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In the Multiscale Molar View of behavior, all behavior is seen as choice and is measured as
time allocation. Because time is limited, activities compete for the limited time available.
When Phylogenetically Important Events (PIEs) that ultimately affect fitness and ontoge-
netic proxies of these PIEs occur as consequences of an activity, they drive time spent in that
activity. Time allocation is studied in the laboratory with concurrent payoff schedules, in
which two or more schedules operate simultaneously. The generalized matching law de-
scribes choice in relation to relative consequences. It has been verified for food and other
PIEs and for pairs of variable-interval schedules and variable-interval schedules paired
with variable-ratio schedules. Because behavior produces consequences in the environment
and those consequences in turn affect behavior, the environmental feedback functions and
behavioral functional relations may be characterized as a feedback system. When different
activities produce different consequences, choice depends also on the substitutability of the
consequences. When consequences are perfectly substitutable, exclusive preference may oc-
cur, but when they are imperfectly substitutable, partial preferences may occur. Choice
may become a dilemma pitting impulsivity against self-control when consequences are not
stationary with respect to time. Evaluated in short timeframes, an activity may be strongly
induced by its consequences, but evaluated in long timeframes, its consequences may be ex-
tremely negative; such an activity (e.g., using cocaine or lying) is a bad habit. A good habit
(e.g., tooth brushing or helping others) presents the opposite conflict: bad consequences in
short timeframes and positive consequences in long timeframes. Research on choice
between good and bad habits may reveal factors that increase time spent in good habits
relative to time spent in bad habits. The Multiscale Molar View helps to clarify various com-
plexities that underlie choice viewed as time allocation. Copyright © 2015 John Wiley &
Sons, Ltd.
All behavior entails choice. Whatever an organism’s
situation, more than one activity is always possible.
Even in the laboratory, one cannot create a situation
so impoverished that only one activity is possible
(Herrnstein, 1970). Moreover, in any significant
period of time, several activities occur actually. Thus,
choice may be understood as an allocation of behavior
among several or many activities. This approach to
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studying behavior is the Multiscale Molar View of
behavior (Baum, 1973; 1981; 1989; 2002; Baum,
2004; Baum, 2012a; Baum, 2013).

The Multiscale Molar View contrasts with the
traditional view, which takes behavior to consist of
discrete responses that are strengthened by an immedi-
ately following reinforcer. The traditional view,
though useful in its time, is implausible and unwieldy,
not only when discussing everyday behavior but also
even when studying behavior in the laboratory (Baum,
2012a; 2013). For example, how would one identify a
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discrete response for an activity like watching televi-
sion or a rat’s licking, biting, and chewing of a re-
sponse lever (Baum, 1976)? How would one
plausibly explain that a person works for a salary if re-
inforcers must be immediate? Instead, the Multiscale
Molar View takes behavior to consist of temporally
extended activities that are selected by their covari-
ance with temporally extended consequences and
induced or driven by those consequences (Baum,
2012a; 2013). In this view, choice—the allocation of
behavior among activities—is fundamental.

A simplification that has proven successful takes
the allocation of behavior to be the allocation of time
among activities (Baum, 1973; 2010; Baum, 2012b;
Baum & Rachlin, 1969). For example, one might rep-
resent a person’s allocation of time among life activi-
ties as in Figure 1, which shows time allocation
among four major activities across several weekdays.
An adult with a family spends time in activities that
maintain health (e.g., exercise, eating, and sleeping),
Figure 1. Hypothetical time allocation among four activi-
ties: gaining resources, socializing, maintaining health, and
engaging with family. Top: Time lines show episodes (high
portions) of each activity. Dotted lines mark every 24 h.
Bottom: summary of time spent during the period of

observation.

Copyright © 2015 John Wiley & Sons, Ltd.
activities that gain resources (e.g., working and shop-
ping), activities that maintain relationships with others
(e.g., socializing and chatting), and activities that pro-
mote reproduction (e.g., sexual and other interacting
with one’s spouse and caring for children). The top
panel in Figure 1 shows the activities occurring in
episodes through time. The bottom panel shows a
summary of time spent in the activities during the span
shown in the top panel.

Since time is limited, because a day contains only
24 h or a period of measurement is of a definite length,
time allocation like that in Figure 1 implies that activ-
ities compete for time. If one activity increases, others
must decrease. In everyday life, the competition leads
to tension among activities and to dynamics in which
adjustments occur across spans of time. For example,
time management becomes an important skill, and
‘work-life balance’ becomes an important issue. A
songbird’s time allocates dynamically among foraging
for prey and nest material, protecting a territory and a
mate, feeding nestlings, and avoiding predators. Every
creature lives on a time budget (e.g., Barnard, 1980).

Activities compete because of the consequences
they produce. The songbird must spend time foraging
because foraging produces food, and it must spend
time in vigilance because vigilance avoids predators.
Likewise, a human must spend time working because
working produces resources and must spend time in
other activities such as maintaining relationships
because relationships avoid isolation and instability.
The consequences and antecedents that drive or induce
behavior do so ultimately as a result of evolutionary
history; they are Phylogenetically Important Events
(PIE; Baum, 2005; 2012a). PIEs that tend to enhance
reproductive success, like resources, mates, and shel-
ter, may be called ‘good’. PIEs that tend to diminish
reproductive success, like predators, illness, and in-
jury, may be called ‘bad’. Both good and bad PIEs in-
duce activities specific to them. Good PIEs induce
behavior that makes them likely to remain or occur;
bad PIEs induce behavior that makes them unlikely
to remain or occur. The influences of culture and indi-
vidual experience that increase activities that make
good PIEs more likely and bad PIEs less likely depend
ultimately on evolutionary history with respect to
those PIEs. A neutral object or event becomes a proxy
for a PIE when it covaries with the PIE, as, for exam-
ple, money covaries with resources. The covariance
selects money from other environmental objects and
events, and once money becomes a proxy, it induces
activities like shopping or working much as the re-
sources themselves would. Whether we consider food
Manage. Decis. Econ. 37: 239–248 (2016)
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or predators, a mate or an injury, the relevant activities
are induced by the PIEs themselves or their proxies
(money, alarm, flirtation, weapons, etc.), and the activ-
ities compete for time. [For further discussion, see
Baum (2005; 2012a).]
The Matching Law

In the laboratory, choice as behavioral allocation has
been studied extensively in a variety of species, in-
cluding rats, monkeys, pigeons, and humans [see
Baum (1979) and Davison & McCarthy (1988) for
reviews]. Figure 2 shows the results of a typical exper-
iment. A pigeon was exposed to several situations,
each presenting two keys continuously at which the
pigeon could peck, each for enough daily sessions
until no further systematic change in allocation could
be seen. Pecking at the keys occasionally produced
food, according to irregular time-based schedules (var-
iable-interval schedules), and the food rate differed be-
tween the two keys, sometimes by as much as 100:1 or
more. Each point shows the stable allocation of pecks
between keys as a function of the allocation of food
between the keys.

The regression line in Figure 2 has the following
equation (Baum, 1974):
Figure 2. The generalized matching law. Points show re-
sults for one pigeon in a typical experiment with pairs of

VI schedules. The solid line shows the least-squares regres-
sion line, with slope equal to 0.8. The broken line shows the

locus of strict matching.

Copyright © 2015 John Wiley & Sons, Ltd.
log
B1

B2
¼ slog

r1
r2

þ logb (1)

where B1 and B2 are the times spent pecking at keys 1
and 2 measured as numbers of pecks, r1 and r2 are the
food rates delivered by pecking at keys 1 and 2, s is
sensitivity to variation in the food ratio, and b mea-
sures any bias due to factors other than food rate.
Equation (1) is known as the matching law. When s
and b both equal 1.0, perfect matching of behavior ra-
tio to food ratio occurs. Often, however, sensitivity to
food ratio falls short of 1.0, as in Figure 2, where s
equals 0.8. Although the behavior ratio tracks the food
ratio across situations, it often falls a bit short of equal-
ing the food ratio, a result known as undermatching
(Baum, 1974).

Research on the matching law has examined conse-
quences other than food, varying deprivation, qualita-
tively and quantitatively different consequences across
keys, penalties for switching between keys, and
frequency of changing food ratios.

Although most of the research on the matching
law concerns just two alternative activities, some
has studied allocation among three or more alterna-
tives (e.g., Aparicio & Cabrera, 2001; Schneider &
Davison, 2005; Jensen & Neuringer, 2009; Jensen,
2014). One may generalize Equation (1) to any num-
ber of alternatives n as follows. The general arith-
metic version of Equation (1) is a power function:

Bi

Bj
¼ bi

bj

rsii
r
sj
j

(2)

where bi/bj replaces b, ri and rj are rates of conse-
quences not necessarily food, si and sj are possibly un-
equal, and i and j denote two alternatives out of n
alternatives.

For any alternative i, we may multiply together its
ratios with respect to itself and all of the alternatives j:

∏
n

j¼1

Bi

Bj
¼ ∏

n

j¼1

bir
si
i

bjr
sj
j

Taking the logarithm of this equation, we arrive at a
working equation:

logBi � 1
n
∑logBj ¼ silogri � 1

n
∑sjlogrj � 1

n
∑logbj

(3)

The matching law succeeds as a description of
behavioral allocation, but where does it come from?
A number of derivations from more basic principles
have been proposed, but the law has also been
Manage. Decis. Econ. 37: 239–248 (2016)
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suggested to be basic itself (e.g., McDowell, 1986;
Gallistel et al., 2007).

A possibility that might reconcile all speculation
about the origins of the matching law would be that
the power functions that comprise it are the basic
relations that underlie it. If r represents the rate of a
PIE (e.g., food, mate, and shelter), and a PIE induces
the activity that produces it (‘operant’ activity), then
the function governing the induction of any activity
Bi that produces ri might be

Bi ¼ bir
si
i : (4)

This possibility was suggested early (Baum &
Rachlin, 1969; Killeen, 1972; Rachlin, 1971) and has
received some empirical support recently (Baum &
Davison, 2014).

If correct, Equation (4) would fit well with the rec-
ognition that behavior and environment together con-
stitute a feedback system.
The Behavior-environment Feedback System

Behavior produces effects in the environment, and
those changes to the environment in turn affect behav-
ior. If the world is arranged so an activity (e.g., shop-
ping or foraging) produces a good (e.g., food or prey),
the good produced also induces the activity—break
either of these relations, and the activity is no longer
maintained. This interlocking is characteristic of a
feedback system (Baum, 1973; 1981; 1989; 2012a).

Figure 3 diagrams the behavior-environment
feedback system in a rudimentary way. It shows the
system in the most general terms. The activity B gov-
erns r according to a feedback function, f(B), which is
a characteristic of the environment, and r feeds back to
the organism to induce the activity according to a
Figure 3. The behavior-environment feedback system. The
upper half shows activity B affecting the environment to
produce feedback r (e.g., reinforcer rate). The criterion C
indicates the competition with other activities that limits ef-
fective r to r’. The lower half indicates the organism’s con-
tribution: a functional relation with r’ as input and activity B

as output.

Copyright © 2015 John Wiley & Sons, Ltd.
functional relation, g(r’), perhaps like Equation (4).
The criterion C sets limits to r and depends on the
other activities that compete with B; r’ represents this
constrained effective rate. The time spent in the activ-
ity (B) is the output from the organism. Depending on
the feedback function and other activities present, B
may stabilize, maintaining equilibrium.

Up to now, the discussion of the matching law fo-
cused on situations in which the alternatives constituted
variable-interval (VI) schedules, in which time has to
pass before the activity can produce food, thereby set-
ting an upper limit to r. The curves in Figure 4 show
some examples of VI feedback functions. An approxi-
mate equation for these curves (Baum, 1992) is

r ¼ 1
t þ a

B

(5)

where t is the average interval required to set up food
and a is a constant reflecting length of bouts of the ac-
tivity. As B increases, r approaches an upper limit of
1/t.

Plotted in the coordinates of Figure 4, the power
function in Equation (4), with s less than or equal to
1.0, would pass through any number of these VI feed-
back functions. (If s is greater than 1.0, it will still pass
through some, depending on t, b, and s.) Thus, if the n
alternatives in Equation (3) are all VI schedules or
Figure 4. Typical feedback functions. The curves show
feedback functions for a pigeon pecking a response key

paying off according to a VI schedule. The straight line il-
lustrates the feedback function for a VR 60 schedule: direc
proportionality. VI schedules model situations in which
payoff rate is limited by some uncontrollable factor (e.g.,

time). VR schedules model situations in which labor alone is
effective.

Manage. Decis. Econ. 37: 239–248 (2016)
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DRIVEN BY CONSEQUENCES 243
entail negatively accelerated feedback functions like
those in Figure 4, then the matching law applies.
Ratio Schedules

The situation is different for ratio schedules, which
model feedback relations in which only labor counts
—for example, gambling or hunting. A ratio includes
no time dependency and specifies that r is directly pro-
portional to B. The feedback function for a ratio sched-
ule is

r ¼ B

v
(6)

where v is the average time spent in activity B required
for payoff. The straight line in Figure 4 shows a feed-
back function for a variable-ratio (VR) schedule—a
situation in which payoff requires an uncertain amount
of time spent in B.

If a fixed VR schedule is paired with various VI
schedules, matching still is possible, and experi-
ments show that it occurs, but with a constant bias
in favor of the VR schedule (Herrnstein & Heyman,
1979; Heyman & Herrnstein, 1986; Baum &
Aparicio, 1999). An exception occurs if the VI
schedule is richer than the VR schedule, because
preference tends then to favor the VI exclusively
(Baum & Aparicio, 1999).

If a fixed VI schedule is paired with various VR
schedules, optimality predicts substantial under-
matching, but experiments so far support matching in-
stead (Herrnstein & Heyman, 1979; Baum, 1981;
Heyman & Herrnstein, 1986).

Because B equals rv in a VR schedule, we may sub-
stitute for B in Equation (2) or (3) and discover that if
the alternatives are both ratio schedules the ratio ri/rj is
constant—i.e., unaffected by Bi/Bj. If vi equals vj, no
preference can be predicted. To predict the outcome
if vi and vj are unequal, suppose that the ratio on the
right side of Equation (2) is greater than 1.0—i.e., al-
ternative i is richer, which means vi is smaller than
vj, and ri/Bi is greater than rj/Bj. Whatever Bi/Bj equals,
the only corrective action that will tend toward the re-
lation in Equation (2) is for Bi to increase and Bj to de-
crease. The inequality never goes away, and
eventually all time is allocated to Bi and none to Bj.
The exclusive preference for Bi satisfies Equation (2)
trivially, because both sides become indeterminate.
By extension, Equation (3) cannot be met if the alter-
natives are all VR schedules, because the richest
schedule will attract all the time (Herrnstein & Love-
land, 1975). The prediction of exclusive preference,
Copyright © 2015 John Wiley & Sons, Ltd.
however, depends on all the alternatives producing
the same outcome.
Substitutability and Partial Preferences

Up to now, all the results we have considered occurred
in experiments in which the alternative activities pro-
duced the same (identical) outcome—generally, the
same opportunity to eat. Identical goods guarantee
perfect substitutability, but in the world outside the
laboratory, the products of our activities are often im-
perfectly substitutable. When will I give up some pea-
nut butter for some jam? Some clothes for some
money? Some money for some love?

Some experiments have studied choice between
qualitatively different outcomes. Miller (1976), for ex-
ample, studied pigeons’ behavioral allocation between
pairs of VI schedules that produced different grains.
The results conformed to Equation (1) with the differ-
ence only contributing to bias (b not equal to 1.0), sug-
gesting unequal bi and bj in Equation (2). Hollard and
Davison (1971) obtained similar results studying VI
schedules that paid off with food and electrical brain
stimulation. When only bias is affected, the two qual-
itatively different outcomes would be completely
substitutable.

Some studies have been done of concurrent VR
schedules with qualitatively different outcomes (e.g.,
Green & Rachlin, 1991; Green & Freed, 1993; Belke,
Pierce, & Duncan, 2006). In research on foraging,
however, numerous experiments on dietary choice
have been done (e.g., Krebs & Davies, 1993). Forag-
ing may be thought of as equivalent to a ratio sched-
ule, because the more time is spent, the more prey
are obtained. Optimal diet theory in its simplest form
took calories as a currency and ignored other nutrients
that might affect preference for various prey. As a re-
sult, early optimal diet theory predicted exclusive pref-
erence for a more calorie-rich prey item when a
forager is given a choice. Instead, researchers found
partial preferences, implying that the different preys
could not be measured on a single currency and were
imperfectly substitutable.

Doubtless, different prey items contain different
nutrients, any of which might be crucial to a health-
maintaining diet. If we think of all the different nutri-
ents required, we may conceive of them as comple-
ments, at least when any of them is scarce (Rapport,
1980; 1981). If a forager requires calcium and the
usual prey is deficient in calcium, the forager will
switch when a rare calcium-rich prey item appears
and may for a time prefer such prey exclusively.
Manage. Decis. Econ. 37: 239–248 (2016)
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Switching among prey produces partial preferences.
Partial preferences occur also with concurrent VR
schedules in the laboratory, if the different schedules
produce imperfectly substitutable outcomes. Prefer-
ence in a situation like that might tend to be optimal,
just as performance on concurrent VI schedules tends
to be optimal, but the two situations generate
switching for different reasons. In concurrent VI
schedules, switching occurs because time spent with
one schedule results in higher likelihood of reward
from the other schedule (Rachlin, Green, & Tormey,
1988). In concurrent VR schedules, switching would
depend on non-substitutable outcomes. For example,
rats’ choice between food and water cannot be exclu-
sive, although Rachlin and Krasnoff (1983) found
evidence that when water is easily available, drinking
may substitute to a degree for eating. Belke, Pierce,
and Duncan (2006) found evidence of substitutability
between sucrose and wheel running in rats. A version
of Equation (2) describes substitutability and comple-
mentarity, with the exponent indicating degree of
substitutability or complementarity (Green & Freed,
1993; Green & Rachlin, 1991, Equation (4)).
Impulsivity, Self-control, and Time Allocation

Up to this point, the discussion has assumed that the in-
ducing consequences of an activity are stationary with
respect to time. Apart from increasing variability with
smaller sample sizes, whether we measure a pigeon’s
time allocation between concurrent VI schedules for
20min or 3 h makes no difference to the choice rela-
tion. A person’s time allocation between work and
family might remain the same whether measured for
a month or a year. Some activities, however, change
consequences depending on the timeframe within
which they are evaluated. In the short term, eating
candy, chips, and soda may be strongly induced, be-
cause these junk foods stimulate receptors for sweet,
salt, and fat, but in the long term, consuming junk food
has bad consequences, because a diet heavy with junk
food leads to health problems and early death. Simi-
larly, activities like smoking, drinking alcohol,
injecting heroin, spending money, lying, cheating,
and crime may be strongly induced in the short term
and have bad consequences in the long term. Con-
versely, putting off visiting the dentist may be strongly
induced in the short term, because it takes time and
may be uncomfortable and painful, but in the long
term, visiting the dentist helps maintain health and pro-
long life. The same pattern holds for activities like sav-
ing money, paying taxes, cooperating with other
Copyright © 2015 John Wiley & Sons, Ltd.
people, helping strangers, and using public transit: In
the short term, their consequences induce avoidance,
but in the long term, they have good consequences.
In all these examples, when the activity shifts conse-
quences with timeframe, the better alternative is the
one that produces better long-term consequences, but
the long-term consequences are weakly inducing in
competition with short-term consequences that are
strongly inducing. Money in the bank is weakly induc-
ing in competition with money in the hand, public tran-
sit is weakly inducing in competition with taking one’s
own car, and the benefits of sobriety are weakly induc-
ing in competition with a drink available immediately.

Activities like eating junk food and smoking may be
called ‘bad habits’, and activities like visiting the den-
tist and saving money may be called ‘good habits’. Fig-
ure 5 illustrates how a bad habit affects quality of life
and changes consequences with timeframe. The top
graph indicates the decrease in quality of life to expect
with the passage of time from the inception of the bad
habit when the activity occurs at a low, medium, or
high rate. Low time allocation to an activity like drink-
ing alcohol has little deleterious effect on quality of life
—and might even enhance it—but a medium alloca-
tion (say, heavy drinking on weekends) reduces quality
of life (possibly hurting health, job performance, and
losing friends), and a high allocation (daily drunken-
ness) lowers quality of life hugely by effects like losing
one’s job, spouse, friends, house, and health. A person
who is addicted to alcohol, heroin, pornography, or
gambling engages in the bad habit at a high rate and
suffers the loss. The dotted line suggests the long-term
relation between activity rate or time allocation and
loss in quality of life; loss accelerates with rate.

The lower graph in Figure 5 illustrates the depen-
dence of the consequences of a bad habit on the
timeframe in which it is evaluated. The vertical axis
goes in the opposite direction to that of the upper
graph. Consequences on the vertical axis range from
positive to negative (good to bad). The horizontal axis
indicates the timeframe over which the consequences
are calculated; it is in days and is logarithmic to con-
sider timeframes on the order of a day up to
timeframes of months or years. Eating junk food or
snorting cocaine has high positive consequences for
a matter of hours, but when pursued repeatedly over
a longer timeframe, its consequences shift to nega-
tive—less negative for a low rate, more negative for
a medium or high rate.

A bad habit presents the problem that short-term
consequences conflict with long-term consequences.
Because of genetics and environmental effects (i.e., life
Manage. Decis. Econ. 37: 239–248 (2016)
DOI: 10.1002/mde



Figure 6. Effects and challenges of a good habit. Top: Ben-
efit to quality of life (upward into positive y-axis) of three
different rates of time spent in a good habit as time goes by.
The lower curve shows benefit of a low rate, the middle

curve shows benefit of a medium rate, and the upper curve
shows the high benefit of a high rate. The dotted curve

connects points at which benefit reaches 90% of asymptotic
benefit and suggests that benefit accelerates with rate of time
spent in the good habit. Bottom: Conflict of timeframes re-
sults from a shift from negative consequences of the good
habit in short timeframes to positive consequences of the

good habit in long timeframes. Evaluated over a day or two,
the bad consequences of going to the dentist might induce
procrastination, but evaluated over many days, visiting the

dentist has good consequences in benefits to health.

Figure 5. Effects and challenges of a bad habit. Top: Loss in
quality of life (downward into negative y-axis) of three dif-
ferent rates of time spent in a bad habit as time goes by. The
upper curve shows loss due to a low rate, the middle curve
shows loss due to a medium rate, and the lower curve shows
the large loss due to a high rate. The dotted curve connects
points at which loss reaches 90% of asymptotic loss and
suggests that loss accelerates with rate of time spent in the
bad habit. Bottom: Conflict of timeframes results from a

shift from positive (good) consequences of the bad habit in
short timeframes to negative (bad) consequences of the bad
habit in long timeframes. Evaluated over a day or two,
snorting cocaine might have positive consequences, but
evaluated over many days, its bad consequences reduce

quality of life.
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history), some people’s behavior fails to come into
contact with the long-term effects on quality of life,
and those people suffer. They may be trained, how-
ever, in the long-term contingencies—alcoholics and
other addicts sometimes can learn to abstain, spend-
thrifts can learn to save, gamblers can quit, and crimi-
nals can go straight.

Figure 6 illustrates how a good habit affects quality
of life and changes consequences with timeframe. The
top graph indicates how the benefit to quality of life
Copyright © 2015 John Wiley & Sons, Ltd.
increases with time elapsed since the inception of the
good habit—less for a low rate or time allocation,
more for a medium rate or allocation, and most for a
high rate or allocation. Caring for one’s teeth or eating
fruits and vegetables, if infrequent, may slightly in-
crease health and well-being, but if engaged in more
often, they increase quality of life more. The dotted
line suggests the relation between benefit in quality
of life and rate or time allocated to the good habit; ben-
efit accelerates with rate.
Manage. Decis. Econ. 37: 239–248 (2016)
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The lower graph in Figure 6 illustrates the way a
good habit’s consequences change with the timeframe
over which they are evaluated. The axes are the same
as in the lower graph in Figure 5. The good habit typ-
ically has negative (bad) consequences when evalu-
ated over a timeframe on the scale of a day, but
evaluated on scales of days, months, or years, its con-
sequences shift to positive (good)—less positive if its
rate is low and most positive if its rate is high.

A good habit presents the opposite problem to a
bad habit. Short-term consequences conflict with
long-term consequences, but in the opposite direction.
Saving money or helping a stranger is bad in the short
term, but enhances one’s quality of life in the long
term, because one may have money when it is needed
or because one may live in an environment where peo-
ple help one another when in need. As with bad habits,
some people’s behavior, because of genetics or life
history, may fail to come into contact with the long-
term contingencies between the good habit and its
benefits. As with bad habits, those people may be
trained in the long-term benefits. If they missed it in
preschool, they can sometimes be taught to cooperate
and plan ahead as adults.

This way of thinking about good and bad habits is
not usual (but see Rachlin, 1995a; 2000; 2002; Rachlin
& Locey, 2011). Impulsivity (i.e., bad habits) and self-
control (i.e., good habits) are most often thought of as
depending on temporal discounting or probability
discounting. Experiments on discounting typically
give a subject choices between two outcomes, one con-
stant and usually immediate (e.g., 10 dollars now) and
one that varies from choice to choice in either delay or
probability (e.g., 100 dollars in a week or 100 dollars
with a probability of .5). As the delay or probability
varies across choices, a delay or probability is found
for which the subject is indifferent between the two
amounts. The immediate amount is taken as the mea-
sure of the delayed or probabilistic amount. This proce-
dure is repeated for several different immediate
amounts, and indifference points may be analyzed as
a function of delay or odds-against transformation of
probability (e.g., Green & Myerson, 2013; Green,
Myerson, Oliveira, & Chang, 2014).

Experiments on discounting afford a way to mea-
sure impulsivity by equating it to degree of
discounting. They have been popular because they al-
low one to study the environmental factors that favor
impulsivity over self-control. Addicts, for example,
often discount more steeply than non-addicts (see
Odum, 2011, for overview). One great benefit the ex-
periments may offer would be to understand the
Copyright © 2015 John Wiley & Sons, Ltd.
environmental factors or therapeutic procedures that
would shift control of behavior from short-term
timeframes to long-term. Figure 3 indicates that the
consequences of an operant activity induce the activity
that produces them (i.e., r feeds back to the activity B),
but the diagram specifies nothing about timeframe. It
applies to the addict’s injecting heroin and the effects
of the heroin inducing continued injecting as much
as to eating a good diet and the good health inducing
continued healthful eating. Future research might
suggest ways to shift the addict’s behavior from
short-term control by short-term benefits to long-term
control by long-term benefits, and some research has
already addressed the problem (Mazur & Logue,
1978; Rachlin, 1995b; Locey & Rachlin, 2012, 2013).

Although experiments on discounting may offer a
measure of impulsivity or self-control, how they relate
to the real-world extended behavioral patterns of bad
habits and good habits remains unclear. The outcomes
in experiments on discounting are invariably discrete
events like receiving 10 dollars or 100 dollars, because
only discrete events can be unambiguously delayed or
probabilistic. Real-world outcomes, however, rarely
consist of discrete events. Good health cannot arrive
suddenly after a delay nor can it usually be lost sud-
denly one day. Instead, real-world outcomes are ex-
tended conditions like sobriety, contributing to the
welfare of others, having a good marriage, having a
growing bank account, and enjoying the admiration
of others. None of these can reasonably be considered
delayed or probabilistic, because they extend through
time. A bad habit or a good habit, though extended
in time, might be thought of as a pattern of many
choices that were discrete, but the extended habit pat-
tern also has extended consequences, as suggested by
the feedback system represented in Figure 3.
Discounting experiments seem to have little to do with
such temporally extended relations (Rachlin, 1995a;
2002). How one might model extended outcomes with
discounting experiments remains to be seen (see
Heyman, 2009 and Rachlin, 2000 for extended
discussions).
CONCLUSION

The Multiscale Molar View taken in this paper affords
accounts of behavior that are simple, elegant, and plau-
sible. These natural-science accounts are actually or
potentially quantitative, as illustrated by the matching
law, and they omit anti-scientific concepts like free will
and agency (Baum, 1995; 2005). Additionally, the
Manage. Decis. Econ. 37: 239–248 (2016)
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Multiscale Molar View ties the study of behavior
directly to evolutionary theory by means of PIEs and
the activities they induce. The concept of reinforce-
ment takes a different form, because instead of
strengthening activities they follow, PIEs induce be-
havior on which they are contingent (Baum, 2012a).
The present paper focused on choice, but because all
behavior entails choice, the treatment of choice is the
treatment of behavior in general. Taking choice as the
allocation of time among competing activities offers a
general framework for understanding the behavior of
humans and other animals, including choice between
qualitatively different outcomes and self-control.
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