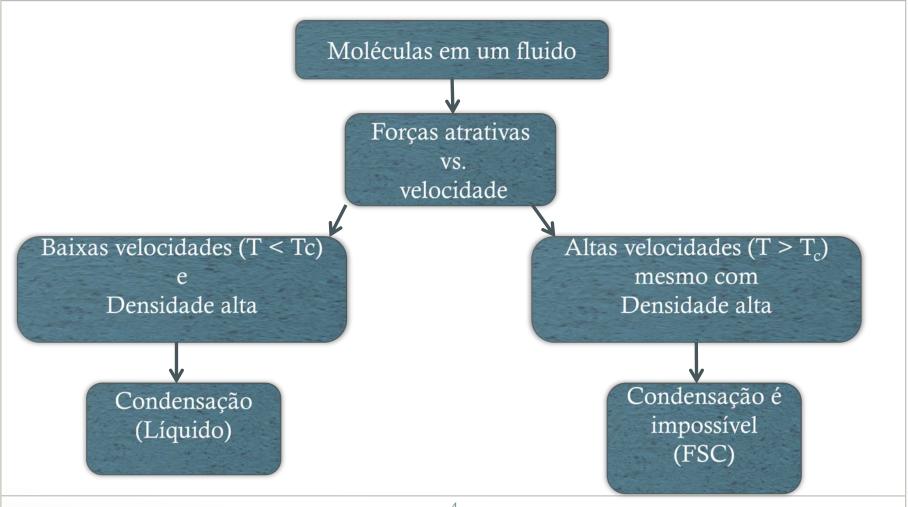


QFL5931/MPT6009 – Química Verde

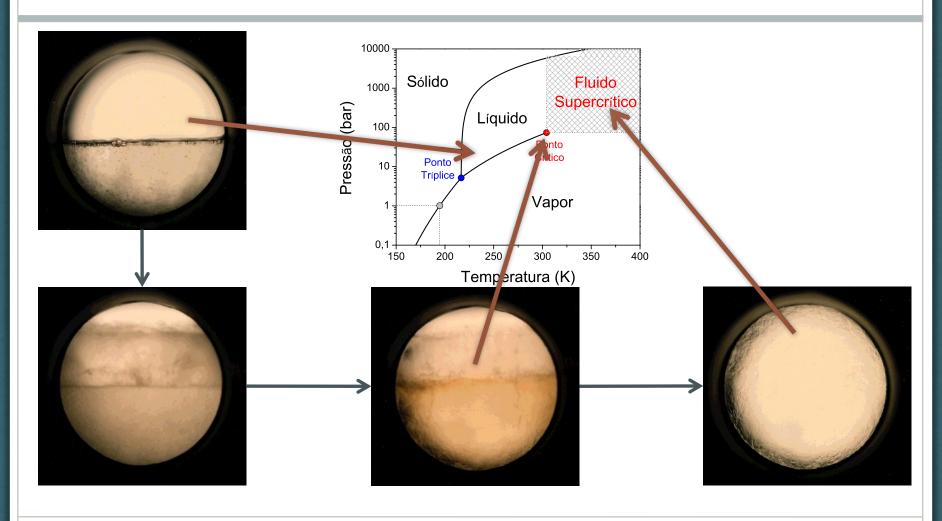
Fluidos Supercríticos — Aula 3

Prof. Dr. Leandro H. Andrade (leandroh@iq.usp.br)

Prof. Dr. Reinaldo C. Bazito (bazito@iq.usp.br)

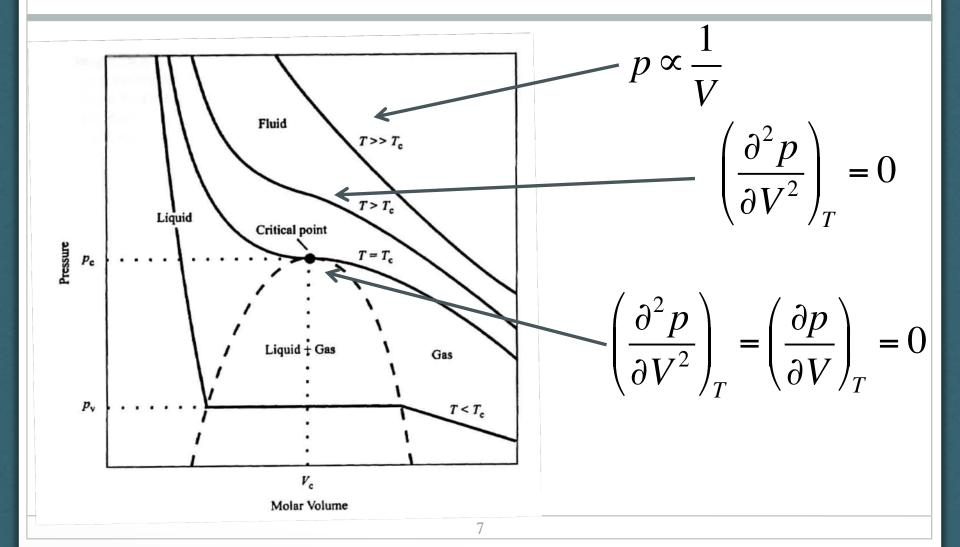

Prof. Dr. Renato S. Freire (rsfreire@iq.usp.br)

Tópicos


- Propriedades físicas e químicas do CO2 supercrítico;
- Reatividade em CO2 supercrítico:
 - fases líquidas expandidas em catálise;
 - química orgânica sintética;
 - catálise heterogênea;
 - catálise enzimática;
 - polimerização;
 - síntese de nanomateriais.

Propriedades Físicas Básicas dos FSC

O ponto crítico: visão molecular



Ponto crítico para o CO₂-sc

Comportamento de Pressão – Volume – Temperatura para uma Substância Pura

Isotermas p vs. V_{molar}

Compressibilidade

• Compressibilidade isotérmica (κ_r) = tende a infinito no ponto crítico e é alta na região super ou subcrítica

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

• Fator de compressão (Z)

$$Z = \frac{pV}{RT}$$

$$Z_c = \frac{p_c V_c}{RT_c} \cong 0,28$$

Equações de Estado

Funções Termodinâmicas de Estado

- Pressão (p)
- Volume molar (V)
- Temperatura (T)
- Compressibilidade isotérmica (κ_T)
- Fator de compressão (Z)
- Energia interna (U)
- Entalpia (H)

- Capacidade calorífica a V constante (C_V)
- Capacidade calorífica a p constante (C_p)
- Entropia (S)
- Função de Helmholtz (A)
- Função de Gibbs (G)

Equação de Estado

- O estado de um sistema em equilíbrio é definido por quaisquer dois desses valores;
- Comumente se usa o par $Ve\ T$ ou o par $pe\ T$
- Se o par de funções de estado é definido, as demais funções também o são.
- Pode-se, em princípio, escrever relações entre as funções, ou equações de estado, por exemplo:

$$p \equiv p_{(V,T)}$$

Equação de Estado

- Podem ser simples (Z = 1, equação para gases ideais);
- Podem ser complexas, obtidas pelo ajuste de dados experimentais

$$A(\rho,T)/(RT) = \phi(\delta,\tau) = \phi^{o}(\delta,\tau) + \phi^{r}(\delta,\tau)$$

where
$$\delta = \rho/\rho_c$$
 and $\tau = T_c/T$ with $\rho_c = 467.6$ kg/m³ and $T_c = 304.1282$ K.

Span, R.; Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509-1596.

Equação de Estado

$$A(\rho, T)/(RT) = \phi(\delta, \tau) = \phi^{o}(\delta, \tau) + \phi^{r}(\delta, \tau)$$

$$\phi^{r} = \sum_{i=1}^{4} \sum_{j=0}^{20} n_{i,j} \delta^{i} \tau^{j/4} + \sum_{i=1}^{6} \sum_{j=0}^{10} n_{i,j} \delta^{i} \tau^{j/2} e^{-\delta} + \sum_{i=1}^{8} \sum_{j=0}^{8} n_{i,j} \delta^{i} \tau^{j} e^{-\delta^{2}} + \sum_{i=1}^{8} \sum_{j=0}^{16} n_{i,j} \delta^{i} \tau^{j} e^{-\delta^{3}} + \sum_{i=1}^{10} \sum_{j=0}^{12} n_{i,j} \delta^{i} \tau^{2j} e^{-\delta^{4}} + \sum_{i=1}^{10} \sum_{j=0}^{16} n_{i,j} \delta^{i} \tau^{2j} e^{-\delta^{5}} + \sum_{i=8}^{15} \sum_{j=5}^{16} n_{i,j} \delta^{i} \tau^{2j} e^{-\delta^{6}} + \sum_{i=1}^{8} n_{i} \delta^{d_{i}} \tau^{i} e^{-\alpha_{i}(\delta - \epsilon_{i})^{2} - \beta_{i}(\tau - \gamma_{i})^{2}} + \sum_{i=1}^{3} \sum_{j=1}^{2} \sum_{k=1}^{3} \sum_{l=1}^{3} \sum_{m=1}^{3} n_{i,j,k,l} \Delta^{b_{j}} \delta^{e^{-C_{l}(\delta - 1)^{2} - D_{m}(\tau - 1)^{2}}$$

$$(6.4)$$

with $\Delta = \{(1-\tau) + A[(\delta-1)^2]^{1/(2\beta)}\}^2 + B_k[(\delta-1)^2]^{a_i}$

TABLE 30. Parameters of the nonanalytic terms in the bank of terms

i,j,k,l,m	a_i	b_j	B_k	C_{I}	D_m	A^{a}	β^{a}
ı	3.00	0.875	0.30	10.00	225.0	0.700	0.300
2	3.50	0.925	1.00	12.50	250.0		
3	4.00			15.00	275.0		

^aPredetermined from a simultaneous fit to saturated liquid and vapor densities in the critical region.

Equações Viriais de Estado

$$p \equiv p_{(V,T)} \qquad A(T) = 1 \qquad \text{Interação termolecular}$$

$$\frac{P}{RT} = \frac{A(T)}{V} + \frac{B(T)}{V^2} + \frac{C(T)}{V^3} + \frac{D(T)}{V^4} \cdots$$

Gases diluídos

$$\frac{p}{RT} \approx \frac{1}{V} + \frac{B(T)}{V^2}$$
 $B(T) = -2\pi N_A \int_0^\infty r^2 \left\{ \exp[-V(r)/k_B T] - 1 \right\} dr$

B(T) < 0 a baixas temperaturas (atração > repulsão) B(T) > 0 a altas temperaturas (atração < repulsão)

Equação de Estado de van der Waals

• Para um único componente:

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

• a e b são constantes (parâmetros de van der Waals). B é o volume excluído e a, um parâmetro de atração.

$$p_{\rm c} = a/27b^2$$
; $V_{\rm c} = 3b$ $T_{\rm c} = 8a/27Rb$

Equação de Estado de Peng-Robinson

• Para um único componente:

$$p = \frac{RT}{V - b} - \frac{a_{(T)}}{V^2 + 2Vb - b^2}$$

• a passa a ser função de T.

$$a_{(T_c)} = \frac{0.45724R^2T_c^2}{p_c}$$
 $b = \frac{0.07780RT_c}{p_c}$

$$V_c = 3,9514b$$
 $Z_c = 0,3074$
11% de discrepância para CO₂

Misturas Binárias: Comportamento de Fases

Dois tipos de misturas binárias

Componente 1 = fluido / Componente 2 = substância qualquer

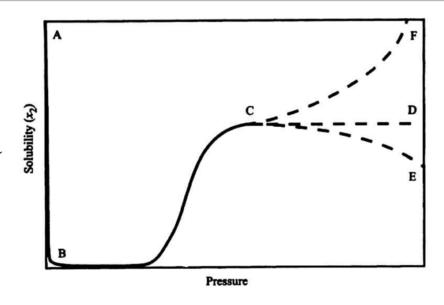
• *Tipo 1* – componente 2 tem massa molar (MM) e temperatura crítica (T_c) próximas das do componente 1. O componente 2 é um "*agente modificador*" ou um *gás*.

• $Tipo\ 2$ – componente 2 tem massa molar (MM) e temperatura crítica (T_c) muito maiores que as do componente 1. O componente 2 é um "soluto".

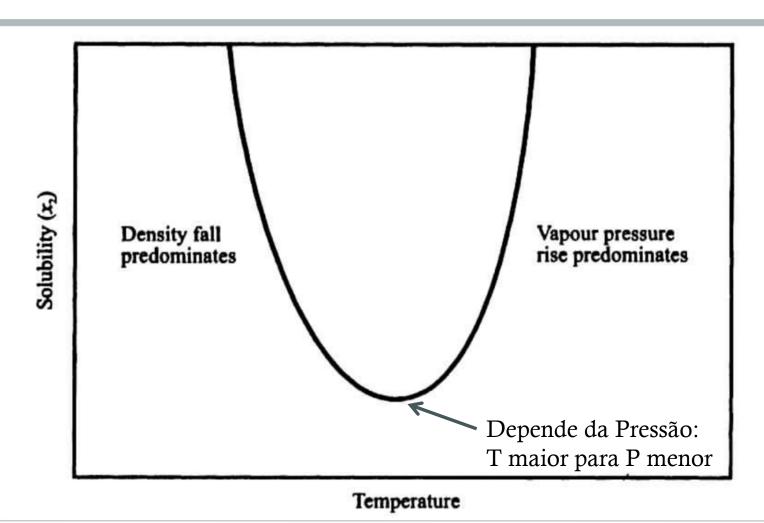
Modificadores

Substance	T _c (K)	$P_{\rm c}$ (bar)	ω	k ₁₂
Methanol	513	81	0.556	0.110
Ethanol	514	61	0.644	
1-Propanol	537	51	0.623	
2-Propanol	508	48	0.665	
2-Butanol	536	42	0.557	
Acetone	508	47	0.304	
Acetonitrile	546	48	0.327	
Acetic acid	593	58	0.447	
Diethyl ether	467	36	0.281	0.047
Dichloromethane	510	63	0.199	
Chloroform	536	54	0.218	
Hexane	508	30	0.299	0.110
Benzene	562	49	0.212	0.077
Toluene	592	41	0.263	0.106
Tributyl phosphate	742	24	0.850	

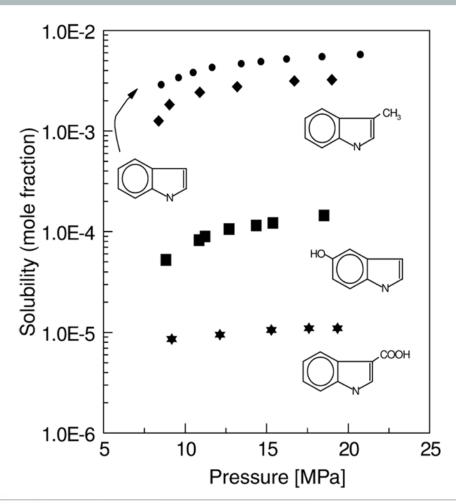
Duas Classes de Comportamento de Fase


• Classe 1 – para as misturas do Tipo 1 (componente 2 = gás ou agente modificador). Há uma linha crítica contínua entre P_{c1} e P_{c2} .

• Classe 2 – para as misturas do Tipo 2 (componente 2 = soluto). A linha crítica não é contínua entre P_{c1} e P_{c2} .


Misturas Binárias: Solubilidade de Solutos não voláteis

Solubilidade vs. Pressão em FSC


- Linha AB em baixas pressões, solubilidade cai;
- *Linha BC* com aumento da pressão, solubilidade vai aumentando (solvatação);
- Linha CD, CE ou CF dependem do balanço repulsão-atração;
- *Linha CF* presença de linha crítica.

Solubilidade vs. Temperatura em FSC

Efeito de Grupos Funcionais na Solubilidade em sc-CO₂

 Grupos polares reduzem solubilidade