

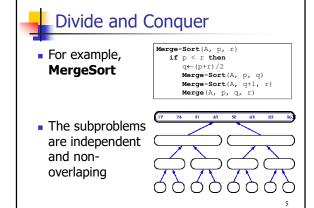
Algorithm design techniques

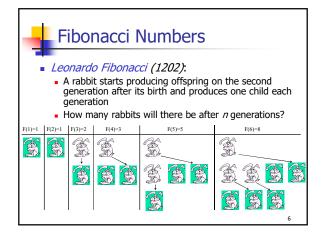
- Algorithm design techniques so far:
 - Iterative (brute-force) algorithms
 - For example, insertion sort
 - Algorithms that use other Abstract Data Types (implemented using efficient data structures)
 - For example, heap sort
 - Divide-and-conquer algorithms
 - Binary search, merge sort, quick sort

Divide and Conquer

- Divide and conquer method for algorithm design:
 - Divide: If the input size is too large to deal with in a straightforward manner, divide the problem into two or more disjoint subproblems
 - Conquer: Use divide and conquer recursively to solve the subproblems
 - **Combine**: Take the solutions to the subproblems and "merge" these solutions into a solution for the original problem

4



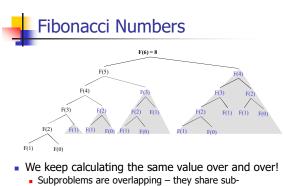


Fibonacci Numbers

- F(n)= F(n-1)+ F(n-2)
- F(0) =0, F(1) =1
- **0**, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

```
FibonacciR(n)
01 if n ≤1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2)
```

- Straightforward recursive procedure is slow!
- Why? How slow?
- Let's draw the recursion tree



subproblems

Fibonacci Numbers

- How many summations are there S(n)?
 - S(n) = S(n-1) + S(n-2) + 1
 - $S(n) \ge 2S(n-2) + 1$ and S(1) = S(0) = 0
 - Solving the recurrence we get $S(n) \ge 2^{n/2} - 1 \approx 1.4^n$
- Running time is exponential!

Fibonacci Numbers

- We can calculate F(n) in *linear* time by remembering solutions to the solved subproblems – *dynamic programming*
- Trade space for time!

```
Init vector(F[], -1)
FibonacciR(n)
if n \le 1 then return n else if F[n] != -1 then return F[n] else
    F[n] = FibonacciR(n-1) + FibonacciR(n-2)
     return F[n]
```


Fibonacci Numbers

- Iterative alternative
 - Compute solution in a bottom-up fashion

```
Fibonacci(n)
 F[0]←0
F[1]←1
  for i ← 2 to n do
  F[i] ← F[i-1] + F[i-2]
return F[n]
```


Fibonacci Numbers

In fact, only two values need to be remembered at any time!

```
FibonacciImproved(n)
ribonacciimproved(n)
if n ≤ 1 then return n
Fim2 ← 0
Fim1 ← 1
for i ← 2 to n do
Fi ← Fim1 + Fim2
Fim2 ← Fim1
Fim1 ← Fi
 return Fi
```


History

- Dynamic programming
 - Invented in the 1950s by Richard Bellman as a general method for optimizing multistage decision processes
 - "Programming" stands for "planning" (not computer programming)

13

Optimization Problems

- We have to choose one solution out of many – one with the optimal (minimum or maximum) value.
- A solution exhibits a structure
 - It consists of a string of choices that were made – what choices have to be made to arrive at an optimal solution?
- An algorithm should compute the optimal value plus, if needed, an optimal solution

14

Weighted Interval Scheduling Problem (WISP)

- Weighted Interval Scheduling Problem:
 - Select a subset of intervals with the highest weight sum possible without them overlapping

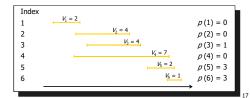
 Supose we have the intervals ordered by finishing time.

Index

1 $V_{1} = 2$ 2 $V_{2} = 4$ 3 $V_{3} = 4$ 4 $V_{4} = 7$ 5 $V_{5} = 2$ $V_{5} = 1$

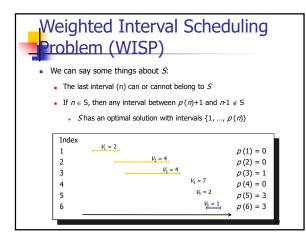
Weighted Interval Scheduling Problem (WISP)

- Supose we have the intervals ordered by finishing time
- And we have defined p(j) as the highest index i < j such as i and j are disjoint.



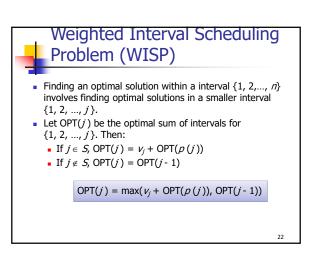
Weighted Interval Scheduling Problem (WISP)

- Formally:
 - We can label the intervals as 1,...,n
 - We are looking for a subset $S \subseteq \{1,...,n\}$ that maximizes $\Sigma_{i \in S} \ V_i$



Weighted Interval Scheduling Problem (WISP) ■ We can say some things about S: ■ The last interval (n) can or cannot belong to S■ If $n \notin S$, then there is an optimal solution with intervals $\{1, ..., n-1\}$ $\begin{bmatrix} findice & & & & & & & & & \\ 1 & & & & & & & & \\ 2 & & & & & & & & \\ 2 & & & & & & & & \\ 3 & & & & & & & & & \\ 4 & & & & & & & & & \\ 5 & & & & & & & & & \\ 6 & & & & & & & & & \\ \end{bmatrix}$ $\begin{bmatrix} findice & & & & & & & & \\ 1 & & & & & & & & \\ 2 & & & & & & & & \\ 1 & & & & & & & & \\ 2 & & & & & & & & \\ 2 & & & & & & & & \\ 3 & & & & & & & & \\ 4 & & & & & & & & & \\ 5 & & & & & & & & \\ 6 & & & & & & & & \\ 6 & & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 1 & & & & & & & \\ 2 & & & & & & & \\ 1 & & & & & & & \\ 2 & & & & & & & \\ 3 & & & & & & & \\ 4 & & & & & & & \\ 4 & & & & & & & & \\ 5 & & & & & & & \\ 6 & & & & & & & \\ 6 & & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & & & & \\ 9 & & & & & & \\ 1 & & & &$

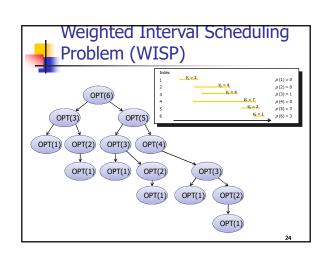
Weighted Interval Scheduling Problem (WISP) Finding an optimal solution within a interval {1, 2,..., n} involves finding optimal solutions in a smaller interval {1, 2, ..., j}. Let OPT(j) be the optimal sum of intervals for {1, 2, ..., j}. Then: If j ∈ S, OPT(j) = v_j + OPT(p(j)) If j ∉ S, OPT(j) = OPT(j-1)



Weighted Interval Scheduling
Problem (WISP)

Compute-Opt(j)
if j = 0 then return 0
else
return max(v[j] + Compute-Opt(p(j)), Compute-Opt(j-1))

What the recursion tree will look like without using dynamic programming?

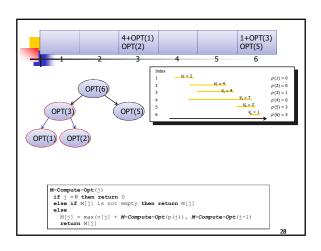


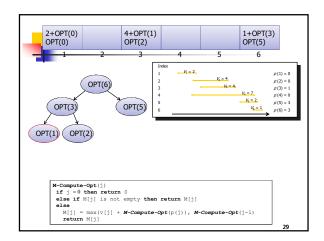
Weighted Interval Scheduling Problem (WISP) The procedure complexity is similar to the Fibonacci example. EXPONENTIAL! A solution for this problem is, again, dynamic programming Use of memoization: storing partial solutions on a global structure

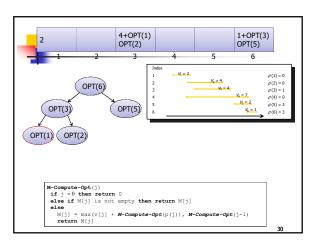
25

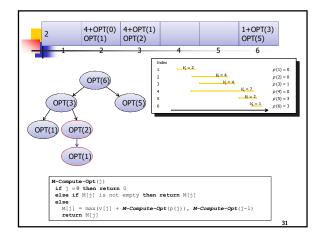
```
Weighted Interval Scheduling
Problem (WISP)

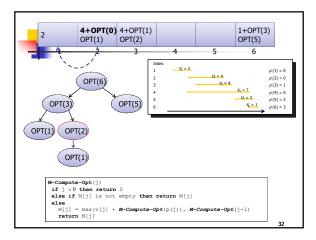
M-Compute-Opt(j)
if j = 0 then return 0
else if M[j] is not empty then return M[j]
else
M[j] = max(v[j] + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)
return M[j]
```

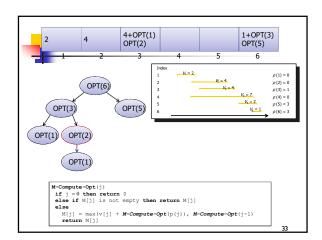


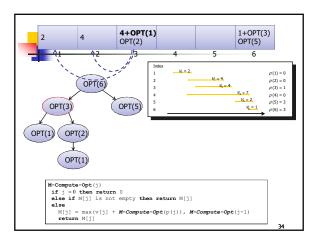


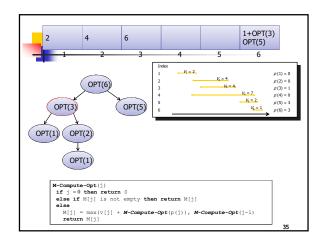


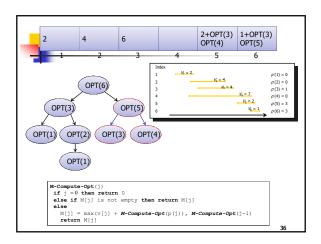


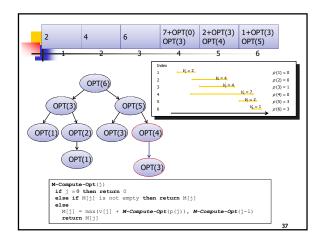


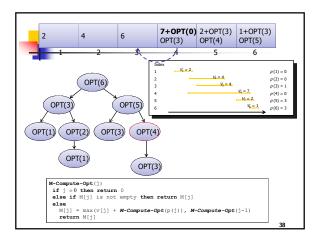


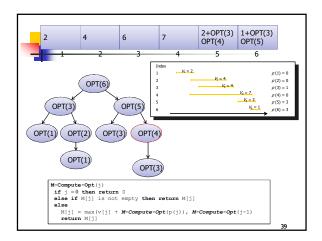


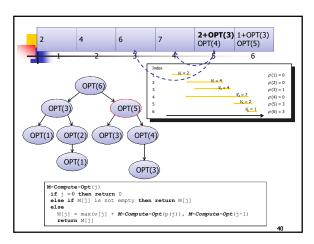


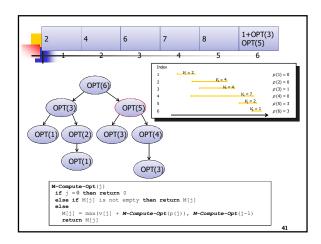


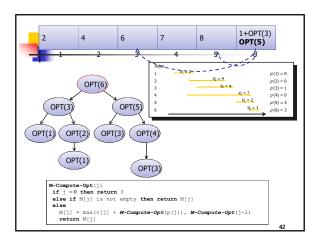


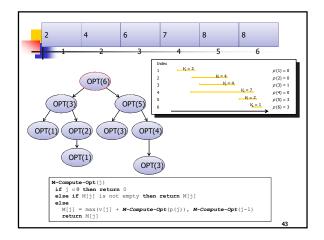


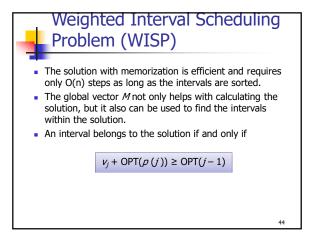


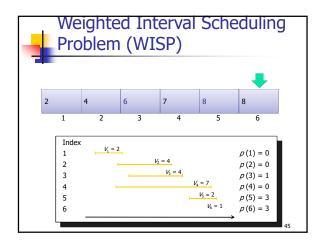




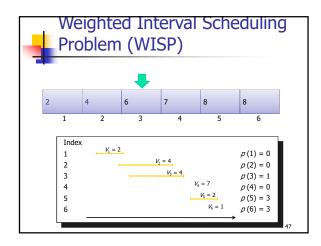


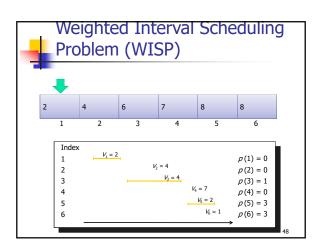












Weighted Interval Scheduling Problem (WISP)

- We can re-write the recursive algorithm with an iterative version
 - In this case: more efficient. Why?

```
Iterative-Compute-Opt()
M[0] = 0
for j = 1,...,n
M[j] = max(v[j] + M[p(j)], M[j-1])
```

49

Memoization

- Solve the problem in a top-down fashion, but record the solutions to subproblems in a table.
- Pros and cons:
 - Recursion is usually slower than loops and uses stack space
 - [©] Easier to understand
 - ⑤ If not all subproblems need to be solved, you are sure that only the necessary ones are solved

50

Dynamic Programming

- In general, to apply dynamic programming, we have to address a number of issues:
 - 1. Show optimal substructure an optimal solution to the problem contains within it optimal solutions to sub-problems
 - Solution to a problem:
 - Making a choice out of a number of possibilities (look what possible choices there can be)
 - Solving one or more sub-problems that are the result of a choice (characterize the space of sub-problems)
 - Show that solutions to sub-problems must themselves be optimal for the whole solution to be optimal (use "cut-andpaste" argument)

51

Dynamic Programming

- 2. Write a recurrence for the value of an optimal solution
 - $M_{\text{opt}} = \text{Min}_{\text{over all choices } k}$ {(Combination (e.g., sum) of M_{opt} of all sub-problems, resulting from choice k) + (the cost associated with making the choice k)}
 - Show that the number of different instances of subproblems is bounded by a polynomial

October 23, 2003

E2

Dynamic Programming

- 3. Compute the value of an optimal solution in a bottom-up fashion, so that you always have the necessary sub-results pre-computed (or use memoization)
 - See if it is possible to reduce the space requirements, by "forgetting" solutions to sub-problems that will not be used any more
- 4. Construct an optimal solution from computed information (which records a sequence of choices made that lead to an optimal solution)

October 23, 2003

53

Dynamic Time Warping

- Given two distinct time series, how can we compare them?
- Using a traditional distance metric?
 - Euclidean?

© André de Carvalho - ICMC/USP

e Carvaino - ICMC/OSP

Dynamic Time Warping

- Given two distinct time series, how can we compare them?
- Using a traditional distance metric?
 - Euclidean?

Dynamic Time Warping Dynamic Time Warping! Dynamic Time Warping Matching © André de Carvalho - ICMC/USP

Dynamic Time Warping

- Match every possible point within two series and select the best solution possible
 - Warp one of the series so it can match the
 - The best result is the one that yields the lowest "score" or "distance"

© André de Carvalho - ICMC/USP

Dynamic Time Warping

Recurrence function

$$DTW(x_{i}, y_{j}) = c(x_{i}, y_{j}) + \min \begin{cases} DTW(x_{i-1}, y_{j-1}) \\ DTW(x_{i}, y_{j-1}) \\ DTW(x_{i-1}, y_{j}) \end{cases}$$

- The cost *c* refers to a distance metric between two points
 - Such as Euclidean:
 - $c(x_i, y_i) = \sqrt{(x_i y_i)^2} = |x_i y_i|$

© André de Carvalho - ICMC/USP

Dynamic Time Warping

- Memoization
 - Fills a x vs y matrix
 - The final DTW distance is the *nth* position in both row and column
 - Which representes the end of both series

© André de Carvalho - ICMC/USP

Dynamic Time Warping

- Warping path
 - The path obtained by greedly going through the matrix from $c(x_n, y_n)$ to $c(x_1, y_1)$ selecting the smallest distance among the possible
 - Represent the matching between the two time series

Next Lecture

- Hashing
- Graphs:
 - Representation in memory
 - Breadth-first search
 - Depth-first search
 - Topological sort

October 23, 2003

Acknowledgement

- A large part of this material were adapted from
 - Simonas Šaltenis, Algorithms and Data Structures, Aalborg University, Denmark
 - Mary Wootters, Design and Analysis of Algorithms, Stanford University, USA
 - George Bebis, Analysis of Algorithms CS 477/677, University of Nevada, Reno
 - David A. Plaisted, Information Comp 550-001, University of North Carolina at Chapel Hill
 - Gustavo E. A. P. A. Batista, Slides on Dynamic Programming, University of S\u00e3o Paulo, Brazil

© André de Carvalho - ICMC/USP

...

