CHOROCHRONOS Midter Review

SCC0602 - Algoritmos e
Estruturas de Dados I

il

Binary Search Trees

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

i Today

= Search
= Linear search
= Binary Search Trees
= Tree traversals (using divide-and-conquer)
= Searching
= Insertion
= Deletion

© André de Carvalho - ICMC/USP 2

i Introduction

= Search is frequently in several applications

= Games
= Best players in checker and chess are search
algorithms
= Minimum path
= Traveller salesman problem are solved by search
algorithms
= Search engines
= Search algorithms can find the most relevant sites
= Dictionaries

© André de Carvalho - ICMC/USP 3

i Chess

= In 1997, the current world champion Gary
Kasparov played 6 games against Deep Blue, a
program written by IBM researchers
= Deep Blue won 3, lost 2, tied 1
= Searched 126.000.000 nodes per sec

= Generated 30 billion positions per
reaching depth 14 routinely

© André de Carvalho - ICMC/USP 4

i Dictionaries

= Dictionary Abstract data type (ADT)

= Dynamic set with methods:
= Search(S, k) — a gquery method that returns a
pointer x to an element, where x.key = k
= Insert(S, x) — a modifier method that adds
the element pointed to by x to S

= Delete(S, x) — a modifier method that
removes the element pointed to by x from S

= An element has a key part and a satellite
data part

© André de Carvalho - ICMC/USP 5

i Ordered Dictionaries

= Besides the previous functions, it should also
support the priority-queue-type operations
= Min(S)
= Max(S)

= It would be useful to support
= Predecessor(S, k)
= Successor(S, k)

= These operations require the keys to be
comparable

© André de Carvalho - ICMC/USP 6

Timos Sellis

CHOROCHRONOS Midter Review

i Ordered Dictionaries i Sorted arrays

= Basic data structures for ordered = O(n) insert/delete:
dictionaries
= Sorted linked list 1 | 2 I 314 |4-5 718
HEAD 8] = O(lg(n)) search, O(1) select:
= Sorted array 1|2|3 4|5 ~Ts

I 1 I 2I3I4I5 I 7I8I \J_ﬁSearch: Binary search to see if 3 is in A
1 2 3 4 5 6 7

Select: Third smallest is A[3]

© André de Carvalho - ICMC/USP 7 © André de Carvalho - ICMC/USP 8

i Linked lists $ Search complexity
= O(1) insert/delete —
Trees

= Assuming we have a pointer to the location of
the insert/delete operation:

s=o— 1 21131415121 18]
O(lg(n)) O(n) O(lg(n))
= O(n) search/select: 6]
5 8 o) oW olgm)
N AN NN
© André de Carvalho - ICMC/USP 9 © André de Carvalho - ICMC/USP 10

i Binary Search Trees (BSTs) i Binary Tree ADT

= Each tree node has: = BinTree ADT: Root
= Satellite data: application- = Accessor functions:
based information stored in « key():int
each node P « parent(): BinTree
= key: identifying field f key | Satellite i = left(): BinTree
dhitg . right(): BinTree

allowing element ordering

left. pointer to left child

(may be NULL)

right. pointer to right child

(may be NULL)

= p: pointer to parent node
(NULL for the root)

© André de Carvalho - ICMC/USP 11 © André de Carvalho - ICMC/USP 12

= Modification procedures:
= setKey(k:int)
= setParent(T:BinTree)
« setLeft(T: BinTree)
« setRight(T:BinTree)

Timos Sellis

CHOROCHRONOS Midter Review

i Binary Search Trees (BSTs)

= A binary tree T in which:
= Each internal node stores an item (4, €) of a dictionary
= Keys stored at nodes in the left subtree of vare
smaller than or equal to &
= keys stored at nodes in the right subtree of vare
larger than or equal to £
= E.g.: BST for the sequence 2,3,5,5,7,8

) ()
a /Q\(\3}\/‘ \3\

2 (s

v 2o {
N 2 2 { \’Hx

© André de Carvalho - ICMC/USP (5) 13

i Tree Walks

= Allow print the Keys in a BST

= E.g.: inorder tree traversal
= Key of each node is printed between keys in the left
and right subtree

InorderTreeWalk (x)
01 if x # NIL then

02 InorderTreeWalk (x.left())
03 print x.key ()
04 InorderTreeWalk (x.right())

» Divide-and-conquer algorithm
= Prints elements in monotonically increasing order
= Running time O(n)

© André de Carvalho - ICMC/USP 14

i Inorder Tree Walks

= Create a projection of the BST nodes onto
a 1-dimensional interval

© André de Carvalho - ICMC/USP 15

i Other Tree Walks

= Preorder tree walk

= Processes each node before processing its
children

= Postorder tree walk

= Processes each node after processing its
children

© André de Carvalho - ICMC/USP 16

i Divide-and-Conquer

= Natural approach for algorithms on trees
= Example: Find the height of the tree:
= If the tree is NIL the height is -1

= Else the height is the maximum of the heights
of the tree children + 1

© André de Carvalho - ICMC/USP 17

i Searching a BST

= To find an element with key kina tree 7
= Compare kwith T.key()
» If k< Tkey(), search for kin Tleft()
= Else search for kin T.right()

© André de Carvalho - ICMC/USP 18

Timos Sellis

CHOROCHRONOS Midter Review

i Pseudocode for BST Search

= Recursive version — divide-and-conquer algorithm

Search (T, k)

01 if T = NIL then return NIL

02 if k = T.key() then return T

03 if k < T.key()

04 then return Search(T.left(), k)
05 else return Search(T.right(), k)

= Iterative version

i Search Examples

= Search(7, 11)
®)

Search (T, k) 11
01 x « T
02 while x # NIL and k # x.key() do
03 if k < x.key()
04 then x <« x.left()
05 else x « x.right()
06 return x
© André de Carvalho - ICMC/USP 19 © André de Carvalho - ICMC/USP 20

* Search Examples (2)

= Search(7, 6)

© André de Carvalho - ICMC/USP 21

$ Search Examples 2

= Search(7, 6)

© André de Carvalho - ICMC/USP 22

i Analysis of Search

= Running time on tree of height #is O(A)

= After the insertion of n keys, the worst-case
search running time is O(n)

© André de Carvalho - ICMC/USP 23

* BST Minimum (Maximum)

= Find the minimum key in a tree rooted at x
(compare to a solution for heaps)

TreeMinimum (x)

01 while x.left() # NIL do
02 X « x.left()

03 return x

= Running time (/)
= Proportional to the height of the tree

© André de Carvalho - ICMC/USP 24

Timos Sellis

CHOROCHRONOS Midter Review

i Successor

= Given x, find the node with the smallest
key that is larger than x.key()

= There are two possible cases, depending
on the right subtree of x
= Case 1: the right subtree of x is nonempty
= Case 2: the right subtree of xis empty

© André de Carvalho - ICMC/USP 25

i Successor

= Case 1: the right subtree of x is nonempty
= Successor is the leftmost node in the right
subtree
= Why?
= Can be found by returning
TreeMinimum(x.right())

Successor

© André de Carvalho - ICMC/USP 26

i Successor (2)

= Case 2: the right subtree of xis empty
= Successor is the lowest ancestor of x whose
left child is also an ancestor of x
= Why?

© André de Carvalho - ICMC/USP 27

i Successor Pseudocode

TreeSuccessor (x)

01 if x.right() # NIL

02 then return TreeMinimum (x.right())
03 y ¢« x.parent()

04 while y # NIL and x = y.right()

05 X <y

06 y ¢« y.parent()

03 return y

= For a tree of height 4, the running time is

ah)

© André de Carvalho - ICMC/USP 28

i BST Insertion

= The basic idea is similar to searching

= Take an element (tree) z(whose left and right
children are NIL) and insert it into 7

= Find place in 7where zbelongs, as if
searching for z.key()), and add zthere

= The running on a tree of height Ais O(h)

© André de Carvalho - ICMC/USP 29

i BST Insertion Pseudo Code

Treelnsert (T, z)

01 y « NIL

02 x « T

03 while x # NIL

04 Yy ¢ X

05 if z.key() < x.key()

06 then x « x.left()

07 else x « x.right()

08 z.setParent(y)

09 if y # NIL

10 then if z.key() < z.key()
11 then y.setLeft(z)
12 else y.setRight(z)
13 else T < z

© André de Carvalho - ICMC/USP 30

Timos Sellis

CHOROCHRONOS Midter Review

i BST Insertion example

= Insert 8

© André de Carvalho - ICMC/USP

@ 09 0

i BST Insertion: Worst Case

= In what kind of sequence should the

insertions be made to produce a BST of
height r7?

© André de Carvalho - ICMC/USP

32

i BST Sorting

a list of nelements, A

TreeSort (A)

01 T « NIL

02 for i « 1 ton

03 TreeInsert (T, BinTree(A[1]))
04 InorderTreeWalk(T)

© André de Carvalho - ICMC/USP

= Use Treelnsert and InorderTreeWalk to sort

i BST Sorting example

= Sort the following numbers 51071318
= Build a binary search tree

- 3,
& N
®— . — @
i
= Call InorderTreeWalk SN
11357810 @ @
1 ®

© André de Carvalho - ICMC/USP 34

i Deletion

= Delete node xfrom a tree 7

= We can distinguish three cases
= x has no children
= x has one child
= x has two children

© André de Carvalho - ICMC/USP

i Deletion Case 1

= If x has no children, just remove x
/®\

— .

@

®
V\@)A/’X

© André de Carvalho - ICMC/USP

Timos Sellis

36

CHOROCHRONOS Midter Review

i Deletion Case 2

= If x has exactly one child, then to delete x,
simply make x.parent() point to that child

((1
"© André de Carvalho - ICMC/USP 37

i Deletion Case 3

= If xhas two children, then
to delete it we have to:
= Find its successor (or
predecessor) y
= Remove y

= Note that y has at most one
child
Why?

= Replace x with y

© André de Carvalho - ICMC/USP 38

Delete Pseudocode

TreeDelete (T, z)
01 if z.left() = NIL or z.right() = NIL

02
03
04

then y « z
else y <« TreeSuccessor (z)
if y.left() # NIL

05 then x « y.left()
06 else x « y.right()
07 if x # NIL

then x.setParent(y.parent())
if y.parent() = NIL
then T « x
else if y = y.parent() .left()
then y.parent().setLeft (x)
else y.parent() .setRight(x)
if vy # 2z
then z.setKey(y.key()) //copy all fileds of y
return y

© André de Carvalho - ICMC/USP

i Balanced Search Trees

= Problem: worst-case execution time for
dynamic set operations is ©(77)

= Solution: balanced search trees guarantee
small height!

. }\/ [:’2\\
o 0]
TN N N
(2) (5) 8 1)
2 3 5 e %
{5 8 |
—~
(s)
© André de Carvalho - ICMC/USP 40

i Next Lecture

= Hashing

© André de Carvalho - ICMC/USP

41

i Acknowledgement

= A large part of this material were adapted from
Simonas §altenis, Algorithms and Data Structures,
Aalborg University, Denmark

Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

George Bebis, Analysis of Algorithms

CS 477/677, University of Nevada, Reno

David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 42

Timos Sellis

CHOROCHRONOS Midter Review

i Questions

© André de Carvalho - ICMC/USP

43

Timos Sellis

