FATORES BIÓTICOS (PRAGAS E DOENÇAS)
- DANOS NÃO UNIFORMES FATORES ABIÓTICOS (MECÂNICOS, FÍSICOS E QUÍMICOS)
- 3 EVOLUÇÃO DOS SINTOMAS
- 4 DETERMINAÇÃO DAS CAUSAS DO DANO
 - FATORES BIÓTICOS
 - FATORES ABIÓTICOS