

QFL5931/MPT6009 – Química Verde

Aula 5 – Fluidos Supercríticos

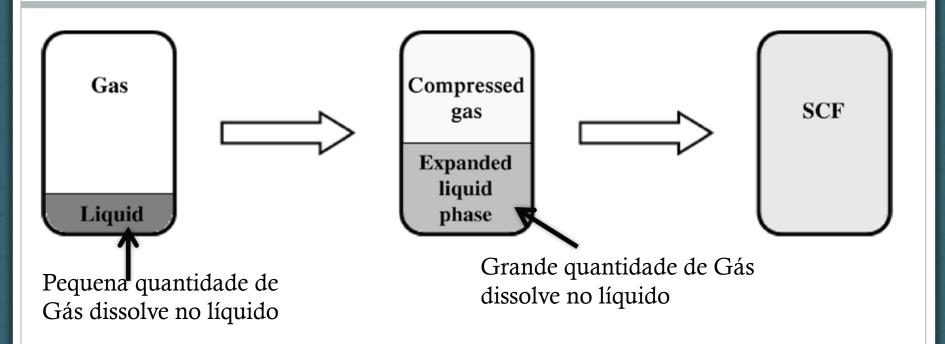
Prof. Dr. Leandro H. Andrade (leandroh@iq.usp.br)

Prof. Dr. Reinaldo C. Bazito (bazito@iq.usp.br)

Prof. Dr. Renato S. Freire (rsfreire@iq.usp.br)

Tópicos

- Reatividade em CO2 supercrítico:
 - fases líquidas expandidas em catálise;
 - química orgânica sintética;


Fases Líquidas Expandidas

FSC em Catálise/Reações Químicas

• Sistemas homogêneos, com uma única fase supercrítica (alta difusividade/miscibilidade com gases)

• Sistemas multifásicos, em especial uma fase líquida e outra super ou subcrítica. Essas fases líquidas são denominadas *"fases líquidas expandidas"* (ELP).

Fases Líquidas Expandidas

Comportamento de fase de mistura binária com o aumento da densidade do fluido

$$(T > T_c)$$

Fases Líquidas Expandidas

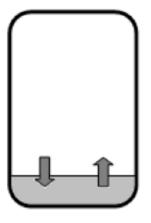
"É a fase condensada de uma mistura de líquidos e gases em condições abaixo do ponto crítico da mistura, exibindo uma expansão mensurável de volume da fase líquida comparada com líquidos puros na ausência de gases"

GXL = fase líquida expandida por gás (sem fsc)

 $CXL = fase \ liquida \ expandida \ por \ CO_2 \ (sem \ fsc)$

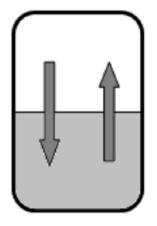
Classe I:

- Fase líquida expandida em menos de 10% do volume original;
- Líquido é um mau solvente para o gás;
- Gás é um mau solvente para o líquido;
- Propriedades físicas do líquido não mudam, mas químicas podem mudar (acidez, polaridade, etc);
- Exemplos: H₂O/CO₂, CO₂/DMSO.

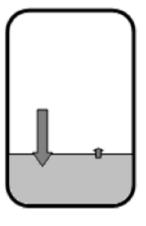

Classe II:

- Fase líquida bastante expandida chegando a diversas vezes o volume original;
- Líquido é bom solvente para o gás;
- Gás é bom solvente para o líquido;
- Propriedades físicas e químicas do líquido mudam;
- Exemplos: maioria dos líquidos orgânicos voláteis, CO₂/líquidos orgânicos fluorados.

Classe III:


- Fase líquida expandida em 10%-30% do volume original;
- Líquido é solvente razoável para o gás;
- Gás é um mau solvente para o líquido;
- Propriedades físicas e químicas do líquido mudam;
- Exemplos: líquidos iônicos, polímeros ou petróleo na presença de gás compressível como CO₂, etano, etc.

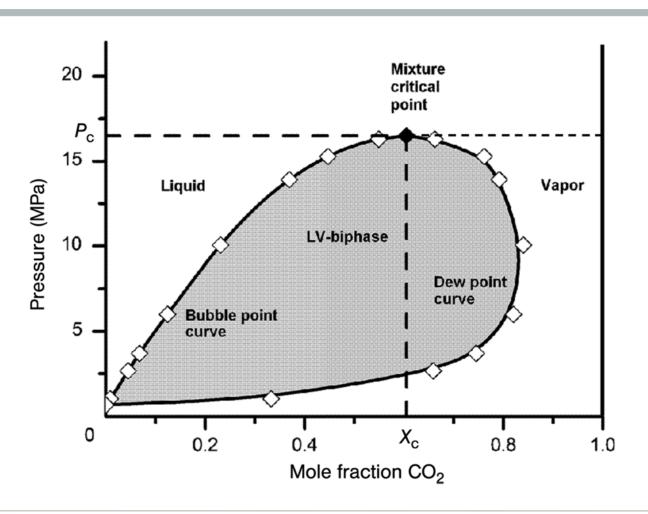
CLASS I


Water CO₂

CLASS II

CXL (org. solvent/CO₂)

CLASS III

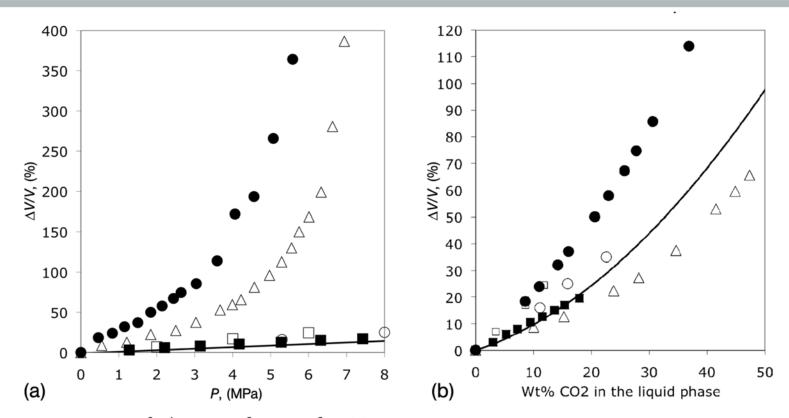

IL or PEG/CO₂

Solubilidade de CO₂ em Diversos Solventes: Expansão Volumétrica

Dados de Gustav Tammann (1911), a 49 bar e 35° C

Solvente	Expansão Volumétrica (%)
Acetato de etila	256
Éter dietílico	247
Nitrobenzeno	130
Tolueno	128
Propanol	81
Etanol	70
Água	3,5

MeOH/CO₂: uma ELP classe II


Fases Líquidas Expandidas

- Propriedades intermediárias entre solventes líquidos comuns e FSC homogêneos (uma única fase);
- Propriedades moduláveis;
- Aplicações em síntese e catálise, entre outras.

Fases Líquidas Expandidas: Propriedades

Fases Líquidas Expandidas: gases utilizados

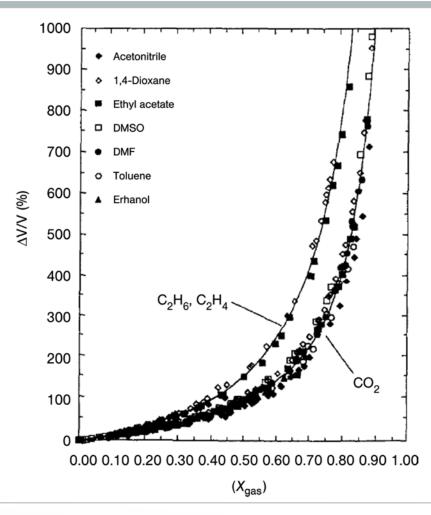
- Gases próximos ao seu ponto crítico são os que permitem maior expansão: etano, etileno, propano, CHF₃, SF₆, xenônio e CO₂;
- Gases distantes de seu ponto crítico (especialmente T_c) não permitem grande expansão, devido à solubilidade limitada: H₂, CO, O₂, N₂, CH₄ e He;
- Dióxido de carbono é o mais usado.

Figure 4.4 Expansion of solvents as a function of (a) CO_2 pressure and (b) wt% dissolved CO_2 at 40 °C for Class II liquids ethyl acetate

- (ullet) [20] and MeCN (\triangle) [20] and Class III liquids [bmim][BF₄]
- (\blacksquare , interpolated) [28], crude oil (line, at 43 °C) [29], PPG (\square) [30], and PEG (\bigcirc) [30].

Table 4.1 Different solvents and their relative volume expansion $(\Delta V/V)$ during CO₂ uptake at 40 °C [2].

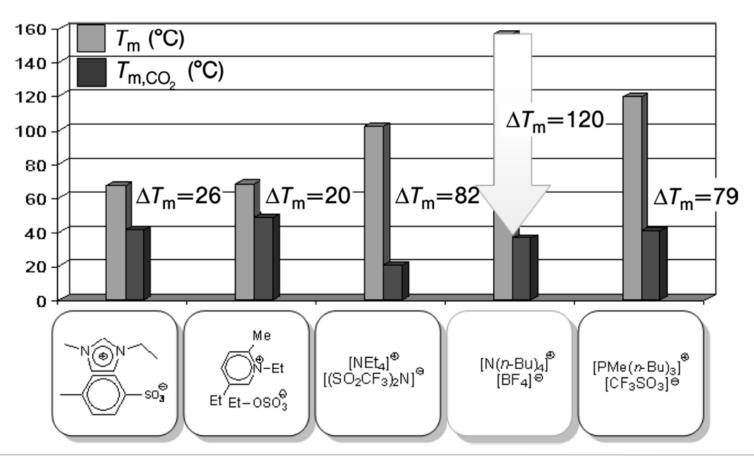
Class	Solvent	p (MPa)	Volume expansion (%)	CO ₂ (wt%)	CO ₂ (mol%)	CO ₂ molar volume ^a (I mol ⁻¹)	Ref.
I	H ₂ O	7.0	n.a. ^d	4.8	2	n.a.	[31]
II	MeCN	6.9	387	83	82	46	[20]
	1,4-Dioxane	6.9	954	80	89	100	[20]
	DMF	6.9	281	52	65	119	[20]
III	$[bmim][BF_4]^b$	7.0	17	15	47	39	[28]
	PEG-400	8.0	25	16	63	53	[30]
	PPG-2700 ^c	6.0	25	12	89	83	[30]


 $[^]a$ Calculated from the increase in volume and moles of CO_2 from data in this table.

^bInterpolated from the literature data.

^cAt 35 °C.

^dNot available.


- Classe II e III têm expansão similar se considerada %peso de CO₂;
- Classe III têm menor expansão por %mol CO₂ devido à menor quantidade de CO₂ dissolvido.

 Massa de gás dissolvido na Classe II depende só da densidade do líquido.

Fases Líquidas Expandidas: Líquidos Iônicos Induzidos por CO₂

Fases Líquidas Expandidas: Solubilidade de Gás

- ELPs classe II e III apresentam solubilidade aumentada de gases como H₂, O₂ e CO (fatores de enriquecimento de até 3);
- Gás expansor funciona como um "carregador" para o gás não expansor.

Fases Líquidas Expandidas: Geração *in situ* de ácidos

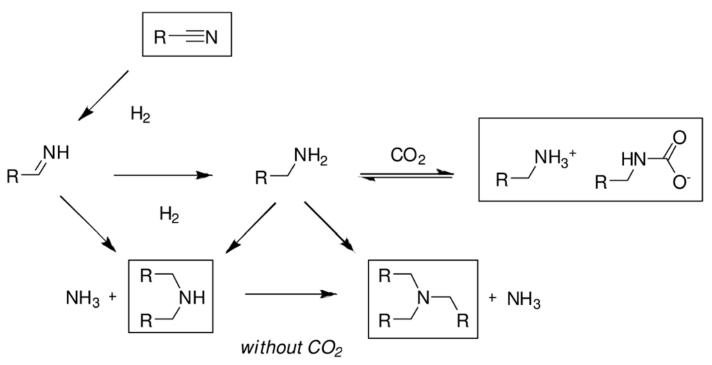
• Reversível = ácidos auto-neutralizantes

Fases Líquidas Expandidas: Geração *in situ* de ácidos – H₂O

- A 60°C o pH da H2O é 3,6 a 10 bar de CO₂ ou 3,2 a 90 bar;
- Pode ser tamponado com base conjugada, mas precisa de concentração elevada a pressões mais elevadas.

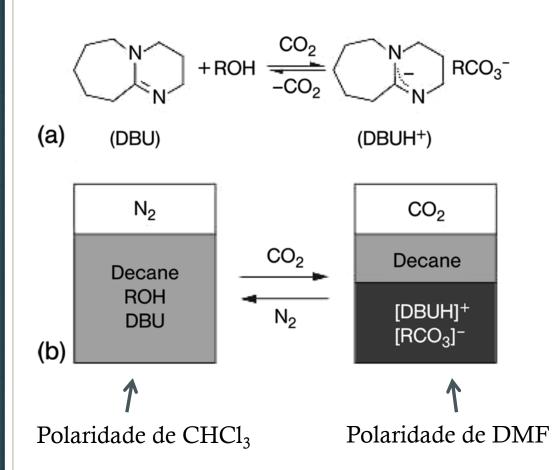
Fases Líquidas Expandidas: Geração *in situ* de ácidos

- Tem efeitos sobre reatividade. Por exemplo, transesterificação de monoestearato de glicerila com metanol é 7 vezes mais rápida através da expansão com CO² a 65 bar, a 60°C;
- Posição de equilíbrio também pode ser mudada.


Geração *in situ* de ácidos em ELPs: Aumento de acidez

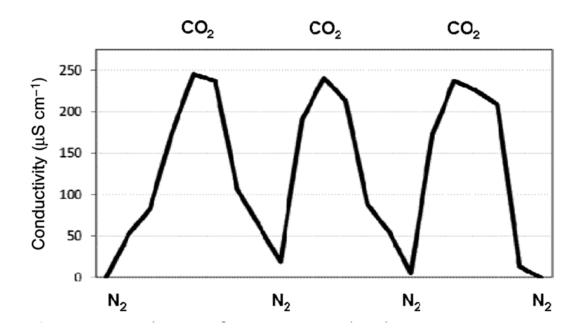
Scheme 4.2 Oxybromination of *o*-cresol in the H_2O-CO_2 biphasic system (M = Na, K, NBu₄, NH₄) [104].

- Formação de ácido peroxicarbônico (a partir de H₂O₂) aumenta acidez e caráter oxidante;
- Conversão = 32% em H_2O e 91% em H_2O/CO_2 .

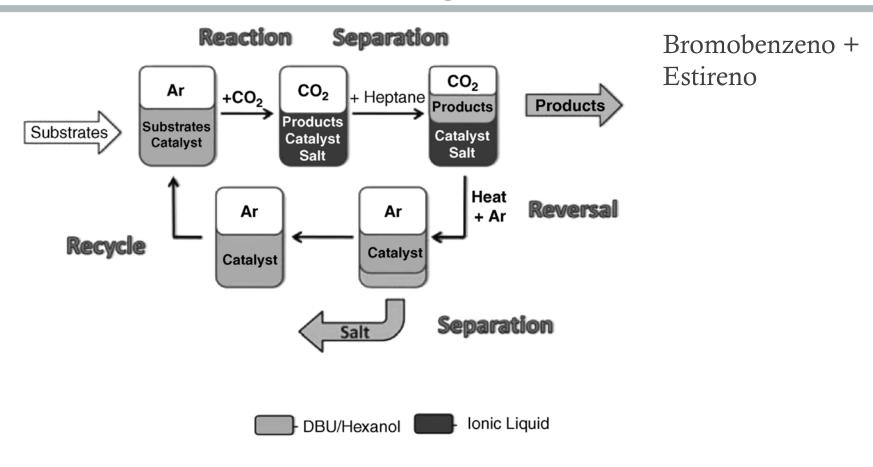

CO₂ em ELPs: Uso como grupo protetor – Hidroaminometilação

CO₂ em ELPs: Uso como grupo protetor – Hidrogenação

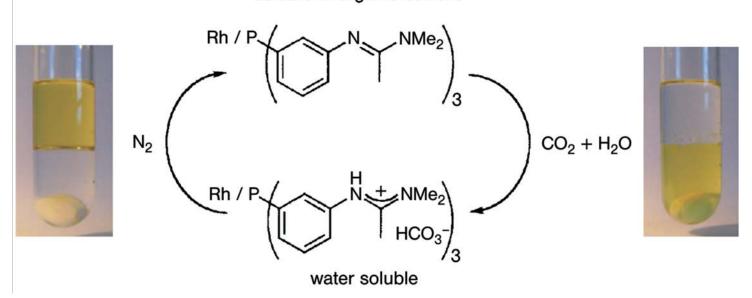
Scheme 4.4 The formation of secondary and tertiary amines during the hydrogenation of nitriles is suppressed when CO_2 is used to protect the primary amines [111].


Fases Líquidas Expandidas: Quimiossorção de Gases Solventes Chaveáveis

 Protonação reversível de amidinas por éster de ácido carbônico gerado in situ, gerando LIs (dependendo do tamanho da cadeia do álcool).


• Guanidinas também podem ser usadas (TMBG)

$$\begin{array}{c} \text{Bu} \\ \text{N} \\ \text{N} \end{array} + \text{ROH} \xrightarrow{\text{CO}_2} \begin{array}{c} \text{Bu} \\ \text{N} \\ \text{N} \end{array} \qquad \text{RCO}_3^-$$


• Sistemas monocomponente também podem ser usados (dialquilaminas)

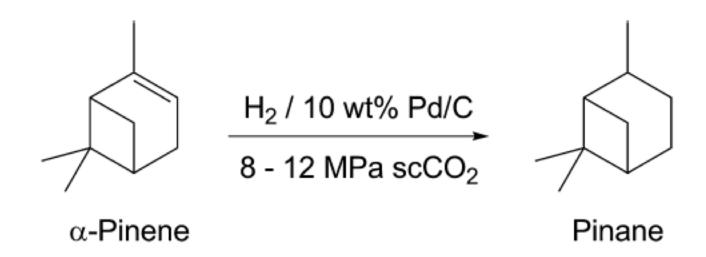
ELPs: Solventes Chaveáveis Líquidos Iônicos Reversíveis – Reação de HECK

ELPs: Catalisadores Chaveáveis

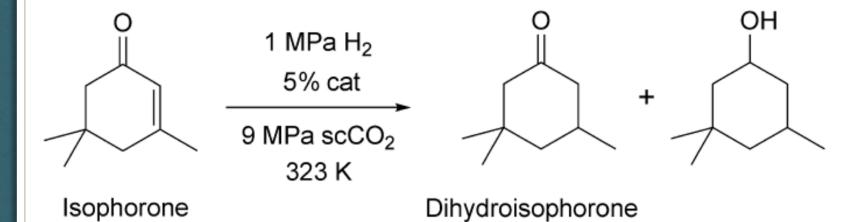
soluble in organic solvent

CO₂ supercrítico em Síntese Orgânica

CO₂-sc em Síntese Orgânica


- Beneficios Ambientais;
- Versatilidade (propriedades únicas) especialmente em sistemas complexos com possibilidade de muitos produtos.

Aplicações do CO₂-sc em Síntese Orgânica


Reações de:

- Hidrogenação (incluindo assimétrica) e similares;
- Hidroformilação e similares;
- Oxidação;
- Acoplamento mediado por Pd;
- Catalíticas diversas (metais, ácidos ou bases);
- Cicloadição;
- Fotoquímica;
- Radicais;
- Biotransformações

- Altas concentrações de H₂;
- Sistemas bifásicos;
- Mudanças de fase/condições alteram produtos.

Reação mais rápida em sistemas bifásicos: maior [H2] e adsorção do pineno no catalisador

Catalisador: Pt/C

Maleic anhydride

 γ -Butyrolactone

Succinic anhydride

Hidroformilação e similares em CO₂-sc

- Altas solubilidades de CO e H₂ em CO₂-sc;
- Sistemas bifásicos;
- Mudanças de fase/condições alteram produtos (linear vs. ramificado);
- Catalisadores Homogêneos: complexos Ru/Rhtrialquilfosfina, CO, ACAC e similares

Hidroformilação e similares em CO₂-sc

Hidroformilação e similares em CO₂-sc

$$\begin{array}{c} 3.0 \text{ MPa CO/H}_2\\ \hline \text{Rh(acac)(CO)}_2]/\text{Ligand}\\ \hline \text{scCO}_2\\ 80 \text{ °C, 1 h} \\ \hline \\ \text{Ligand} = \\ \hline \\ \begin{array}{c} C=O\\ O\\ (CH_2)_2\\ (CF_2)_7\\ CF_3 \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$

Scheme 5.23 Hydroformylation of acrylates in $scCO_2$.

Lenta em solventes convencionais, rápida em CO2-sc

Oxidação em CO₂-sc

- Uso de O₂ (ou ar) como oxidante (subproduto é água);
- Altas solubilidades de O₂ em CO₂-sc;
- CO₂-sc é estável frente à oxidação (não combustível);
- Mudanças de fase/condições alteram produtos.

Oxidação em CO₂-sc

OH
$$O_2/\text{scCO}_2 0.55 \text{ g ml}^{-1}$$
 $O_2/\text{scCO}_2 0.55 \text{ g ml}^{-1}$
 $O_3/\text{scCO}_2 0.55 \text{ g ml}^{-1}$

Scheme 5.27 Oxidation of alcohols using PEG-stabilized Pd nanoparticles.

Mais rápida e melhores conversões em CO2-sc

Oxidação em CO₂-sc

Scheme 5.28 Epoxidation of alkenes using a sacrificial aldehyde in scCO₂.

O aldeído é um "agente de transferência de oxigênio" de sacrificio na epoxidação

Acoplamentos mediados por Pd em CO₂-sc

- Catalisadores convencionais d\u00e4o baixos rendimentos em CO2-sc;
- Ligantes perfluorados e similares são empregados;
- Adaptação dos sais usados (cloreto de tetrabutilamônio no lugar de LiCl, por ex.).

$$\begin{bmatrix}
C_8F_{17}H_2CH_2C
\end{bmatrix}$$

$$\begin{bmatrix}
C_8F_{17}H_2CH_2C
\end{bmatrix}$$

1

2

Acoplamentos mediados por Pd em CO₂-sc

Produto preferencial em CO2-sc (inverso de solventes convencionais)

Acoplamentos mediados por Pd em CO₂-sc

- Ligantes comerciais mais baratos (PBu₃, etc) também são eficientes, com fontes "fluoradas" de paládio (trifluoroacetato, hexafluoroacetilacetonato, etc), em temperaturas e pressões moderadas;
- Suportes sólidos também dão bons resultados.

Processos catalisados por metais em CO₂-sc

$$2 \quad Et \longrightarrow Et + CO_2 \xrightarrow{Ph_2P(CH_2)_4PPh_2} Et \xrightarrow{Et} Et$$

Scheme 5.45 Ni-mediated pyrone formation in scCO₂.

Processos catalisados por metais em CO₂-sc

Scheme 5.46 Intramolecular Pauson-Khand reaction in scCO₂.

Scheme 5.47 Intermolecular Pauson-Khand reaction in scCO₂.

Processos catalisados por ácido em CO₂-sc

 CO_2 -sc – T=250°C, P = 20MPa, 2:1 mesitileno:propanol, fluxo 0,60 g/min 42% conversão – único produto.

Processos catalisados por ácido em CO₂-sc

Scheme 5.57 Acid-catalyzed etherification in scCO₂.