Capítulo 1

Notação e funções

1.1 Números reais

- Números naturais (ℕ): São todos os números inteiros positivos, incluindo o zero. Isto é: ℕ
 = {0,1,2,3,4,5,6,7,8,9,10,...}.
- Números inteiros (\mathbb{Z}): São todos os números que pertencem ao conjunto dos Naturais mais os seus respectivos opostos (negativos). Isto é: $\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$.
- Números racionais (\mathbb{Q}): São todos os números da forma $\frac{a}{b}$, sendo a e b inteiros e $b \neq 0$. Isto é:

$$\mathbb{Q} = \{ \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \}$$

Os números naturais (\mathbb{N}) são um subconjunto dos números inteiros (\mathbb{Z}) que, por sua vez, são um subconjunto dos números racionais (\mathbb{Q}). Assim, todo número natural também é um número inteiro; e todo número inteiro também é um número racional.

- Números irracionais: São os números que não podem ser escritos por meio de uma fração de dois inteiros. Por exemplo, $\sqrt{2}=1,4142...$ é um número decimal infinito não periódico. Outro exemplo é a constante $\pi=3.1415...$
- Números reais (\mathbb{R}): É formado pelo conjunto dos números racionais e irracionais. Em outras palavras, \mathbb{R} é o conjunto de todos os números reais entre $-\infty$ e ∞ (reta real).

 \mathbb{R}^n é um espaço com n dimensões. Exemplos: \mathbb{R}^2 é um plano de duas dimensões; \mathbb{R}^3 é um espaço tridimensional.

1.2 Intervalos

Sejam a e b dois números reais, com a < b. Um intervalo em \mathbb{R} é um subconjunto de \mathbb{R} que tem uma das seguintes formas:

- $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$, x é um número real maior ou igual a a e menor ou igual a b.
- $]a,b[=\{x\in\mathbb{R}|a< x< b\}$, x é um número real maior do que a e menor do que b.
- $|a,b| = \{x \in \mathbb{R} | a < x \le b\}$, x é um número real maior do que a e menor ou igual a b.
- $[a,b] = \{x \in \mathbb{R} | a \le x < b\}$, x é um número real maior ou igual a a e menor do que b.
- $]-\infty,a[=\{x\in\mathbb{R}|x< a\}$, x é um número real menor do que a.
-] $-\infty,a]=\{x\in\mathbb{R}|x\leq a\}$, x é um número real menor ou igual a a.
- $[a, +\infty[=\{x \in \mathbb{R} | x \geq a\}, x \text{ \'e um n\'umero real maior ou igual a } a]$
- $|a, +\infty| = \{x \in \mathbb{R} | x > a\}$, x é um número real maior do que a.
- $]-\infty,+\infty[=\mathbb{R}$, x é um número real.

Exemplo 1. Resolva a inequação 5x + 3 < 2x + 7.

$$5x + 3 < 2x + 7 \iff 5x < 2x + 4$$

$$\iff 3x < 4$$

$$\iff x < \frac{4}{3}$$

Assim, $\{x \in \mathbb{R} | x < \frac{4}{3}\}$ é o conjunto das soluções da inequação.

Exemplo 2. Expresse o conjunto $\{x \in \mathbb{R} | 2x - 3 < x + 1\}$ em notação de intervalo.

$$2x - 3 < x + 1 \iff x < 4$$

Assim,
$$\{x \in \mathbb{R} | 2x - 3 < x + 1\} =]-\infty, 4[$$

1.3 Funções

Definição: Dados A e $B \subseteq \mathbb{R}$, uma função f de A em B é designada por $f: A \to B$ e é uma regra que associa a cada elemento de $x \in A$ um único elemento $y \in B$. Costumamos escrever y = f(x) e dizemos que y é o valor de f em x.

O conjunto A chama-se domínio da função f; o conjunto B chama-se contra-domínio de f. A imagem da função f é o conjunto definido por $Im_f = \{y \in \mathbb{R} : \exists x \in A \ e \ y = f(x)\}.$

Exemplo 1: Dada a função $f(x) = x^2$ e os conjuntos $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 4, 9, 16, 25, 26, 27\}$, temos:

\boldsymbol{x}	f(x)
1	1
2	4
3	9
4	16
5	25

- **Domínio** de f é representado por todos os elementos do conjunto $A = \{1, 2, 3, 4, 5\}.$
- Contra-domínio de f é representado por todos os elementos do conjunto $B = \{1, 4, 9, 16, 25, 26, 27\}$.
- Imagem de f é representada pelos elementos do contra-domínio (B) que possuem correspondência com o domínio (A). Isto é: $Im_f = \{1, 4, 9, 16, 25\}$.

Quando o domínio da função não é explicitado convenciona-se o maior conjunto em que a regra é aplicável. Por exemplo, o domínio da função $g(x)=\sqrt{x}$ é $D_g=[0,+\infty[$.

Definição: Seja $f:A\to B$ uma função. O conjunto $G_f=\{(x,f(x))|x\in A\}$ ou $G_f=\{(x,y)\in\mathbb{R}^2:x\in A\quad e\quad y=f(x)\}$ denomina-se *gráfico* de f. Assim, o gráfico de f é um subconjunto de todos os pares ordenador(x,y) de números reais.

Exemplo 2: Seja $f(x) = x^3$. Tem-se:

- a. $D_f = \mathbb{R}$.
- b. O valor que f assume em x é $f(x)=x^3$. Esta função associa a cada real x o número real $f(x)=x^3$.
- c. $f(-1) = (-1)^3 = -1$.
- d. $G_f = \{(x, y)|y = x^3, x \in \mathbb{R}\}.$

Exemplo 3: Considere a função g dada por $y = \frac{1}{x}$. Tem-se:

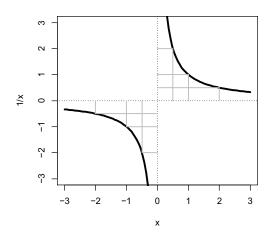
- a. $D_g = \{x \in \mathbb{R} | x \neq 0\}.$
- b. Esta função associa a cada $x \neq 0$ o real $g(x) = \frac{1}{x}$.

g(x)
$-\frac{1}{2}$
-1
-2
2
1
$\frac{1}{2}$

c.
$$g(x+h) = \frac{1}{x+h} \forall x \neq -h$$
.

d. Gráfico de g

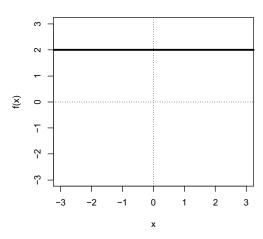
Olhando para x>0: quando x aumenta, $y=\frac{1}{x}$ se aproxima de 0; quando x se aproxima de 0, $y=\frac{1}{x}$ se torna cada vez maior. Raciocínio semelhante segue para x<0.



1.4 Alguns tipos de funções

• Função constante: Uma função y=f(x), $x\in A$, dada por f(x)=k, k constante, denominase função constante.

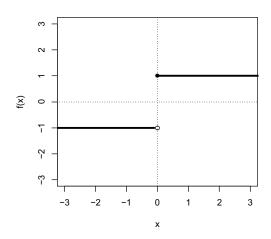
Exemplo 1: f(x) = 2.



- a. $D_f = \mathbb{R}$.
- b. $G_f = \{(x, f(x)) | x \in \mathbb{R}\} = \{(x, 2) | x \in \mathbb{R}\}.$

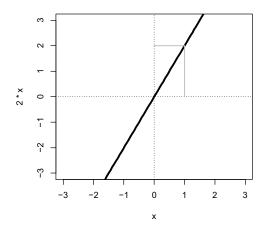
Exemplo 2:
$$f(x) = \begin{cases} 1, & se \quad x \geq 0 \\ -1, & se \quad x < 0 \end{cases}$$

- a. $D_f = \mathbb{R}$.
- b. Gráfico de f



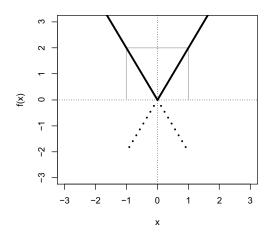
• Função linear: Uma função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = ax, a constante, denomina-se função linear. Seu gráfico é a reta que passa pelos pontos (0,0) e (1,a).

Exemplo 3: f(x) = 2x.



Exemplo 4: f(x) = |2x|.

Eliminando o módulo temos:
$$f(x) = \begin{cases} 2x, & se \quad x \geq 0 \\ -2x, & se \quad x < 0 \end{cases}$$

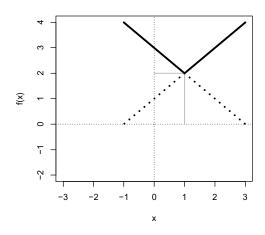


• Função afim: Uma função $f: \mathbb{R} \to \mathbb{R}$ dada por y = ax + b, a e b constantes, denomina-se função afim. Seu gráfico é a reta que passa pelo ponto (0,b) e é paralela à reta y = ax.

Exemplo 5:
$$f(x) = |x - 1| + 2$$
.

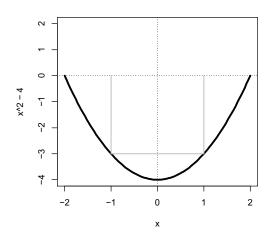
Eliminando o módulo temos:

$$f(x) = \begin{cases} x - 1 + 2, & se \quad x \ge 1 \\ -(x - 1) + 2, & se \quad x < 1 \end{cases} \iff f(x) = \begin{cases} x + 1, & se \quad x \ge 1 \\ -x + 3, & se \quad x < 1 \end{cases}$$



• Função polinomial: Uma função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, onde $a_0 \neq 0$, $a_1, a_2, ..., a_n$ são números reais fixos, denomina-se função polinomial de grau n $(n \in \mathbb{N})$.

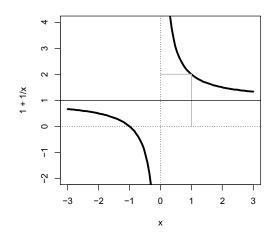
Exemplo 6: $f(x) = x^2 - 4$ é uma função polinomial de grau 2 e seu gráfico é a parábola.



• Função racional:Uma função racional f é uma função dada por $f(x)=\frac{p(x)}{q(x)}$, onde p e q são duas funções polinomiais. O domínio de f é o conjunto $\{x\in\mathbb{R}|q(x)\neq 0\}$.

Exemplo 7: $f(x) = \frac{x+1}{x}$.

Manipulando temos: $\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x}$. A função f está definida para todo $x \neq 0$. O gráfico de f é o gráfico de $y = \frac{1}{x}$ transladando-o uma unidade para cima.



1.5 Operações com funções

Sejam f e g duas funções tais que $D_f \cap D_g \neq \emptyset$. Definimos:

- a. A função f+g dada por (f+g)(x)=f(x)+g(x) denomina-se soma de f e g. O dominínio de f+g é $D_f\cap D_g$. Observe que f+g é uma notação para indicar a função dada por y=f(x)+g(x).
- b. A função $f\cdot g$ dada por $(f\cdot g)(x)=f(x)\cdot g(x)$ denomina-se produto de f e g. O domínio de $f\cdot g$ é $D_f\cap D_g$.
- c. A função $\frac{f}{g}$ dada por $\frac{f}{g}(x)=\frac{f(x)}{g(x)}$ denomina-se quociente de f e g. O domínio de $\frac{f}{g}$ é $\{x\in D_f\cap D_g|g(x)\neq 0\}.$
- d. A função kf, k constante, dada por (kf)(x)=kf(x) é o produto de f pela constante k. O domínio de kf é D_f .

Exemplo 1:Sejam $f(x) = \sqrt{7-x}$ e $g(x) = \sqrt{x-2}$.

a.
$$(f+g)(x)=\sqrt{7-x}+\sqrt{x-2}$$
. O domínio de $f+g$ é $[2,7]=D_f\cap D_g$.

b.
$$(f \cdot g)(x) = \sqrt{7-x} \cdot \sqrt{x-2}$$
. O domínio de $f \cdot g$ é $[2,7] = D_f \cap D_g$.

c.
$$\frac{f}{g}(x) = \frac{\sqrt{7-x}}{\sqrt{x-2}}$$
. O domínio de $\frac{f}{g}$ é $x \in]2,7]$.

d.
$$kf(x) = k\sqrt{7-x}$$
. O domínio de $kf(x)$ é $D_f =]-\infty, 7]$.

Sendo f uma função, definimos a imagem de f por $Im_f = \{f(x) | x \in D_f\}$.

Definição (de função composta): Sejam f e g duas funções tais que $Im_f \subset D_g$. A função dada por g = g(f(x)), $g \in D_f$ denomina-se função composta de g e g. É usual a notação $g \circ f$ para indicar a composta de g e g.

Assim,
$$(g \circ f)(x) = g(f(x)), x \in D_f$$
.

Observe que $g \circ f$ tem o mesmo domínio que f.

Exemplo 2: Sejam $f \in g$ dadas por f(x) = 2x + 1 e $g(x) = x^2 + 3x$. Determine $g \circ f \in f \circ g$.

$$(g \circ f)(x) = g(f(x))$$

= $[f(x)]^2 + 3[f(x)]$
= $(2x + 1)^2 + 3(2x + 1), x \in \mathbb{R} = D_f$.

$$(f \circ g)(x) = f(g(x))$$

= $f(x^2 + 3x)$
= $2(x^2 + 3x) + 1, x \in \mathbb{R} = D_q$.

1.6 Logaritmo e exponencial

 Exponencial: A função exponencial pode ser pensada como uma generalização do processo de potenciação para expoentes não inteiros. Quando n é um número natural maior do que 1, a potência aⁿ indica a multiplicação da base a por ela mesma n vezes. Isto é:

$$a^n = \underbrace{a \times \cdots \times a}_{n \text{ Verses}}$$

Propriedades:

a. $x^m \times x^n = x^{x+n}$ (por exemplo, $x^3 \times x^4 = x^7$).

$$Demonstração: x^m \times x^n = \underbrace{(x \times \cdots \times x)}_{m \quad \text{vezes}} \underbrace{(x \times \cdots \times x)}_{n \quad \text{vezes}} = \underbrace{(x \times \cdots \times x)}_{m+n \quad \text{vezes}} = x^{m+n}$$

b. $\frac{x^m}{x^n} = x^{m-n}$ (por exemplo, $\frac{x^4}{x^3} = x$).

$$Demonstração: \ \underline{x^m}_{x^n} = \underbrace{\underbrace{x \times \cdots \times x}_{n \text{ vezes}}}_{n \text{ vezes}} = \underbrace{x \times \cdots \times x}_{m-n \text{ vezes}} = x^{m-n}$$

c. $x^{-n} = \frac{1}{x^n}$ (por exemplo, $x^{-3} = \frac{1}{x^3}$).

d. $x^0 = 1, \forall x \neq 0$.

e. $x^{\frac{n}{m}} = \sqrt[m]{x^n}$ (por exemplo, $x^{\frac{5}{4}} = \sqrt[4]{x^5}$).

f. $(x^m)^n = x^{mn}$ (por exemplo, $(x^2)^3 = x^{2\times 3} = x^6$).

g. $x^m \times y^m = (xy)^m$ (por exemplo, $2^2 \times 3^2 = (2 \times 3)^2 = 6^2 = 36$).

• Logaritmo: O logaritmo de um número positivo real x na base b, em que b é um número positivo real diferente de 1, é o expoente pelo qual b deve ser elevado para se chegar a x. Isto é, $y = b^x \iff x = \log_b(y)$. Por exemplo, $\log_{10}(1000) = 3$ porque $10^3 = 10 \times 10 \times 10 = 1000$.

O logaritmo natural (ou neperiano) tem a constante irracional $e \approx 2,718$ como base e é muito utilizado no cálculo diferencial.

Propriedades:

a.
$$\log_b(xy) = \log_b(x) + \log_b(y)$$
 porque $b^c \cdot b^d = b^{c+d}$.

- b. $\log_b(x^d) = d \log_b(x)$ porque $(b^c)^d = b^{cd}$.
- c. $\log_b(\frac{x}{u}) = \log_b(x) \log_b(y)$ porque $b^{c-d} = \frac{b^c}{b^d}$.
- d. $\log_b(\sqrt[y]{x}) = \frac{\log_b(x)}{y}$ porque $\sqrt[y]{x} = x^{\frac{1}{y}}$.
- e. $c\log_b(x) + d\log_b(y) = \log_b(x^cy^d)$ porque $\log_b(x^cy^d) = \log_b(x^c) + \log_b(y^d)$, onde b, x e y são números reais positivos e $b \neq 1$. Tanto c quanto d são números reais.
- f. $\log_b(1) = \log_b(e^0) = 0$

1.7 Somatório e produtório

 Somatório: Um somatório é um operador que nos permite representar somas. Por exemplo, para representarmos a soma dos 3 primeiros números naturais, excluindo o zero, podemos escrever:

$$\sum_{i=1}^{3} i = 1 + 2 + 3 = 6$$

Propriedades: Sejam $i, n \in \mathbb{N}$, tais que i < n e $x_i, y_i \in \mathbb{R}$, para $i = 1, 2, \dots, n$ e c uma constante real.

a.
$$\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$$
.

Demonstração:

$$\sum_{i=1}^{n} cx_i = cx_1 + cx_2 + \dots + cx_n$$
$$= c(x_1 + x_2 + \dots + x_n)$$
$$= c\sum_{i=1}^{n} x_i$$

b.
$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$
.

Demonstração:

$$\sum_{i=1}^{n} (x_i + y_i) = (x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= x_1 + y_1 + x_2 + y_2 + \dots + x_n + y_n$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$

$$= \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

c.
$$\sum_{i=1}^{n} c = nc.$$

Demonstração:

$$\sum_{i=1}^{n} c = \underbrace{c + c + \dots + c}_{n \text{ vezes}} = nc$$

• **Produtório**: De forma análoga ao somatório, representaremos o produto de n termos por:

$$\prod_{i=1}^{n} i = 1 \times 2 \times \cdots \times n$$

Propriedades:

a.
$$\prod_{i=1}^{n} cx_i = c^n \prod_{i=1}^{n} x_i$$
.

Demonstração:

$$\prod_{i=1}^{n} cx_{i} = (cx_{1}) \times (cx_{2}) \times \cdots \times (cx_{n})$$

$$= \underbrace{c \times c \times \cdots \times c}_{n \text{ vezes}} \times (x_{1} \times x_{2} \times \cdots \times x_{n})$$

$$= c^{n} \prod_{i=1}^{n} x_{i}$$

b.
$$\prod_{i=1}^{n} x_i y_i = \prod_{i=1}^{n} x_i \prod_{i=1}^{n} y_i$$
.

Demonstração:

$$\prod_{i=1}^{n} x_i y_i = (x_1 y_1) \times (x_2 y_2) \times \dots \times (x_n y_n)$$

$$= (x_1 \times x_2 \times \dots \times x_n) \times (y_1 \times y_2 \times \dots \times y_n)$$

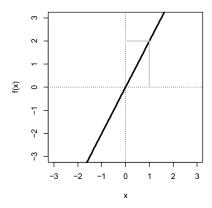
$$= \prod_{i=1}^{n} x_i \prod_{i=1}^{n} y_i$$

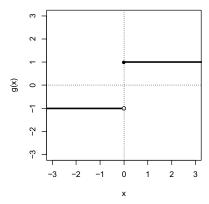
c.
$$\prod_{i=1}^{n} c = c^{n}$$
.

Demonstração:
$$\prod_{i=1}^n c = \underbrace{c \times c \times \cdots \times c}_{n \text{ vezes}} = c^n$$

1.8 Limite e continuidade

Intuitivamente, uma função contínua em um ponto p de seu domínio é uma função cujo gráfico não apresenta um "salto"em p.





O gráfico da esquerda (f(x)=2x) não apresenta um "salto"em nenhum ponto. Em particular, à medida que x se aproxima de 1, seja pela esquerda, seja pela direita, o valore de f(x) se aproxima de f(1)=2. Mas o mesmo não acontece com a função g(x) no ponto 0 (gráfico da direita). Neste ponto o gráfico de g apresenta um "salto"e, portanto, g não é contínua em g. Mas é contínua para g0.

Intuitivamente, dizer que o limite de f(x), quando x tende a p, é igual a L que, simbolicamente, se escreve $\lim_{x\to p} f(x) = L$ significa que quando x tende a p, f(x) tende a L. No exemplo da função f(x) = 2x temos que quando x se aproxima de 1, f(x) tende a 2.

Exemplo 1: Calcule $\lim_{x\to 1} (x+1)$.

x	f(x) = x + 1	x	f(x) = x + 1
2	3	0	1
1,5	2,5	0,5	1,5
1,1	2,1	0,9	1,9
1,01	2,01	0,99	1,99
1,001	2,001	0,999	1,999
			• • •
1	2	1	2

Se f estiver definida em p e for contínua em p, então $\lim_{x\to p}f(x)=f(p)$ e reciprocamente. Isto é:

f contínua em p
$$\iff \lim_{x \to p} f(x) = f(p)$$

Propriedades:

a.
$$\lim_{x \to p} [f(x) + g(x)] = \lim_{x \to p} f(x) + \lim_{x \to p} g(x) = f(p) + g(p)$$
.

b.
$$\lim_{x\to p} kf(x) = k \lim_{x\to p} f(x) = kf(p)$$
.

c.
$$\lim_{x\to p} f(x)g(x) = \lim_{x\to p} f(x) \lim_{x\to p} g(x) = f(p)g(p)$$
.

d.
$$\lim_{x\to p} \frac{f(x)}{g(x)} = \frac{f(p)}{g(p)}$$
, para $\lim_{x\to p} g(x) \neq 0$.

Exemplo 2 (limites laterais): Calcule $\lim_{x\to 1^+} f(x)$ e $\lim_{x\to 1^-} f(x)$, sendo

$$f(x) = \begin{cases} x^2, & se \quad x < 1 \\ 2x, & se \quad x > 1 \end{cases}$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1} 2x = 2 e$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x^{2} = 1$$

Vejamos, na medida em que x se aproxima de 1 pela direita, f(x) tende a 2. Mas quando nos aproximamos de 1 pela esquerda, f(x) tende a 1.

Teorema:

$$\lim_{x \to p} f(x) = L \iff \begin{cases} \exists \lim_{x \to p^+} f(x), \lim_{x \to p^-} f(x) & e \\ \lim_{x \to p^+} f(x) = \lim_{x \to p^-} f(x) = L \end{cases}$$

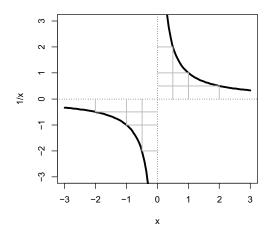
Exemplo 3: Seja $f(x) = \begin{cases} 2x, & se \quad x \leq 1 \\ 3, & se \quad x > 1 \end{cases}$. Calcule $\lim_{x \to 1^-} f(x)$ e $\lim_{x \to 1^+} f(x)$. f é contínua?

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 2x = 2$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1} 3 = 3$$

$$\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \Longrightarrow \not\exists \lim_{x \to 1} f(x) \Longrightarrow$$
 f não é contínua

Exemplo 4 (limites infinitos e limites no infinito): Seja $f(x) = \frac{1}{x}$. Calcule $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$, $\lim_{x \to 0^+} f(x)$ e $\lim_{x \to 0^-} f(x)$.



$$\lim_{x \to +\infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to 0^-} f(x) = -\infty$$

Exemplo 5 (o limite mais importante): Seja $f(x) = x^2$. Calcule $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

Temos
$$\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^2-x^2}{h} = \frac{(x^2+2xh+h^2)-x^2}{h} = \frac{2xh+h^2}{h} = 2x+h$$
, para $h \neq 0$.

Segue que $\lim_{x\to 0} (2x+h) = 2x$.