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i Today

= Search
= Linear search
= Binary Search Trees
= Tree traversals (using divide-and-conquer)
= Searching
= Insertion
= Deletion
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i Introduction

= Search is frequently in several applications

= Games
= Best players in checker and chess are search
algorithms
= Minimum path
= Traveller salesman problem are solved by search
algorithms
= Search engines
= Search algorithms can find the most relevant sites
= Dictionaries
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i Chess

= In 1997, the current world champion Gary
Kasparov played 6 games against Deep Blue, a
program written by IBM researchers
= Deep Blue won 3, lost 2, tied 1
= Searched 126.000.000 nodes per sec

= Generated 30 billion positions per
reaching depth 14 routinely
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i Dictionaries

= Dictionary Abstract data type (ADT)

= Dynamic set with methods:
= Search(S, k) — a gquery method that returns a
pointer x to an element, where x.key = k
= Insert(S, x) — a modifier method that adds
the element pointed to by x to S

= Delete(S, x) — a modifier method that
removes the element pointed to by x from S

= An element has a key part and a satellite
data part
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i Ordered Dictionaries

= Besides the previous functions, it should also
support the priority-queue-type operations
= Min(S)
= Max(S)

= It would be useful to support
= Predecessor(S, k)
= Successor(S, k)

= These operations require the keys to be
comparable
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i Ordered Dictionaries i Sorted arrays

= Basic data structures for ordered = O(n) insert/delete:
dictionaries
= Sorted linked list 1 | 2 I 314 |4-5 718
HEAD 8] = O(lg(n)) search, O(1) select:
= Sorted array 1|2|3 4|5 ~Ts

I 1 I 2I3I4I5 I 7I8I \J_ﬁSearch: Binary search to see if 3 is in A
1 2 3 4 5 6 7

Select: Third smallest is A[3]
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i Linked lists $ Search complexity
= O(1) insert/delete —
Trees

= Assuming we have a pointer to the location of
the insert/delete operation:

s=o— 1 21131415121 18]
O(lg(n)) O(n) O(lg(n))
= O(n) search/select: 6]
5 8 o) oW olgm)
N AN NN
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i Binary Search Trees (BSTs) i Binary Tree ADT

= Each tree node has: = BinTree ADT: Root
= Satellite data: application- = Accessor functions:
based information stored in « key():int
each node P « parent(): BinTree
= key: identifying field f key | Satellite i = left(): BinTree
dhitg . right(): BinTree

allowing element ordering

left. pointer to left child

(may be NULL)

right. pointer to right child

(may be NULL)

= p: pointer to parent node
(NULL for the root)
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= Modification procedures:
= setKey(k:int)
= setParent(T:BinTree)
« setLeft(T: BinTree)
« setRight(T:BinTree)
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i Binary Search Trees (BSTs)

= A binary tree T in which:
= Each internal node stores an item (4, €) of a dictionary
= Keys stored at nodes in the left subtree of vare
smaller than or equal to &
= keys stored at nodes in the right subtree of vare
larger than or equal to £
= E.g.: BST for the sequence 2,3,5,5,7,8

) ()
a /Q\( \3}\/‘ \3\

2 (s

v 2o {
N 2 2 { \’Hx
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i Tree Walks

= Allow print the Keys in a BST

= E.g.: inorder tree traversal
= Key of each node is printed between keys in the left
and right subtree

InorderTreeWalk (x)
01 if x # NIL then

02 InorderTreeWalk (x.left())
03 print x.key ()
04 InorderTreeWalk (x.right())

» Divide-and-conquer algorithm
= Prints elements in monotonically increasing order
= Running time O(n)
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i Inorder Tree Walks

= Create a projection of the BST nodes onto
a 1-dimensional interval
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i Other Tree Walks

= Preorder tree walk

= Processes each node before processing its
children

= Postorder tree walk

= Processes each node after processing its
children
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i Divide-and-Conquer

= Natural approach for algorithms on trees
= Example: Find the height of the tree:
= If the tree is NIL the height is -1

= Else the height is the maximum of the heights
of the tree children + 1
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i Searching a BST

= To find an element with key kina tree 7
= Compare kwith T.key()
» If k< Tkey(), search for kin Tleft()
= Else search for kin T.right()
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i Pseudocode for BST Search

= Recursive version — divide-and-conquer algorithm

Search (T, k)

01 if T = NIL then return NIL

02 if k = T.key() then return T

03 if k < T.key()

04 then return Search(T.left(), k)
05 else return Search(T.right(), k)

= Iterative version

i Search Examples

= Search(7, 11)
®)

Search (T, k) 11
01 x « T
02 while x # NIL and k # x.key() do
03 if k < x.key()
04 then x <« x.left()
05 else x « x.right()
06 return x
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* Search Examples (2)

= Search(7, 6)
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$ Search Examples 2

= Search(7, 6)
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i Analysis of Search

= Running time on tree of height #is O(A)

= After the insertion of n keys, the worst-case
search running time is O(n)
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* BST Minimum (Maximum)

= Find the minimum key in a tree rooted at x
(compare to a solution for heaps)

TreeMinimum (x)

01 while x.left() # NIL do
02 X « x.left()

03 return x

= Running time (/)
= Proportional to the height of the tree
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i Successor

= Given x, find the node with the smallest
key that is larger than x.key()

= There are two possible cases, depending
on the right subtree of x
= Case 1: the right subtree of x is nonempty
= Case 2: the right subtree of xis empty
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i Successor

= Case 1: the right subtree of x is nonempty
= Successor is the leftmost node in the right
subtree
= Why?
= Can be found by returning
TreeMinimum(x.right())

Successor
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i Successor (2)

= Case 2: the right subtree of xis empty
= Successor is the lowest ancestor of x whose
left child is also an ancestor of x
= Why?
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i Successor Pseudocode

TreeSuccessor (x)

01 if x.right() # NIL

02 then return TreeMinimum (x.right())
03 y ¢« x.parent()

04 while y # NIL and x = y.right()

05 X <y

06 y ¢« y.parent()

03 return y

= For a tree of height 4, the running time is

ah)
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i BST Insertion

= The basic idea is similar to searching

= Take an element (tree) z(whose left and right
children are NIL) and insert it into 7

= Find place in 7where zbelongs, as if
searching for z.key()), and add zthere

= The running on a tree of height Ais O(h)
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i BST Insertion Pseudo Code

Treelnsert (T, z)

01 y « NIL

02 x « T

03 while x # NIL

04 Yy ¢ X

05 if z.key() < x.key()

06 then x « x.left()

07 else x « x.right()

08 z.setParent(y)

09 if y # NIL

10 then if z.key() < z.key()
11 then y.setLeft(z)
12 else y.setRight(z)
13 else T < z
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i BST Insertion example

= Insert 8
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i BST Insertion: Worst Case

= In what kind of sequence should the

insertions be made to produce a BST of
height r7?
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i BST Sorting

a list of nelements, A

TreeSort (A)

01 T « NIL

02 for i « 1 ton

03 TreeInsert (T, BinTree(A[1]))
04 InorderTreeWalk(T)
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= Use Treelnsert and InorderTreeWalk to sort

i BST Sorting example

= Sort the following numbers 51071318
= Build a binary search tree

- 3,
& N
®— . — @
i
= Call InorderTreeWalk SN
11357810 @ @
1 ®
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i Deletion

= Delete node xfrom a tree 7

= We can distinguish three cases
= x has no children
= x has one child
= x has two children
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i Deletion Case 1

= If x has no children, just remove x
/®\

— .

@

®
V\@)A/’X

© André de Carvalho - ICMC/USP

Timos Sellis

36




CHOROCHRONOS Midter Review

i Deletion Case 2

= If x has exactly one child, then to delete x,
simply make x.parent() point to that child

( (1
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i Deletion Case 3

= If xhas two children, then
to delete it we have to:
= Find its successor (or
predecessor) y
= Remove y

= Note that y has at most one
child
Why?

= Replace x with y
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Delete Pseudocode

TreeDelete (T, z)
01 if z.left() = NIL or z.right() = NIL

02
03
04

then y « z
else y <« TreeSuccessor (z)
if y.left() # NIL

05 then x « y.left()
06 else x « y.right()
07 if x # NIL

then x.setParent(y.parent())
if y.parent() = NIL
then T « x
else if y = y.parent() .left()
then y.parent().setLeft (x)
else y.parent() .setRight(x)
if vy # 2z
then z.setKey(y.key()) //copy all fileds of y
return y
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i Balanced Search Trees

= Problem: worst-case execution time for
dynamic set operations is ©(77)

= Solution: balanced search trees guarantee
small height!
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i Next Lecture

= Hashing
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i Questions
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