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Design Technique and
Dynamic Programming

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

i Today

= Dynamic programming
= Fibonacci numbers example
= Optimization problems
= Weighted Interval Scheduling Problem (WISP)
= Principles of dynamic programming
= Dynamic Time Warping (DTW)
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i Algorithm design techniques

= Algorithm design techniques so far:

= Iterative (brute-force) algorithms
= For example, insertion sort

= Algorithms that use other Abstract Data Types

(implemented using efficient data structures)

» For example, heap sort

= Divide-and-conquer algorithms
= Binary search, merge sort, quick sort

i Divide and Conquer

» Divide and conquer method for algorithm

design:

= Divide: If the input size is too large to deal
with in a straightforward manner, divide the
problem into two or more disjoint subproblems

= Conquer: Use divide and conquer recursively
to solve the subproblems

= Combine: Take the solutions to the
subproblems and “merge” these solutions into
a solution for the original problem

i Divide and Conquer

Merge-Sort (A, p, r)
= For example, if p < r then
MergeSort

g« (p+r) /2
Merge-Sort (A, p, q)
Merge-Sort (A, g+l, r)
Merge (A, p, q, r)

C
= The subproblems
are independent (

s —

overlaping

i Fibonacci Numbers

» Leonardo Fibonacci (1202):
= A rabbit starts producing offspring on the second
generation after its birth and produces one child each
generation
= How many rabbits will there be after 7 generations?

F(1)=1 |F(2):1 |F(3):z | F(4)=3 | F(5)=5 | F(6)=8
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i Fibonacci Numbers

s F(n)= F(n-1)+ F(n-2)
= F0)=0, F(1)=1
=0,1,1,23,5,8,13,21,34 ..

01 if n <1 then return n

FibonacciR (n)
02 else return FibonacciR(n-1) + FibonacciR(n-2)

= Straightforward recursive procedure is slow!

i Fibonacci Numbers

F(6)=8
FG) F(4)
F(/\)) F(3) F(3) F(2)
RN _ VS
FG) F(2) F2) () EQRD) ED) RO
/
F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

= Why? How slow?
= Let’s draw the recursion tree

= We keep calculating the same value over and over!

= Subproblems are overlapping — they share sub-
subproblems

i Fibonacci Numbers

= How many summations are there §n)?
s AN =8n-1)+99n-2)+1

= Solving the recurrence we get
S(n)=2"2-1~1.4"
= Running time is exponential!

= gn)>28n-2)+1 and J1)=S0)=0

i Fibonacci Numbers

= We can calculate A ) in /inear time by
remembering solutions to the solved
subproblems — dynamic programming

= Trade space for time!

Init_vector (F[], -1)

FibonacciR(n)
if n <1 then return n

else if F[n] != -1 then return F[n]
else
F[n] = Fib iR(n-1) + Fib iR(n-2)

return F[n]

i Fibonacci Numbers

= Iterative alternative
= Compute solution in a bottom-up fashion

Fibonacci (n)
F[0]«0
F[1]«1
for i < 2 to n do
F[i] « F[i-1] + F[i-2]
return F[n]

i Fibonacci Numbers

= In fact, only two values need to be
remembered at any time!

FibonacciImproved (n)
if n <1 then return n
Fim2 «0
Fiml «1
for i < 2 to n do
Fi ¢ Fiml + Fim2
Fim2 <« Fiml
Fiml « Fi
return Fi
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i History

= Dynamic programming
= Invented in the 1950s by Richard Bellman as a
general method for optimizing multistage
decision processes

= "Programming” stands for “planning” (not
computer programming)

13

i Optimization Problems

= We have to choose one solution out of
many — one with the optimal (minimum or
maximum) value.

= A solution exhibits a structure
= It consists of a string of choices that were
made — what choices have to be made to
arrive at an optimal solution?
= An algorithm should compute the optimal
value plus, if needed, an optimal solution

Weighted Interval Scheduling
imb[em_(wISP)

= Weighted Interval Scheduling Problem:

= Select a subset of intervals with the highest weight sum
possible without them overlapping

Weighted Interval Scheduling
imblem_(jNISP)

= Supose we have the intervals ordered by finishing
time.

Weighted Interval Scheduling
imblﬁm_(jNISP)

= Supose we have the intervals ordered by finishing
time.

= And we have defined p (j) as the highest index 7 < j
such as 7and j are disjoint.

Weighted Interval Scheduling
imblﬂm_(jNISP)

= Formally:
= We can label the intervals as 1,...,n7

= We are looking for a subset Sc {1,...,/7} that maximizes
Lis Vi

Index
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Weighted Interval Scheduling
imblﬂm_(WISP)

= We can say some things about S
= The last interval (n) can or cannot belong to $
= If ne S, then any interval between p (n)+1 and 7+1 ¢ S

- Shas an optimal solution with intervals {1, ..., p (n)}

Index

b=t pPA)=0
p(2)=0
pB3)=1

pP#)=0
p(5)=3
p6)=3

Weighted Interval Scheduling
imblﬂm_(jNISP)

= We can say some things about S:

= The last interval (n) can or cannot belong to S

= Ifn ¢ S, then there is an optimal solution with intervals {1, ..., -1}

Weighted Interval Scheduling

* Problem (WISP)

= Finding an optimal solution within a interval {1, 2,..., 7}
involves finding optimal solutions in a smaller interval
{1,2, .., 7}

= Let OPT(j) be the optimal sum of intervals for
{1,2,..,j} Then:

« If je 5, OPT(j) = v;+ OPT(p (j))
« If jg S OPT(j) = OPT(j- 1)

21

Weighted Interval Scheduling
* Problem (WISP)

= Finding an optimal solution within a interval {1, 2,..., 1}
involves finding optimal solutions in a smaller interval
{1,2,.., 7}

= Let OPT(j) be the optimal sum of intervals for
{1,2,..,j} Then:

= If je 5 OPT(j) = v;+ OPT(p (j))
= If j¢ S OPT(j) = OPT(j- 1)

OPT(;) = max(v; + OPT(p (j)), OPT(j - 1))

Weighted Interval Scheduling

i Problem (WISP)

Compute-Opt (7)
if j =0 then return 0
else
return max (v[j] + Compute-Opt(p(j)), Compute-Opt(j-1))

= What the recursion tree will look like
without using dynamic programming?

23

Weighted Interval Scheduling

i Problem (WISP)

1 = p()=
@)=
P@3)=
@)=
ps)=
p©)=

24
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Weighted Interval Scheduling
Problem (WISP)

= The procedure complexity is similar to the Fibonacci
example.
= EXPONENTIAL!

= A solution for this problem is, again, dynamic
programming
= Use of memoization: storing partial solutions on a global structure

Weighted Interval Scheduling

Problem (WI

SP)

M-Compute-Opt (j)
if j =0 then return 0

else

return M[j]

else if M[j] is not empty then return M[j]

M[j] = max(v[j] + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)

25 26
1+0PT(3) 4+0PT(1) 1+0PT(3)
OPT(5) OPT(2) OPT(5)
3 4 5 6 4 5 6
Index Index
1 (=2 p()=0 1 tom2, p=0
) =4 p(2)=0 2 t=d P@=0
3 Y= pe)=1 3 e pOI=1
4 p@)=0 4 pA)=0
5 p(5)=3 5 p(5)=3
/ 6 p(6)=3 6 p(6)=3
M-Compute-Opt (j) M-Compute-Opt (J)
if § =0 then return 0 if § =0 then return 0
else if M[j] is not empty then return M[j] else if M[j] is not empty then return M[j]
else else
M[§] = max(v[j] + M-Comp Pt (p(3)), M-Comp Pt (3-1) u[§) = max(v[j] + M-Comp Pt (p(§)), M-Comp opt (3-1)
return M[7j] return M[7]]
27 28
2+0PT(0) 4+0PT(1) 1+0PT(3) 2 4+0PT(1) 14+0PT(3)
OPT(2) OPT(5) OPT(2) OPT(5)
3 4 5 6 3 4 5 6
Index Index
1 h=2 p=0 1 =2 p=0
2 fo=4, p@=0 2 to=4, P@=0
3 K= p@1-1 3 bma p@=1
4 t=l p@=0 4 S p@=0
s k=2 p6)=3 5 122 p()=3
. Kol e-s s %=l pm=3
M-Compute-Opt (7) M-Compute-Opt ()
if § =0 then return 0 if § =0 then return 0
else if M[j] is not empty then return M[3] else if M[j] is not empty then return M([j]
else else
M[j] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1) M[3] = max(v[j] + M-Comp Pt (p(3)), M-Comp pt(i-1)
return M[J] return M[]]
29 30
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4+0PT(0) | 4+OPT(1) 1+0PT(3) 4+0PT(0) 4+0PT(1) 1+0PT(3)
OPT(1) OPT(2) OPT(5) OPT(1) OPT(2) OPT(5)
3 5 6 3 4 5 6
Index Index
A V=2 1 h=2 p)=0
2 f=4, 2 to=4, P@)=0
3 =4 3 =4 P3)=1
4 4 Y=, pA=0
5 5 k=2 pE)=3
6 6 %=1l = =3
M-Compute-Opt (7) M-Compute-Opt (j)
if j =0 then return 0 if § =0 then return 0
else if M[§] is not empty then return M[J] else if M[j] is not empty then return M[j]
else else
M[3] = max(v[j] + M-Compi pt(p(3)), M-Comp pt(j-1) M[3] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1)
return M[j] return M(j]
31 32
> 4 4+0PT(1) 1+0PT(3) 4 4+0OPT(1 1+0PT(3)
OPT(2) OPT(5) OPT(2) OPT(5)
3 5 6 4 5 6
Index Index
1 h=2 1 =2, P(1)=0
2 Yo=4, 2 k=4 P@=0
3 =4 3 to=d PB=1
4 4 v=7 p@)=0
s s — pE)=3
6 6 %=l pe=3
M-Compute-Opt (j) M-Compute-Opt ()
if j =0 then return 0 if j =0 then return 0
else if M[j] is not empty then return M[j] else if M[j] is not empty then return M[j]
else else
M[3j] = max(v[j] + M-Comp pt(p(i)), M-Comp pt(i-1) M[3] = max(v[j] + M-Comp pt(p(j)), M-Comp pt(3-1)
return M[j) return M[j]
33 34
2 4 6 1+0PT(3) 2 4 6 2+0PT(3) | 1+OPT(3)
OPT(5) OPT(4) OPT(5)
3 5 6 3 4 5 6
Index Index
1 ti=2 Yo=2, p)=0
2 to=4 t=d, P@=0
3 %=4 =4 @1
4 s P@)=0
5 122 p)=3
6 %=1l pe)=3
M-Compute-Opt (7) M-Compute-Opt ()
if j =0 then return 0 if § =0 then return 0
else if M[§] is not empty then return M[J] else if M[j] is not empty then return M[j]
else else
M[j] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1) M[3] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1)
return M[j) return M[j]
35 36
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2 7 p 7+0PT(0) | 2+OPT(3) | 1+OPT(3) 2 a A 7+O0PT(0) 2+OPT(3) | 1+OPT(3)
OPT(3) |OPT(4) |OPT(5) OPT(3) |OPT(4) |OPT(5)
3 4 5 6 A\ A 5 6
Index
=2 p(=0 V=2, P)=0
lo=t, P@=0 VZ:V“ . P@=0
V=4 _ o= @-1
i;i) , h=2, i(«):o
p()=3 1=2, Pe)=3
L pE=3 %=1l pe)=3
M-Compute-Opt (7) M-Compute-Opt (j)
if § =0 then return 0 if § =0 then return 0
else if M[j] is not empty then return M[j] else if M[j] is not empty then return M([j]
else else
M{3] = max(v[j] + M-Comp pt(p(J)), M-Comp pt(i-1) M[3] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1)
return M[7j] return M[7j]
37 38
2 7 = = 2+O0PT(3) | 1+0PT(3) 2 n 7 = 2+0PT(3) 1+O0PT(3)
OPT(4) OPT(5) OPT(4) OPT(5)
3 4 5 6 3\ A\ P 6
N =
Index Index 2
a2 u=2_7 p()=0
V=4 Se-- V=4 @)=0
lo=d to=d P@=1
— p@=0
— pE)=3
%=l pe=3
M-Compute-Opt (j) M-Compute-Opt (J)
if § =0 then return 0 if § =0 then return 0
else if M[j] is not empty then return M[j] else if M[j] is not empty then return M[j]
else else
M[§] = max(v[j] + M-Comp Pt (p(3)), M-Comp Pt (3-1) M[§) = max(v[j] + M-Comp PE(p(§)), M-Comp Pt (3-1)
return M[7j] return M[7]]
39 40
1+0PT(3
2 4 6 7 8 LEOELE) 2 4 6 7 8 )
OPT(5) OPT(5)
3 4 5 6
Index
=2 P)=0
V=4 P@=0
h=a p@=1
pP(@)=0
P(5)=3
P@©)=3
M-Compute-Opt (7) M-Compute-Opt ()
if § =0 then return 0 if § =0 then return 0
else if M[j] is not empty then return M[j] else if M[j] is not empty then return M([j]
else else
M[3] = max(v[j] + M-Compi pt(p(J)), M-Comp pE(i-1) M[3] = max(v[j] + M-Comp pt(p(3)), M-Comp pt(i-1)
return M[j] return M[§]
41 42
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p)=
P2)=
p()=
p(4)=
p(5)=
)=

M-Compute-Opt (3)
if § =0 then return 0
else if M[j] is not empty then return M[3]

else
M[3] = max(v[j] + M-Compi pt(p(3)), M-Comp pt(j-1)
return M[j]

43

Weighted Interval Scheduling

i Problem (WISP)

= The solution with memorization is efficient and requires
only O(n) steps as long as the intervals are sorted.

= The global vector M not only helps with calculating the
solution, but it also can be used to find the intervals
within the solution.

= An interval belongs to the solution if and only if

v;+ OPT(p (j)) 2 OPT(j— 1)

44

Weighted Interval Scheduling

* Problem (WISP)

Weighted Interval Scheduling

* Problem (WISP)

Weighted Interval Scheduling

i Problem (WISP)

Weighted Interval Scheduling

i Problem (WISP)
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Weighted Interval Scheduling
i Problem (WISP)

= We can re-write the recursive algorithm with an iterative
version
= In this case: more efficient. Why?

Iterative-Compute-Opt ()
M[0] = 0O

for j
M[]]

1,...,n
max (v[j] + M[p(j)], M[j-1])

49

i Memoization

= Solve the problem in a top-down fashion,
but record the solutions to subproblems in
a table.

= Pros and cons:
= ® Recursion is usually slower than loops and
uses stack space
= © Easier to understand
= © If not all subproblems need to be solved,

you are sure that only the necessary ones are
solved

i Dynamic Programming

= In general, to apply dynamic programming, we
have to address a number of issues:

= 1. Show optimal substructure — an optimal solution
to the problem contains within it optimal solutions to
sub-problems
= Solution to a problem:
Making a choice out of a number of possibilities (look what
possible choices there can be)
Solving one or more sub-problems that are the result of a choice
(characterize the space of sub-problems)
= Show that solutions to sub-problems must themselves be
optimal for the whole solution to be optimal (use “cut-and-
paste” argument)

51

i Dynamic Programming

= 2. Write a recurrence for the value of an optimal
solution

- Mopt = Minover all choices k{(combination (e-g-r SUITI) of
Mg Of all sub-problems, resulting from choice 4) +
(the cost associated with making the choice A)}

= Show that the number of different instances of sub-
problems is bounded by a polynomial

October 23, 2003 52

i Dynamic Programming

= 3. Compute the value of an optimal solution in a
bottom-up fashion, so that you always have the
necessary sub-results pre-computed (or use
memoization)

= See if it is possible to reduce the space requirements,
by “forgetting” solutions to sub-problems that will not
be used any more

= 4. Construct an optimal solution from computed
information (which records a sequence of
choices made that lead to an optimal solution)

October 23, 2003 53

i Dynamic Time Warping

= Given two distinct time series, how can we
compare them?

= Using a traditional distance metric?
= Euclidean?

© André de Carvalho - ICMC/USP 54
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i Dynamic Time Warping

= Given two distinct time series, how can we
compare them?

= Using a traditional distance metric?
= Euclidean?

Euclidean Matching
© André de Carvalho - ICMC/USP 55

i Dynamic Time Warping

= Dynamic Time Warping!

Dynamic Time Warping Matching

© André de Carvalho - ICMC/USP 56

* Dynamic Time Warping

= Match every possible point within two
series and select the best solution possible

= Warp one of the series so it can match the
other

= The best result is the one that yields the
lowest “score” or “distance”

© André de Carvalho - ICMC/USP 57

i Dynamic Time Warping

= Recurrence function
DTW(xi—liyj—l)
DTW(xi,y]-) = c(xi,y]-) + min DTW(xi,yj_l)
DTW (x;-1,5)

= The cost crefers to a distance metric
between two points
= Such as Euclidean:

w (o, y) = — ¥ =1x — yil

© André de Carvalho - ICMC/USP 58

i Dynamic Time Warping

= Memoization
= Fills a xvs y matrix

= The final DTW distance is the nth position in
both row and column
= Which representes the end of both series

© André de Carvalho - ICMC/USP 59

i Dynamic Time Warping

= Warping path
= The path obtained by greedly going through the matrix
from c(X,, Yn) to c(x,y;) selecting the smallest
distance among the possible

= Represent the matching between the two time series

3ol

=

™~ Warping path w 60
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i Next Lecture

= Hashing
= Graphs:
= Representation in memory
= Breadth-first search
= Depth-first search
= Topological sort

October 23, 2003 61
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* Questions
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