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Data-flow testing (DFT) is a family of testing strategies designed to verify the interactions between each
program variable’s definition and its uses. Such a test objective of interest is referred to as a def-use pair. DFT
selects test data with respect to various test adequacy criteria (i.e., data-flow coverage criteria) to exercise
each pair. The original conception of DFT was introduced by Herman in 1976. Since then, a number of studies
have been conducted, both theoretically and empirically, to analyze DFT’s complexity and effectiveness. In
the past four decades, DFT has been continuously concerned, and various approaches from different aspects
are proposed to pursue automatic and efficient data-flow testing. This survey presents a detailed overview
of data-flow testing, including challenges and approaches in enforcing and automating it: (1) it introduces
the data-flow analysis techniques that are used to identify def-use pairs; (2) it classifies and discusses
techniques for data-flow-based test data generation, such as search-based testing, random testing, collateral-
coverage-based testing, symbolic-execution-based testing, and model-checking-based testing; (3) it discusses
techniques for tracking data-flow coverage; (4) it presents several DFT applications, including software
fault localization, web security testing, and specification consistency checking; and (5) it summarizes recent
advances and discusses future research directions toward more practical data-flow testing.
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1. INTRODUCTION

Data-flow testing (DFT) is a family of testing strategies that selects program paths
to exercise the definition-use relations with respect to data objects. It fills the gaps
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Fig. 1. Data-flow testing publications from 1976 to 2015 (the dotted curve indicates the trend of continuous
research interests).

between all path testing and branch/statement testing with the aim to pinpoint the
potential data-flow anomalies. When used as a test selection criterion, DFT can provide
a more comprehensive testing method to ensure the test adequacy of a piece of software
and detect bugs that would not necessarily be found by less demanding criteria.

The conception of data-flow testing grew out of data-flow analysis used in compiler
optimizations [Allen and Cocke 1976] and was originally introduced by Herman [1976]
in 1976. Since then, various slightly different notions of data-flow-based coverage cri-
teria [Rapps and Weyuker 1982; Laski and Korel 1983; Rapps and Weyuker 1985;
Frankl and Weyuker 1988; Clarke et al. 1989; Harrold and Rothermel 1994] have
been proposed and investigated. The main reason for this diversity lies in the different
ways of exercising definition-use relations as well as different adaptations in procedu-
ral and object-oriented programming languages. Later, the effectiveness of DFT was
justified by several empirical studies [Frankl and Weiss 1993; Foreman and Zweben
1993; Weyuker 1993; Hutchins et al. 1994; Frankl and Iakounenko 1998], which have
shown that data-flow-based coverage criteria outclass control-flow-based criteria (e.g.,
statement or branch coverage). Moreover, the online software testing knowledge center
organized by Khannur [2011] reports that in practice, “the number of bugs detected by
putting the criteria of 90% data coverage were capable to find defects those were twice
as high as those detected by 90% branch coverage criteria.”

In the past four decades, data-flow testing has been continuously researched (il-
lustrated in Figure 1). Much research effort has been made to achieve practical and
efficient DFT. However, little work in the literature gives a deep investigation or analy-
sis on its state of the art, which leaves academic researchers and software practitioners
unaware of the maturity of this field. For example, introductory chapters about data-
flow testing can be found in many software testing tutorials, for example, the books by
Beizer [1990], Pezzè and Young [2007], and Ammann and Offutt [2008]. They introduce
the basic conceptions and identify the challenges but do not discuss its automation.
Moreover, DFT provides a more intensive way of selecting test cases, which is among
the most labor-intensive of tasks in its enforcement (this is true for other structural
testing criteria as well) and has a strong impact on its testing effectiveness and effi-
ciency. However, the automatic test data generation techniques for DFT have not been
particularly investigated. Despite Edvardsson [1999] and Anand et al. [2013] survey-
ing various techniques for automatic test data generation, they discuss them mainly
in the context of control-flow-based coverage criteria.

In spite of the ability of DFT to detect data interaction faults, a big gap between
real-world programs and the practicality of proposed DFT techniques still exists. Thus,
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we believe that for both academic researchers and industrial practitioners, it is highly
desirable to review the current research state, recognize the difficulties in its appli-
cation, and point future research directions to narrow the gap. In order to provide a
systematic overview of DFT, we start from the three basic phases of DFT: (1) data-flow
analysis, (2) data-flow test data generation, and (3) data-flow coverage computation. In
this article, we mainly concentrate on the techniques used in the latter two steps and
provide a relatively brief summary of data-flow analysis techniques applied in DFT
because data-flow analysis itself has already been investigated in Kennedy [1979].

To this end, we present this first survey on data-flow testing: we set up a DFT publica-
tion repository, which contains a total of 97 papers from 1976 to 2015. Several popular
online digital libraries (e.g., ACM Digital Library, IEEE Xplore, Springer Online, Else-
vier Online, Wiley Online, and ScienceDirect) are searched to collect valid papers, which
contain the following keywords (continuously refined during the search) in either their
titles or abstracts: “def-use pairs,” “data-flow relations,” “data flow testing + analysis,”
“data flow testing + test generation,” “data flow coverage,” and “def-use testing.” Then,
following these same keyword rules, we went through each reference of these papers
to collect the missing publications. The repository is now available online.1 We classify
them into seven main categories:

—Test Data Generation. Studies on general approaches or techniques developed to
automate data-flow-based test generation

—Data-Flow Analysis. Studies on techniques used to analyze data-flow relations (i.e.,
def-use pairs) in the context of different programming languages and their features

—Coverage Tracking (Computation). Studies on techniques used to track data-flow
coverage, that is, decide which def-use pairs are satisfied

—Empirical Analysis. Studies on analyzing the complexities in enforcing data-flow
testing as well as comparing its fault detection effectiveness with other coverage
criteria

—Application. Studies on applying data-flow testing to other research fields, for ex-
ample, software fault localization, web security testing, and specification consistency
checking

—Theory. Studies on the fundamental theory and theoretical analysis on data-flow
coverage criteria

—Tool. Studies on building, illustrating, and evaluating data-flow testing tools

Note that some papers may be involved in more than one category; for example, a
paper may present a tool and also propose a new approach to coverage computation. We
assign each paper to one category according to its main objective. Therefore, our clas-
sification, to some extent, may be subjective. Nevertheless, we believe the percentage
of each research topic shown in Figure 2 can still fairly represent the current research
state in DFT.

The remainder of this survey is organized as follows. Section 2 gives an overview of
DFT with an illustrative example, followed by the introduction of DFT’s basic testing
process and the summary of various challenges in its application. Section 3 summarizes
data-flow analysis techniques used for finding def-use pairs. Section 4 investigates
the general approaches to DFT’s test data generation and discusses their principles,
strengths, and weaknesses. Section 5 surveys DFT’s coverage tracking techniques and
tools. Recent research advances are discussed in Section 6, and DFT’s applications
in Section 7. Section 8 presents our new insights and future research directions for
data-flow testing. Section 9 makes a conclusion.

1https://tingsu.github.io/files/dftbib.html.
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Fig. 2. Percentage of each research topic and its number of publications in the literature on data-flow
testing.

2. OVERVIEW OF DATA-FLOW TESTING

This section introduces some fundamental conceptions in data-flow testing. Then it
discusses the basic testing process of DFT and the difficulties it suffers from.

2.1. Fundamental Conceptions

A program path can be denoted as a sequence of control points,2 written in the form
l1, l2, . . . , ln. We distinguish two types of paths. A control-flow path is a sequence of
control points along the control-flow graph of a program; an execution path is a sequence
of executed control points driven by a program input.

Definition 2.1 (Def-Use Pair). Following the classic definition from Herman [1976],
a def-use pair du(ld, lu, x) occurs when there exists at least one control-flow path from
the assignment (i.e., definition, or def for short) of the variable x at control point ld to
the statement at control point lu where the same variable x is used (i.e., use) on which
no redefinitions of x appear (i.e., the path from the def to the use is def-clear).

In particular, two types of variable uses are distinguished in data-flow testing [Rapps
and Weyuker 1982, 1985]. If x is used in a computational or output statement, the use
is referred to as a computation use (or c-use), and the pair is denoted as dcu(ld, lu, x),
where x is defined at ld and used at lu. If x is used in a conditional statement, its use
is called as a predicate use (or p-use). At this time, two def-use pairs appear, denoted
as dpu(ld, (lu, lt), x) and dpu(ld, (lu, l f ), x), where x is defined at ld, used at lu, but has
two opposite flow directions (lu, lt) and (lu, l f ): the former denotes the true edge of the
conditional statement in which x is used; the latter the false edge.3

In the literature, three types of data-flow testing [Badlaney et al. 2006] exist: static,
dynamic, and hybrid data-flow testing. Static data-flow testing statically analyzes the
program code and detects potential bugs with respect to the patterns of data anoma-
lies [Huang 1979; Copeland 2003] without executing the code. However, it may fail in
the situations where the state of a data object cannot be determined by only analyz-
ing the code.4 In contrast, dynamic data-flow testing detects data anomalies during

2We use line numbers to denote control points in a program.
3Without ambiguity, we use du(ld, lu, x) to denote a def-use pair in this article.
4For example, static data-flow testing cannot determine which element is referenced when the value of an
array index variable is only assigned at runtime.
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Fig. 3. An example: power.

program execution. Hybrid data-flow testing is the combination of them. Throughout
the article, we focus on dynamic data-flow testing, which is the target problem in most
research work. In the following, we give the definition of (dynamic) data-flow testing.

Definition 2.2 (Data-Flow Testing). Given a def-use pair du(ld, lu, x) in program P, the
aim of data-flow testing is to find an input t that induces an execution path p passing
through ld and then lu with no intermediate redefinitions (i.e., kills) of x between ld and
lu. We say this test case t satisfies the pair du.

Rapps and Weyuker [1982, 1985] first5 define the requirement to cover all def-use
pairs at least once as all def-use coverage criterion (or all-uses coverage), which means
at least one def-clear path of each pair should be covered. In particular, for a c-use pair,
p should cover ld and lu; for a p-use pair, p should cover ld and the true or false edge,
that is, (lu, lt) or (lu, l f ), respectively.

2.2. An Example

Figure 3 shows an example program power, which takes as input two integers x and y
and outputs xy. Its control-flow graph (CFG) is shown in the right column in Figure 3.
Following the definitions from Rapps and Weyuker [1982], Figure 4 shows the defini-
tions and uses of the variables in power and the corresponding def-use pairs. We can
see that this example program has total 19 statements, eight branches, and 20 def-use
pairs.

For example, the followings are two def-use pairs with respect to the variable res:

du1 = (l8, l17, res), (1)
du2 = (l8, l18, res). (2)

Here, du1 is a def-use pair because the definition with respect to the variable res
(at Line 8) can reach the corresponding use (at Line 17) through the control-flow

5We found almost all of the literature that followed uses or extends the definitions by Rapps and Weyuker
[1982, 1985]. In addition, Frankl and Weyuker [1988] define feasible data-flow testing criteria, which empha-
size the def-use pairs that are executable; Laski and Korel [1983] present testing strategies for use-definition
chains. In this article, we focus on the most widely used criteria proposed by Rapps and Weyuker.
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Fig. 4. The definitions and uses of the variables in Figure 3, and their corresponding def-use pairs.

Fig. 5. The basic process of data-flow testing.

path l8, l9, l13, 114, l17. It is a feasible pair as well because a test input can be found
to satisfy du1. For example, t = (x �→ 1, y �→ 0) can induce an execution path p =
l4, l6, l7, l8, l9, l13, l14, l16, l17, which covers du1 (cf. Definition 2.2). For du2, it is a def-use
pair because its definition (at Line 8) can reach the corresponding use (at Line 18)
through the path l8, l9, l13, 118. However, du2 is infeasible: if there were a test input
that could reach the use, it must satisfy y > 0 at l13. Since y has not been modified
in the code, y > 0 also holds at l4. As a result, res will be redefined at l10 since the
loop guard at l9 is true. Clearly, no such inputs exist for this pair, which can both avoid
redefinitions in the loop and reach the use.

2.3. Basic Testing Process

Data-flow testing consists of three basic phases: data-flow analysis, test data genera-
tion, and coverage tracking (illustrated in Figure 5), which totally occupy almost 50%
of research efforts as shown in Figure 2.

—The Data-Flow Analysis Phase. A data-flow analysis algorithm takes as input the
program P under test to compute test objectives (i.e., def-use pairs).

—The Test Data Generation Phase. A testing approach is adopted to generate a test
input t to satisfy a target def-use pair du.

—The Coverage Tracking Phase. The test input t is executed against the program
P for covering the pair du. If du is covered and not redefined, t is incorporated into
the test suite T .

The whole testing process continues until all pairs are satisfied or the testing budgets
(e.g., testing time) are used up. At last, the resulting test suite T will be replayed
against the program P to check correctness with test oracles.
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2.4. Difficulties

Despite DFT being able to detect data-flow faults, several difficulties [Weyuker 1990;
Denaro et al. 2013] prevent it from finding wide application in industrial practice.
Unscalable Data-Flow Analysis. A data-flow analysis algorithm is demanded in
DFT to identify def-use pairs from the program under test. However, it is not easy
for a data-flow analysis procedure to be scalable against large real-world programs,
especially when all program features are taken into consideration (e.g., aliases, arrays,
structs, and class objects). A suitable approximation has to be made to trade off between
precision and scalability.
Complexity of Data-Flow Test Design. The number of test objectives with respect to
data-flow criteria in a program is much larger than those of simple control-flow crite-
ria.6 In addition, more efforts are required to derive a data-flow test case: a tester has
to cover a variable definition and its corresponding uses without variable redefinitions
rather than just covering a statement or branch.
Infeasible Test Objectives. Due to the conservativeness of static data-flow analysis
techniques when applied in identifying test objectives, def-use pairs may include infea-
sible ones. A pair is feasible if there exists an execution path that can pass through it.
Otherwise, it is infeasible (e.g., the pair (l8, l18, res) in Section 2.2 is infeasible). Without
prior knowledge about whether a target pair is feasible or not, a testing approach may
spend a large amount of time, in vain, on covering an infeasible def-use pair.

Here the problem of identifying infeasible test objectives is actually undecidable, and
no techniques can reliably give definite conclusions on the feasibility. It is not unique
in DFT but also exists in structural testing. In spite of the aforementioned difficulties,
with the help of the existing techniques and recent advances, DFT can be automated
and these challenges can be mitigated, as this survey will demonstrate.

3. CLASSIC DATA-FLOW ANALYSIS

To identify test objectives (i.e., def-use pairs) in DFT, a reaching definition proce-
dure [Allen and Cocke 1976] (it also inspires the definitions of data-flow coverage
criteria) is usually used, which actually answers such a question: for each variable use,
which definitions can potentially supply the values to it?

Harrold and Soffa [1994] use a standard iterative data-flow analysis to compute
definition-use relations for high-level languages. The intraprocedural definition and
use information are abstracted for each procedure via control-flow graphs and then
used to compute interprocedural def-use pairs that cross the boundaries of procedures.
Pande et al. [1994] extend the reaching definition analysis to handle programs with
single-level pointers for C language. The algorithm considers program-point-specific
pointer-induced aliases and has polynomial-time complexity.

To counter the complexity of the traditional exhaustive and incremental data-flow
analysis, Duesterwald et al. [1996, 1997] propose a demand-driven data-flow analysis
technique to aid DFT when integration testing is used to validate program interfaces.
The analysis is performed as a goal-oriented search instead of using exhaustive infor-
mation propagation. It efficiently computes the newly established data-flow informa-
tion during each bottom-up integration step and does not need to store the reaching
definition solutions between each step.

Harrold and Rothermel [1994] extend data-flow analysis for object-oriented lan-
guages, which not only considers the definition-use relations within methods (i.e.,

6Note that some control-flow criteria can be more demanding than data-flow criteria, namely, any that
explicitly require execution of all paths of a particular type (e.g., all loop-free paths) and all paths that go
around loops at most 5 times.
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Fig. 6. Percentage of publications using each testing approach on data-flow-based test data generation.

intramethod def-use pairs) but also computes data-flow relations through instance
variables (i.e., intermethod and intraclass def-use pairs). Chatterjee and Ryder [1999]
propose a flow- and context-sensitive algorithm based on point-to analysis to compute
def-use pairs for object-oriented libraries. The algorithm tackles the difficulties of un-
known aliasing between parameters, unknown concrete types of the parameters, and
dynamic dispatch and exceptions. Souter and Pollock [2003] and Denaro et al. [2008]
also extend classic data-flow analysis to object-oriented programs and especially con-
sider the construction of contextual def-use pairs that are created by class objects.

To improve the precision of static def-use pair analysis, Bodı́k et al. [1997] propose
an approach to exclude parts of infeasible def-use pairs by utilizing the information
of some infeasible paths that can be detected at compile time (note that the problem
of identifying all infeasible paths is undecidable). This approach detects static branch
correlation to identify infeasible program subpaths and then excludes def-use pairs
that span these infeasible subpaths. The algorithm is implemented as demand driven
at both intraprocedural and interprocedural levels and is suitable for DFT in regression
testing and integration testing.

Classic data-flow analysis belongs to static analysis, which may have to be enhanced
by alias analysis in practice at different precision levels (e.g., flow and/or context sen-
sitive). In practice, a suitable approximation should be made to trade off between
precision and scalability.

4. APPROACHES TO DATA-FLOW-BASED TEST DATA GENERATION

This section presents various approaches to automating data-flow-based test data gen-
eration, which have a strong impact on the effectiveness and efficiency of DFT. From
the publication repository, we find that the test generation problem is the most active
research topic in the study of data-flow testing and has been continuously concerned
over the past 20 years. A total of 27 technical research papers are related to this topic.
We classified them into five main groups according to their testing techniques: search-
based testing, random testing, collateral-coverage-based testing, symbolic-execution-
based testing, and model-checking-based testing.

We compute the percentages7 of each testing approach used in these papers (shown in
Figure 6). We find that the search-based testing approach (including genetic algorithm
and optimization algorithm) is the most widely studied, which occupies almost 50% of

7If one paper uses more than one testing approach, we count all of them.
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research efforts. The collateral-coverage-based approach and random testing are also
popular. But more sophisticated testing approaches, for example, symbolic execution
and model checking, are less investigated.

In the following, we will detail these approaches in independent sections starting
with the most widely studied and going to the least studied, that is, search-based
testing (Section 4.1), random testing (Section 4.2), collateral-coverage-based testing
(Section 4.3), symbolic-execution-based testing (Section 4.4), and model-checking-based
testing (Section 4.5). At last, some other approaches are discussed in Section 4.6.

4.1. Search-Based Testing Approach to Data-Flow Testing

Search-based software testing [Harman et al. 2015], as an instance of the general
search-based software engineering area, has continuously received wide research in-
terest in the past decades.
Principle of Search-Based Approach. The search-based approach includes various
metaheuristic techniques [McMinn 2004] and utilizes them to identify solutions to such
combinational problems as test case generation. The problem of test data generation
in general is undecidable, but it can be interpreted as a search problem in which it
searches for desired values from program input domains to fulfill test requirements.

The Genetic Algorithm (GA) [Holland 1992] proposed in 1975 is a representative of
metaheuristic search techniques, which is inspired by genetics and natural selection.
During test data generation, a GA starts from a population of candidate individuals
(i.e., test cases) and then uses search operators (e.g., selection, crossover, and mutation)
to generate the next promising test case. Selection chooses effective individuals from
the population to do recombination (i.e., crossover and mutation). Crossover between
two independent individuals produces two new test cases that share genetic material
from parents, while mutation adds small changes to a proportion of the populations.

Several GA-based testing methods have been proposed to tackle the DFT problem
[Girgis 2005; Ghiduk et al. 2007; Vivanti et al. 2013]. Girgis [2005] first uses GA for
data flow testing w.r.t. all-uses coverage. In Girgis [2005], GA uses a binary string s of
length m as a chromosome (i.e., a test case) to represent the values of input variables.
Assume the program under test has k input variables (e.g., v1, . . . , vi, . . . , vk, 1 ≤ i ≤ k),
the input range of vi is [ai, bi], and di is the desirable precision for the values of vi. Then
the mapping from the binary string si to the variable value vi with the domain [ai, bi]
is established by the following formula:

vi = ai + v′
i ∗ bi − ai

2mi − 1
,

where v′
i is the decimal value of the binary string si. Take the program in Figure 3

(Section 2) as an example and assume the input range of x and y is [−2, 9] and
[−4, 13], respectively, and the chromosome is a binary string of length 9, where the
first 4 bits from the left represent the value of x, and the next 5 bits denote the value of
y. For example, the binary string s = 010100110 represents a test case with x = 5 and
y = 6. Before test generation, GA uses this encoding method proposed by Michalewicz
[1994] to generate the initial population of test cases.

In Girgis [2005], GA uses the ration between the number of covered def-use paths
and the number of total def-use paths as the fitness function, which exclusively uses
coverage information to determine the effectiveness of an individual test case. This
GA-based method works as follows. First, it generates a set of test cases encoded
in the binary string form. Then it uses a roulette wheel algorithm-based selection
method [Michalewicz 1994] to pick promising individuals according to their fitness
values. Next, GA uses search operators (i.e., crossover and mutation) to produce new
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chromosomes from the selected parents. After a predefined count of iterations, GA
could output a set of desired test cases that can cover the target def-use paths (because
of the undecidability of this search problem, uncovered def-use paths may still exist).

Ghiduk et al. [2007] later find that there are some pitfalls inside the fitness function
used by Girgis [2005], which could be too coarse to identify the closeness of the test
cases in the following situations: (1) if two test cases cover the same number of def-
use paths, they will be given the same fitness value, and (2) if a test case does not
cover any def-use paths, it will be given “0” as its fitness value. As a result, it may
lose useful information when selecting promising individuals for recombination. To
solve this problem, following a similar procedure in Girgis [2005], they propose a new
multiobjective fitness function. This function evaluates the fitness of test data based on
its relation, through dominance [Lengauer and Tarjan 1979], to the definition and use
in the data-flow requirement. In particular, it considers a def-use pair as two objectives,
that is, the def and the use. To evaluate the closeness of a test case with respect to a
target def-use pair, it uses the missed nodes of the dominance paths against these two
objectives. The function is set up based on two observations: (1) a test case that covers
the def is closer than a test case that does not cover both def and use or covers the
use only, and (2) a test case that misses but tries to cover the def or use is closer than
a test case that misses and does not try to cover the def or use (a test case trying to
cover a target statement means, during the following search, its mutants are reaching
closer to the target). They follow such a testing method as targeting one def-use pair
at one time, which can fulfill a specific test requirement at one time. In the evaluation,
they find that this GA approach costs less search time and requires fewer program
iterations than random testing. However, it is still unclear how much this technique
outperforms that of Girgis [2005] because no relevant results are provided.

Vivanti et al. [2013] use the genetic algorithm to handle data-flow testing on object-
oriented programs. For testing classes in object-oriented programs, a test case is repre-
sented as a sequence of method calls [Tonella 2004]. Following the conception of testing
on classes [Harrold and Rothermel 1994], they identify three kinds of def-use pairs:
intramethod pairs, intermethod pairs, and intraclass pairs. And they use a “node-node”
fitness function [Wegener et al. 2001], where the search is first guided toward reaching
the first node (i.e., the def node) and then from there toward reaching the second node
(i.e., the use node). However, the authors find that when targeting individual test objec-
tives at one time, testers face the issue of reasonably distributing the testing resources
among all test objectives. Moreover, for infeasible test objectives, testing resources in-
vested on them will be wasted. To overcome these problems, instead of using the classic
way of targeting one pair at one time, they apply the whole test suite generation [Fraser
and Arcuri 2013] in data-flow testing, which optimizes sets of test cases toward cover-
ing all test objectives. This approach is expected to be less affected by infeasible test
objectives. Through the evaluation on the SF100 corpus of classes [Fraser and Arcuri
2012], they confirm that the test objectives of data-flow testing are much more than
those of branch testing, but the resulting test suite is more effective in fault detection.

Denaro et al. [2015] also use a similar genetic algorithm to augment initial test
suites with data-flow-based test data in object-oriented systems. Liaskos et al. [2007]
and Liaskos and Roper [2008] hybridize GA with the artificial immune systems (AIS)
[Liaskos and Roper 2007] algorithm to fulfill data-flow testing against Java library
classes. This combined technique shows its potential in improving the testing perfor-
mance against GA alone.

Baresi et al. develop a GA-based testing tool, Testful [Baresi et al. 2010; Baresi and
Miraz 2010], for structural testing on Java classes. This GA variant uses a multiobjec-
tive fitness function and works at the class level as well as method level. The former
generates useful states for class objects, and the latter uses them to reach the uncovered
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code in the class. In Miraz [2010], Matteo applies this GA variant to cover def-use pairs.
The author points out that explicitly exercising def-use pairs for object-oriented pro-
grams can often be rewarded because it can correctly relate methods that cooperate
with each other by exchanging data (e.g., objects’ fields). Other efforts include Oster
[2005] and Deng et al. [2009], who also use GA to automate data-flow testing but only
evaluate small examples.

There also have been attempts at using optimization-based search techniques to
tackle the DFT problem. Nayak and Mohapatra [2010] and Singla et al. [2011a, 2011b]
use particle swarm optimization, while Ghiduk [2010] uses ant colony optimization.
Inspired by natural behaviors, these optimization algorithms simulate these behaviors
to find optimal solutions in the context of DFT. However, these approaches have been
evaluated only on toy programs. Their effectiveness on large programs is still unclear.
Discussion. The search-based techniques have already been applied to enforce simple
coverage criteria (e.g., statement and branch testing [Anand et al. 2013]), as well as
some advanced coverage criteria [Ammann et al. 2003; Inc 1992] (e.g., logical cover-
age [Awedikian et al. 2009; Ghani and Clark 2009]) and data-flow coverage as discussed
earlier. This approach treats test data generation as a domain search problem, and
thus, it is more competent at solving nonlinear constraints and finding floating-point
inputs [Lakhotia et al. 2009, 2010; Bagnara et al. 2013] than those constraint-based
approaches (e.g., symbolic execution).

However, there still exist some problems that should be noted and investigated: First,
the testing performance of search-based techniques heavily depends on the underlying
fitness functions (it may take a very long time to find good solutions), and thus enough
carefulness is required in its design and optimization. Second, compared with GA, some
optimization-based algorithms (e.g., particle swarm optimization and colony optimiza-
tion) are much less studied, and their scalability on real-world programs is still unclear.
Third, although the multigoal fitness functions [Lakhotia et al. 2007; Fraser and Arcuri
2013] can mitigate the impact of infeasible pairs, it still cannot detect infeasible pairs.

4.2. Random-Testing-Based Approach to Data-Flow Testing

Random testing [Bird and Munoz 1983] is one of the most widely used and cost-effective
testing approaches. In its classic implementation, test inputs are randomly picked from
the value ranges with respect to program specifications and later executed against the
program under test.

This classic random testing technique has been adopted as an easily implemented
but quite efficient baseline approach for data-flow testing in several works [Girgis 2005;
Ghiduk et al. 2007; Su et al. 2015]. For object-oriented systems, a test case is a sequence
of class constructor invocations and method calls [Pacheco et al. 2007]. Random testing,
adapted to randomly generate these sequences to exercise the classes under test, has
also been used in the filed of data-flow testing [Alexander et al. 2010; Denaro et al.
2015]. In addition, other forms of random testing [Girgis et al. 2014], for example,
randomly selecting test paths from program graphs to cover def-use pairs (and then
using test generators to derive corresponding test cases from those test paths), are
used to achieve data-flow testing.
Discussion. Random testing is cost-effective and easy to implement, but it can only
distinguish limited sets of program behaviors. As a result, without any optimizations,
random testing usually cannot achieve satisfiable data-flow coverage. But with the
help of some optimization techniques, random testing could become a competitive test
generation approach for DFT.

For example, researchers find that if previously selected tests cannot reveal program
faults, the next new tests should be selected far away from the already executed ones
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Fig. 7. Hierarchy of structural characteristics of a program.

so as to improve the chance of triggering faults. Adaptive random testing [Chen 2008;
Ciupa et al. 2008; Lin et al. 2009; Arcuri and Briand 2011], such as enhancement of
traditional random testing, which evenly spreads test cases across their input domains,
could improve the efficiency of data-flow testing. In addition, feedback-directed random
testing [Pacheco et al. 2007]), which improves random testing by incorporating the
feedback information obtained from the execution of test cases when they are created,
can also benefit DFT.

4.3. Collateral Coverage-Based Approach to Data-Flow Testing

In software testing, collateral coverage has been exploited to optimize test suite gen-
eration [Harman et al. 2010; Fraser and Arcuri 2013]. It is based on the following
observation: the test case that satisfies a target test objective can “accidentally” cover
other test objectives. Thus, if we exclude these covered test objectives and invest the
testing budgets in the remaining uncovered objectives, the size of the resulting test
suite and the cost of test execution and oracle checking can be reduced.

Similarly, when exercising a program to satisfy a given testing criterion (e.g., branch
coverage), test objectives with respect to other coverage criteria (e.g., data-flow cov-
erage) may also be accidentally covered, which is another form of collateral cover-
age [Malevris and Yates 2006]. Formally, a test criterion C1 subsumes another criterion
C2 if, for all programs P, the test cases that satisfy all the test objectives of P with re-
spect to C1 also satisfy those with respect to C2. For example, Figure 7 (given in Rapps
and Weyuker [1982, 1985]) shows the subsumption relations between different test-
ing coverage criteria.8 The criterion at the arrow tail subsumes the criterion at the
arrow head (e.g., the branch criterion subsumes the statement criterion). Since the
subsumption relation is transitive, it actually defines the relations between various
coverage criteria. The shadowed criteria are seven types of data-flow testing criteria
(refer to Rapps and Weyuker [1982, 1985] for their detailed definitions), which empha-
size different ways to exercise definition-use relations. All-uses coverage is all def-use
coverage (cf. Definition 2.2 in Section 2.1), and it subsumes all c-uses and all p-uses
coverage. Moreover, all-uses coverage also subsumes branch coverage.9

The collateral coverage-based idea has been attempted to tackle data-flow test-
ing [Malevris and Yates 2006; Santelices and Harrold 2007; Merlo and Antoniol 1999;

8It should be noted that the relations in Figure 7 will change when feasible data-flow testing criteria,
proposed by Frankl and Weyuker [1988], are taken into consideration.
9A p-use pair is composed of the definition statement and the conditional statement with the use. The all
p-uses coverage requires that both the true and false edges of the conditional statements be exercised. It is
this distinction that is responsible for the fact that all-uses coverage subsumes branch coverage.
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Marré and Bertolino 1996, 2003; Santelices et al. 2006]. Malevris and Yates [2006]
investigate the level of data-flow coverage when branch testing is intended. In the
empirical study, they select paths from the control-flow graph to fulfill all branches’
coverage on 59 units written in different programming languages (including Fortran,
Pascal, C, and Java) and measure the concurrently achieved data-flow coverage with
respect to seven data-flow criteria (the ones shadowed in Figure 7). In their experiment,
on average, over 35% of all-du-paths coverage and over 40% of all-uses coverage can be
achieved when enforcing branch testing and selecting a mean of 6.44 paths per unit.
The study also reveals that the actual data-flow coverage can be modeled as a function
that takes as parameters the number of selected paths with respect to branch testing
and the number of feasible paths therein. In addition, they also find that (1) the data-
flow coverage is independent of the language that a unit uses, (2) the level of collateral
coverage can be predicated to estimate the possible testing budgets demanded by DFT,
and (3) undertaking branch testing before data-flow testing can be more cost-effective
because parts of def-use pairs will be covered during branch testing.

Merlo and Antoniol [1999] exploit the coverage implication between def-use pairs
and nodes (i.e., statements) to achieve intraprocedural data-flow testing. Pre- and
postdominator analysis is used to identify a set of nodes whose coverage could imply
the coverage of a subset of def-use pairs. They evaluate the approach on a 16KLOC
Gnu find tool and find that, on average, 75% of def-use pairs are definitely covered
when covering the nodes of each routine.

Santelices et al. [2006] present a subsumption algorithm for program entities of any
type (e.g., branches, def-use pairs, and call sequences) based on predicate conditions.
This predicate condition is a special version of path condition [Robschink and Snelting
2002], computed from the system dependence graph, to represent the necessary but
not sufficient condition of an entity for its coverage. A table that includes all these
predicate conditions for each entity is constructed to create the subsumption relations
of entities for efficient coverage tracking.

Later, Santelices and Harrold [2007] proposed an approach to automatically infer
data-flow coverage from branch coverage. In the static analysis phase, an inferability
analysis is used to classify def-use pairs into three categories: inferable (the coverage
can always be inferred from branch coverage), conditionally inferable (the coverage can
be inferred from branch coverage in some but not all program executions), and noninfer-
able (the coverage cannot be inferred from branch coverage). During the dynamic test
suite execution stage, the branch coverage is recorded against three types of entities:
the definitions, the uses, and the kills of def-use pairs. Finally, the coverage tracking
phase takes as input the results from both the static and dynamic analysis, and it re-
ports def-use pairs as definitely covered, possibly covered, or not covered. Although this
approach may lose some coverage precision, the prominent benefit is that the overhead
of coverage tracking can be greatly mitigated since the program is instrumented at
branch coverage level instead of data-flow coverage level.

Marré and Bertolino [1996, 2003] propose an approach to identify a minimal set of
def-use pairs such that the paths covering these pairs could cover all the pairs in the
program. In other words, the coverage of the pairs outside the set can be inferred by the
coverage of those pairs therein. This set is called a spanning set and the pairs therein
are called unconstrained pairs. The cardinality of this set is actually the upper bound
on the size of the test suite required to achieve all-uses coverage. As a result, it can
help estimate the cost of data-flow testing. Harrold et al. [1993] propose a technique
to generate a representative set of test cases from a test suite that achieves the same
coverage rate as the original entire test suite. This technique minimizes the test suite
size by utilizing collateral coverage and is independent of the testing methodology. It
only requires an association between a test requirement and the test cases that satisfy
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this requirement. The evaluation on data-flow testing demonstrates that the technique
is effective in removing redundant test cases but without sacrificing the coverage rate,
which is particularly useful in regression testing to reduce testing cost.
Discussion. With the help of existing test data, the collateral coverage-based ap-
proach has several merits for data-flow testing: (1) by only considering the uncon-
strained pairs, it can reduce the test suite size as well as the overhead of coverage
tracking; (2) how many testing budgets should be allocated can be estimated through
the number of unconstrained pairs; and (3) it can help understand the relationships
between entities at different levels (e.g., statements, branches, and def-use pairs) in the
program.

However, since this approach uses the coverage of low-level program entities (e.g.,
statements or branches) to infer the coverage of high-level entities (e.g., def-use pairs),
it may fail to identify test data for those pairs whose coverage cannot be easily inferred.
Moreover, it cannot distinguish infeasible pairs either.

4.4. Symbolic Execution-Based Approach to Data-Flow Testing

Symbolic execution, first proposed by King [1976], is a classic program analysis tech-
nique and has been widely applied in software testing [Cadar and Sen 2013].
Principle of Symbolic Execution. Symbolic execution uses symbolic values instead
of concrete values as program inputs. As a result, the symbolic expressions composed of
these inputs can be used to represent the values of program variables. During symbolic
execution, at any point, a program state includes (1) the symbolic expressions (values)
of program variables, (2) a path constraint (pc) over symbolic inputs in the form of
a Boolean formula that needs to be satisfied to reach this program point, and (3) a
program counter that denotes the next program statement to execute.

The technique works as follows: During the execution, new constraints over inputs at
each branch point are used to update pc. If the new pc is unsatisfiable, the exploration
of the corresponding path will stop. Otherwise, the execution will continue along this
branch point such that any solution of the pc will execute the corresponding path. In
particular, when both directions (i.e., branches) of a conditional statement are feasible,
the path exploration will fork and continue on. A search strategy [Cadar et al. 2008;
Burnim and Sen 2008; Cadar et al. 2006] will be adopted to specify the prioritization on
search directions. This classic approach of symbolic execution is also referred as static
symbolic execution (SSE). In Figure 8, we illustrate the symbolic execution on the
example program in Figure 3 (Section 2). Here, three program paths are explored and
the test inputs are generated by solving the collected path constraints (as Figure 8(a)
shows). The execution tree is given in Figure 8(b).
Static-Symbolic-Execution-Based Approach. Girgis [1993] first used a similar
static symbolic execution system to generate data-flow-based test data. This approach
first generates a set of program paths from the CFG of the program under test with re-
spect to a certain control-flow criterion (e.g., branch coverage). Since the loops from the
CFG may generate infinite program paths, it uses a subset of paths called ZOT-subset
to approximate the whole path space by requiring paths to traverse loops zero, one,
and two times. It then concentrates on those executable paths that can cover def-use
pairs of interest. In this system, a tester can determine the path feasibility by checking
whether the path constraint collected along this path is satisfiable or not. By solving
the path constraints of feasible paths, this system can produce a test suite that fulfills
the given data-flow testing criterion.

For the example program in Figure 3, this approach first statically explores as many
paths as possible with respect to a control-flow criterion (e.g., branch coverage). Assume
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Fig. 8. The symbolic execution process on function power in Figure 3.

it finds a static path p = l4, l5, l8, l9, l10, l11, l9, l13, l18. Here p traverses the loop (located
between l9 and l12) one time and statically covers dua(l10, l18, res). The solution (x �→
0, y �→ 1) to its corresponding pc (i.e., y == 1 ∧ y > 0) can satisfy the pair.
Dynamic-Symbolic-Execution-Based Approach. Godefroid et al. [2005] and Sen
et al. [2005] interleave the symbolic execution with concrete execution to improve the
scalability of static symbolic execution. This hybrid technique (referred to as dynamic
symbolic execution or concolic testing [Godefroid et al. 2005; Sen et al. 2005]) collects
the path constraint along an execution path (same as static symbolic execution), which
is instead triggered by concrete program inputs. If the path constraint becomes too
complicated and is out of the reach of the constraint solver, these concrete values can
be used to simplify it by value substitution.

Su et al. [2015] first adapt this dynamic symbolic execution technique to conduct
data-flow testing on top of a DSE engine, called CAUT [Wang et al. 2009; Yu et al.
2011; Sun et al. 2009; Su et al. 2014]. In their approach, data-flow testing is treated as
a target search problem. It first finds out a set of cut points that must be passed through
by any paths to cover a def-use pair. These cut points can narrow down the path search
space and guide the path exploration to reach the pair as quickly as possible. To further
accelerate the testing performance, it uses a shortest-distance-branch-first heuristic
(which prioritizes a branch direction that has the shortest instruction distance toward
a specified target) from directed symbolic execution approaches [Zamfir and Candea
2010; Ma et al. 2011]) and a redefinition path pruning technique (no redefinitions can
appear on the subpath between the def and the use).

For the example program in Figure 3, assume the target def-use pair is du(l8, l17, res).
DSE starts by taking an arbitrary test input t, for example, t = (x �→ 0, y �→ 42). This
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test input triggers an execution path p

p = l4, l5, l8, l9, l10, l11, l9, l10, l11, . . .︸ ︷︷ ︸
repeated 42 times

, l9, l13, l18, (3)

which already covers the def of du1 at l8. To cover its use, the classical DSE approach
(e.g., with depth-first or random path search [Burnim and Sen 2008]) will systemati-
cally flip branching nodes on p to explore new paths until the use is covered. However,
the problem of path explosion—hundreds of branching nodes on path p (including nodes
from new generated paths from p) can be flipped to fork new paths—could make the
exploration very slow.

In Su et al. [2015], two techniques are used to tackle this challenge. First, the redef-
inition pruning technique is used to remove invalid branching nodes: res is redefined
on p at l10, so it is useless to flip the branching nodes after the redefinition point (the
generated paths passing through the redefinition point cannot satisfy the pair, cf. Defi-
nition 2.2). To illustrate, the branching nodes that will not be flipped are crossed out on
p and the rest are highlighted in Equation (4). As a result, a large number of invalid
branching nodes are pruned:

p = l4 , l5, l8, l9 , l10, l11, ��l9, l10, l11, . . .︸ ︷︷ ︸
repeated 42 times

,��l9,��l13, l18. (4)

Second, a cut-point-guided search strategy [Su et al. 2015] is used to decide which
branching node to select first. For example, the cut points of du1(l8, l17, res) are {l4, l8,
l9, l13, l14, l17}. Since the path p in Equation (4) covers the cut points l4, l8, and l9, the
uncovered cut point l13 is set as the next search goal. From p, there are two unflipped
branching nodes, 4F and 9F (denoted by their respective line numbers followed by T
or F to represent the true or false branch direction). Because 9F is closer to cut point
l13 than 4F, 9F is flipped. As a result, a new test input t = (x �→ 0, y �→ 0) can be
generated that leads to a new path p′ = l4, l6, l7, l8, l9, l13, l14, l15. Now the path p′ has
covered the cut points l4, l8, l9, l13, and l14, and the uncovered cut point l17 becomes the
goal. From all remaining unflipped branching nodes, that is, 4F, 13F, and 14F, the
branching node 14F is chosen because it has the shortest distance toward the goal.
Consequently, a new test input t = (x �→ 1, y �→ 0) is generated that covers all cut
points and du1(l8, l17, res) itself.
Discussion. The classic symbolic execution is a path-based testing approach that can
systematically explore paths to cover target def-use pairs. In early work [Girgis 1993],
Girgis used a control-flow criterion as a coverage metric to guide path exploration,
which can mitigate the path explosion problem but may run the risk of failing to cover
some def-use pairs. For example, three paths in Figure 8(a) have already covered all
branches in the function power, but the def-use pair du(l10, l17, res) is not satisfied (a new
test input (x �→ 1, y �→ −1) corresponding to the path l4, l7, l8, l9, l10, l11, l9, l13, l14, l17 can
cover this pair). The reason is that a control-flow criterion may not subsume a data-flow
criterion. Moreover, the classic symbolic execution has to make some approximations
when symbolic reasoning is used, which may lose precision in data-flow testing. For
example, it cannot precisely reason about which concrete element is referred to by a[x]
(a is an array and x is an index variable) when the concrete value of x is unknown
(one way is to treat a[x] as a use of the whole array a). In contrast, the dynamic-
symbolic-execution-based approach can be more precise and efficient. For example,
variable redefinitions caused by aliases can be detected more easily and precisely with
the dynamic execution information, and dynamic program execution is much faster
than static program execution.
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However, neither the SSE-based nor DSE-based approach is capable of identifying
infeasible pairs, because symbolic-execution-based testing is an explicit path-based
approach, which cannot draw a conclusion on the feasibility of a pair until all program
paths are explored. Without prior knowledge about whether a target pair is feasible or
not, these testing approaches may spend a large amount of time, in vain, covering an
infeasible pair.

4.5. Model-Checking-Based Approach to Data-Flow Testing

Principle of Model Checking. Model checking [Clarke et al. 1999] is a classic formal
verification approach. A model checker is able to construct witnesses or find counterex-
amples when property checking. At a high level, a model checker takes as input the
system specification and a property of interest; it then checks whether the property
is violated or not. If the property is violated, a counterexample will be generated to
demonstrate the violation. Otherwise, the property is concluded as satisfied (i.e., not
violated). As a result, this model-checking approach can be exploited for testing pur-
poses [Fraser et al. 2009], especially when those counterexamples are interpreted as
test cases, which can help a human analyst to identify and fix the fault.
WCTL-Based Model Checking. In classic model checking, the verification task usu-
ally works on an abstract model, the Kripke structure M = (S, S0, T , L), where (1) S
is a set of program states; (2) S0 ⊆ S is an initial state set; (3) T ⊆ S × S is a total
transition relation—for each s ∈ S, there is an s′ ∈ S such that (s, s′) ∈ T ; and (4)
L : S → 2AP is a labeling function, which maps s to a set of atomic propositions that
hold in s.

Based on the Kripke structure, CTL formulas can be used to express temporal prop-
erties of interest. Here we give a simple introduction to CTL (see details in Clarke and
Emerson [1981]): CTL formulas are composed of path qualifiers (e.g., A stands for all
paths, E for some path), modal operators (e.g., X stands for next time), F for eventually,
G for always, and U for until), and logical operators. For a CTL formula f and a state
s of Kripke structure M, K, q |= f if q satisfies f (or briefly written as q |= f ). A
CTL formula f is called a WCTL (weighted CTL) formula if (1) f only has temporal
operators EX, EF, and EU, and (2) in each subformula of f ( f = f1 ∧ f2 ∧ · · · ∧ fn), at
most one conjunct fi is an atomic proposition.

Hong et al. [2003] and Hong and Ural [2005] first used such a Kripke-structure-based
model-checking approach to perform data-flow testing via a CTL-based model checker.
The test obligations of def-use pairs are expressed in WCTL formulas. As a result,
this approach reduces the problem of data-flow testing to the problem of identifying
witnesses for a set of logical formulas. In particular, they denote the flow graph G of the
program under test as G = (V, vs, v f , A), where V is the vertices set, vs ∈ V is the start
vertex, v f ∈ V is the final vertex, and A is a finite arcs set. Here, a vertex represents a
statement and an arc denotes the control flow between two statements. DEF(v) denotes
the variables set that is defined at the vertex v, while USE(v) denotes the variables
set that is used at the vertex v. As a result, the flow graph G is viewed as a Kripke
structure M(G) = (V, vs, L, A ∪ {(v f , v f )}), where L(vs) = {start}, L(v f ) = { f inal}, and
L(v) = DEF(v) ∪ USE(v) for every v ∈ V \ {vs, v f }.

Figure 9 shows the data-flow graph of the example program in Figure 3. We use dx
l

or ux
l to represent the variable x defined or used at program point l. In Figure 9, the set

DEF(l) and USE(l) at the program point l is given. In Hong et al. [2003], it characterizes
the test obligation of a def-use pair du(ld, lu, x) as a WCTL formula in Equation (5). Here,
def (x) is the disjunction of all definitions of x, which ensures the subpath between ld
and lu is a def-clear path with respect to the variable x. Any given (l, l′, x) is a def-use
pair only when the Kripke structure derived from the data-flow graph satisfies the
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Fig. 9. The data-flow graph for the function power in Figure 3.

formula in Equation (5). Note that in this approach, it is not necessary to know in
advance whether there exists a control-flow path between the location l and l′ because
the formula itself implicitly imposes this constraint:

wctl
(
dx

l , ux
l′
) = EF

(
dx

l ∧ EXE
[¬def (x)U

(
ux

l′ ∧ EF f inal
)])

. (5)

For the du1(l8, l17, res) in Equation (1), it can be expressed via the WCTL formula
in Equation (6). A possible witness to this formula is l2, l3, l4, l6, l7, l8, l9, l13, l14, l16, l17:

wctl
(
dres

l8 , ures
l17

) = EF
(
dres

l8 ∧ EXE
[¬def (res)U

(
ures

l17
∧ EF f inal

)])
. (6)

If the all def-use coverage criterion is required, a test suite should be generated via a
set of WCTL formula in Equation (7):

{
wctl

(
dx

l , ux
l′
)|dx

l ∈ DEF(G), ux
l′ ∈ USE(G)

}
. (7)

Discussion. This Kripke-structure-based model-checking approach has the following
merits: (1) Since it works on an abstract model, this approach is language independent.
It can even extend data-flow testing on specification models [Hong et al. 2000; Ural et al.
2000]. (2) This approach casts the data-flow testing problem into the model-checking
problem, which can benefit from future advances in model checkers.

However, it may also suffer from some limitations: (1) Theoretically, the worst-case
number of def-use pairs in this approach can be O(n2), where n is the number of
vertices (i.e., statements) in the graph G. So the count of formulas can be quadratic
with respect to G. If it is applied into interprocedural program-based testing, the whole
graph G built from all functions will contain a large set of vertices. The scalability
of this approach could be affected. (2) In addition, this approach cannot easily detect
infeasible pairs because the abstract model it works on is not aware of underlying path
constraints.
CEGAR-Based Model Checking. Another software model-checking approach,
called CounterExample-Guided Abstraction Refinement-based (CEGAR) model check-
ing [Ball and Rajamani 2002; Henzinger et al. 2002; Chaki et al. 2003], was pro-
posed in 2002. Given the program source code and a temporal safety specification, CE-
GAR either statically proves that the program satisfies the specification or produces a
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Fig. 10. The transformed function power for the def-use pair du1(l8, l17, res) in (a) and du2(l8, l18, res) in (b).
The encoded test requirements are shown by the highlighted statements.

counterexample path to demonstrate the violation. Since then, it has been applied to
automatically check safety properties of OS device drivers [Ball and Rajamani 2002;
Beyer et al. 2007; Beyer and Keremoglu 2011] as well as generate test cases [Beyer
et al. 2004] with respect to statement or branch coverage.

Beyer et al. [2004] suggest a CEGAR-based two-phase approach, that is, model check-
ing and tests from counterexamples, to automatically generating structural test cases.
It first checks whether the program location q of interest is reachable such that a pred-
icate p (i.e., a safety property) is true at q. From the program path that exhibits p at
q, a CEGAR-based model checker can generate a test case that witnesses the truth of
p at q. Similarly, it can also produce a test case indicating the falsehood of p at q. If all
program locations or branches are checked with the predicate p set as true, statement
or branch coverage can be elegantly achieved.

Su et al. [2015] further adapt this CEGAR-based model-checking approach to achieve
data-flow testing with respect to the all def-use criterion. A simple but powerful pro-
gram transformation method is proposed to directly encode the test requirement into
the program under test. It instruments the original program P to P ′ and reduces the
problem of data-flow testing to reachability checking on P ′. A variable cover_flag is
introduced and initialized to false before the def location of a target def-use pair. This
flag is set to true immediately after the def . In order to find a def-clear path from the
def location to the use location, the cover_flag variable is set to false immediately after
the other definitions on the same variable. Before the use, it sets the target predicate
p as cover_flag==true. As a result, if the use location is reachable, we obtain a coun-
terexample and conclude that the pair is feasible with a test case. Otherwise, the pair
is proved as infeasible (or, since the problem is undecidable, the algorithm does not
terminate within a constrained time budget and reports the result as unknown).

For the example program in Figure 3 and the two pairs du1 and du2 in Equations (1)
and (2), the transformed program encoded with these two test requirements is shown
in Figure 10(a) and Figure 10(b), respectively. For the pair du1(l8, l17, res), Figure 10(a)
shows the transformed function power and the encoded test requirement of du1 in
highlighted statements. The variable cover_flag is introduced at l2. It is initialized to
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false and set as true immediately after the def at l7, and set to false immediately after
the other definitions on variable res at l10. Before the use, a checkpoint is set to verify
whether cover_flag can be true at l14. If the checkpoint is unreachable, this pair can
be proved as infeasible. Otherwise, a counterexample (i.e., a test case that covers this
pair) can be generated. In this example, a possible path l2, l3, l4, l6, l7, l8, l9, l13, l14, l16, l17
can be found by the model checker. But for the pair du2(l8, l18, res) in Figure 10(b), the
model checker can quickly conclude that no paths can reach the checkpoint and witness
the truth of cover_flag. Thus, du2 is infeasible.
Discussion. This CEGAR-based model-checking approach has several merits: (1)
The data-flow testing problem can be easily transformed into the path reachability
checking problem. CEGAR can generate counterexamples (i.e., test cases) for feasi-
ble def-use pairs, and can also detect infeasible pairs without false positives. This
technique itself can even benefit from the future advances in CEGAR-based model
checkers. (2) In CEGAR, the test requirement can be directly encoded into the pro-
gram under test without manually writing temporal properties like CTL/WCTL formu-
las. It is more flexible and easier to implement than the other model-checking-based
approaches.

However, in general, CEGAR cannot decide the feasibility of all def-use pairs, since
the problem of checking path feasibility itself is undecidable. Under this circumstance,
CEGAR may not terminate, and only conclude unknown. In addition, CEGAR is essen-
tially a static approach; its testing performance may not be as high as other dynamic
testing approaches (e.g., dynamic symbolic execution-based approach [Su et al. 2015])
when generating test cases for feasible pairs.

4.6. Other Approaches

Khamis et al. [2011] enhance the Dynamic Domain Reduction procedure [Offutt et al.
1999] (DRR) to perform data-flow testing for Pascal programs. The DDR technique
basically integrates the ideas of symbolic execution and constraint-based testing. It
starts from the initial domains of input variables as well as the program flow graph
and dynamically drives the execution through a specified path to reach the target
test objective. During the path exploration, symbolic execution is adopted to reduce
the domain of input variables. And a search algorithm is used to find a set of values
that can satisfy the path constraint. The authors also enhance this technique with
some methods for handling loops and arrays. But it only illustrates the idea with some
proof-of-concept examples, and its practicality is unclear.

Buy et al. [2000] combine data-flow analysis, static symbolic execution, and auto-
mated deduction to perform data-flow testing. Symbolic execution first identifies the
relation between the input and output values of each method in a class and then col-
lects the method preconditions from a feasible and def-clear path that can cover the
target pair. An automated backward deduction technique is later used to find a se-
quence of method invocations (i.e., a test case) to satisfy these preconditions. However,
little evidence is provided on the practicality of this approach. Later, Martena et al.
[2002] extended this technique from a single class to multiple classes, that is, testing
the interclass interactions. It incrementally generates test cases from simple classes
to more complicated classes.

Baluda et al. [2010], Baluda [2011], and Baluda et al. [2011] proposed a novel ap-
proach called Abstract Refinement and Coarsening (ARC) to improve the accuracy of
branch coverage testing by identifying infeasible branches. This approach is rooted
from a property checking algorithm [Beckman et al. 2008; Gulavani et al. 2006], which
aims to either prove that a faulty statement is unreachable or produce a test case
that executes the statement. Baluda et al. adapt this algorithm for structural testing
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and enhance it with “coarsening” to improve its scalability. Baluda [2011] claims this
approach is independent from the coverage criteria and is particularly suitable for such
coverage criteria that suffer greatly from the presence of infeasible test objectives as
data-flow testing criteria.
Summary. Despite several challenges in identifying data-flow-based test data, re-
searchers have developed various general approaches to automating this process. The
search-based testing and collateral-coverage-based testing are the two most widely
studied techniques used to automate test data generation (as shown in Figure 6). A
reasonable explanation is that these two techniques are relatively easy to implement
for DFT. The symbolic-execution-based and model-checking-based techniques attracted
attention quite early, but until recently they were not applied on large real-world pro-
grams, only on laboratory programs. The fact that these techniques are more difficult to
implement than other approaches, and also heavily rely on the advances of other tech-
niques (e.g., constraint solving), may explain this phenomenon. Additionally, for both
procedural language (e.g., C) and object-oriented language (e.g., Java), several academic
tools exist. However, according to our investigation, there are still no commercial tools
supporting DFT. More efforts are needed to develop efficient and easy-to-implement
techniques.

We also need to note that no existing testing techniques can reliably identify in-
feasible pairs due to the fundamental undecidability issue (and this is true for other
structural testing as well). When applying any of them, one may always fail to cover
some pairs and cannot know whether it is because no sufficient testing has been done
or because they can never be covered.

5. APPROACHES TO COVERAGE TRACKING

This section discusses some approaches in the present literature used to track data-flow
coverage and summarizes available data-flow coverage tools.

5.1. Coverage Tracking Techniques

Test coverage is a common vehicle to measure how thoroughly software is tested
and how much confidence software developers have in its reliability. Several tech-
niques [Frankl 1987; Ostrand and Weyuker 1991a; Horgan and London 1992; Misurda
et al. 2005b; Santelices and Harrold 2007; Harrold and Soffa 1994] have been developed
to track the coverage of def-use pairs.

Frankl [1987] proposes a deterministic finite automata-based approach to track the
coverage status of def-use pairs. In her approach, a pair du is related with a regular
expression that describes the control-flow paths covering it. Each automaton associ-
ated with du is checked against all execution paths. Once one path is accepted by
some automaton, the pair du is set as covered. But this approach has to do special
handling when the procedure under test recursively calls itself. Ostrand and Weyuker
[1991a] use a memory tracking technique to precisely determine which pairs are cov-
ered, while Kamkar et al. [1993] use dynamic slicing to improve coverage precision.
Some work [Harrold and Malloy 1992; Su et al. 2015] exploits dynamic data-flow anal-
ysis to improve the precision of tracking data-flow coverage.

Horgan and London [1992] exploit code instrumentation to track DFT coverage,
which is later called the last definition technique. In their approach, a table of def-use
relations is generated from the data-flow graph and a probe is inserted at each code
block. The runtime routine records each variable that has been defined and the block
where it was defined. When a block that uses this defined variable is executed, the last
definition of this variable is verified and the pair is set as covered.
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Misurda et al. [2005b] propose a demand-driven strategy to track def-use pair cov-
erage, which aims to improve the performance of the static instrumentation approach
(e.g., Horgan and London [1992]). The approach works as follows: first, all variable def-
initions in a test region are identified and seed probes are inserted at their locations;
second, when a definition is reached, coverage probes are inserted on demand at all its
reachable uses; third, the probe for a use will be immediately deleted once this use is
reached, and the pair, composed of the most recently visited definition and this use, is
marked as covered.

Santelices and Harrold [2007] develop an efficient matrix-based strategy to directly
track data-flow coverage. In this strategy, a coverage matrix is created and initialized
as zeros, in which each column represents a variable use (associated with a use ID),
and each cell in a column records a definition (associated with a definition ID) for that
use (i.e., a cell corresponds to a def-use pair). In this structure, the matrix cell can be
quickly accessed through the use ID and the definition ID to reduce the runtime cost
of probes. At runtime, the probes track the last definition of a variable. At each use,
a probe is inserted, which uses the use ID and the last definition ID to update the
coverage status of the pair in the matrix.

In Santelices and Harrold [2007], a novel coverage inference strategy is designed,
which uses the branch coverage to infer data-flow coverage. Pairs are divided into
tree types, that is, inferable, conditionally inferable, and noninferable pairs, by using
static analysis before dynamic execution. At runtime, this approach tracks branch
coverage, which is a less costly code instrumentation. After test suite execution, it
outputs actually covered and conditionally covered pairs. Details can be referred from
the collateral-coverage-based testing approach in Section 4.3.

In order to make coverage tracking more scalable, Harrold [1994] develops a tech-
nique on multiprocessor systems to accept tests and produces parallelizable coverage
tracking workload. The workload can be statically or dynamically scheduled onto dif-
ferent platforms. The evaluation on a multiprocessor system shows a good speedup
over the uniprocessor system.
Discussion. Data-flow coverage imposes high overhead on tracking its coverage. The
main reasons are that (1) data-flow-based test objectives are usually much more than
statements or branches, and (2) data-flow coverage puts constraints (i.e., satisfying
def-clear paths) on program paths instead of simply program entities, which makes
tracking more expensive. The existing approaches mainly resort to efficient data struc-
tures or exploit coverage inference to mitigate the overhead.

5.2. Coverage Tools

There have been lots of robust coverage tools [Yang et al. 2009] at hand for statement
and branch coverage, but only a few are available for data-flow coverage. Table I sum-
marizes the coverage tools for data-flow testing, including ASSET [Frankl and Weyuker
1985; Frankl et al. 1985; Frankl 1987; Frankl and Weyuker 1988] (the first data flow
coverage tool), ATAC [Horgan and London 1992], Coverlipse, DaTec [Denaro et al. 2008,
2009], DuaF [Santelices and Harrold 2007], TACTIC [Ostrand and Weyuker 1991b],
POKE-TOOL [Chaim 1991], JaBUTi [Vincenzi et al. 2005], JMockit, Jazz [Misurda
et al. 2005a], DFC [Bluemke and Rembiszewski 2009, 2012], and BA-DUA [Chaim and
de Araujo 2013a; de Araujo and Chaim 2014]. For each tool, the table lists the language
it supports, whether it tracks intra- or interprocedure pairs or both, the analysis in-
frastructure it is based on, the coverage tracking technique it uses, and its availability.
Six out of a total of 12 tools are publicly available, but none of them are commercial
tools, which has also been reported by Hassan and Andrews [2013] and de Araujo and
Chaim [2014] recently.
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Table I. A Summarization of Data-Flow Coverage Tools (“-” Means Unknown; “*”Means the
Tool Is Publicly Available)

Tool Language Coverage Infrastructure Technique
ATAC* C/C++ Intra A Yacc-based parser Last definition
Coverlipse* Java Intra Eclipse Path recording
DaTeC Java Intra/Inter Soot –
DuaF* Java Intra/Inter Soot Coverage inference
ASSET Pascal Intra – Automata
TACTIC C Intra – Memory tracking
POKE-TOOL C Intra – Automata
JaBUTi* Bytecode Intra/Inter A bytecode tool Last definition
JMockit* Java Inter ASM –
Jazz Java Intra Eclipse, Jikes RVM Demand driven
DFC* Java Intra Eclipse –
BA-DUA* Java Intra ASM Bitwise algorithm

6. RECENT ADVANCES

This section discusses three strands of recent advances in data-flow testing: (1) new
coverage criterion, (2) dynamic data-flow analysis, and (3) efficient coverage tracking.
New Coverage Criteria. Hassan and Andrews [2013] introduce a new family of cov-
erage criteria, called Multipoint Stride Coverage (MPSC). Instrumentation for MPSC
with gap g and p points records the coverage of tuples (b1, b2, . . . , bp) of branches taken,
where each branch in the tuple is the one taken g branches after the previous one. The
empirical evaluation shows that this MPSC coverage, generalized from branch cover-
age, can reach a similar or higher level of accuracy than all def-use coverage when
measuring test effectiveness. And the instrumentation for MPSC coverage is also more
efficient than that for data-flow coverage.

Alexander et al. [2010] extend the classic data-flow criteria to test and analyze
the polymorphic relationships in object-oriented systems. The new coverage criteria
consider definitions and uses between state variables of classes, particularly in the
presence of inheritance, dynamic binding, and polymorphic overriding of state variables
and methods. The aim is to increase the fault detection ability of DFT in object-oriented
programs.
Dynamic Data-Flow Analysis. Denaro et al. [2014] and Vivanti [2014] investigate
the limits of the traditional static data-flow analysis used in DFT. They use a dynamic
data-flow analysis technique to identify the relevant data-flow relations by observ-
ing concrete program executions. This approach exploits the precise alias information
available from concrete executions to relate memory data and class state variables with
each other. As a result, it can be considerably more precise than considering statically
computed alias relations, which is the typical overapproximation when integrating
alias information in static data-flow analysis.

The evaluation on five Java projects reveals that a large set of data-flow relations
is missed by the traditional static data-flow analysis, which undermines the effec-
tiveness of the previous DFT approaches. This dynamic technique sheds light on
a new direction of data-flow testing that can better encompass data-flow-based test
objectives.

Denaro et al. [2015] adapt this dynamic data-flow analysis technique to test object-
oriented systems. This approach does not compute all the pairs a priori, but runs some
tests with dynamic analysis, merges the traces to infer never executed pairs, generates
new tests to cover them, and then iterates until it cannot find anything new. It results
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in an increment around 30% over the mutation score of existing branch coverage test
suites.
Efficient Coverage Tracking. One factor precluding broad adoption of DFT is at-
tributed to the cost of tracking the coverage of def-use pairs by tests. Since DFT aims
to achieve more comprehensive program testing, its runtime cost imposed by code
instrumentation is considerably higher than that of other structural criteria. Some
techniques [Misurda et al. 2005b; Santelices and Harrold 2007] have been proposed to
tackle this problem, which are based on expensive computations and data structures.

Inspired by the classic solution to data-flow problems (e.g., reaching definition [Aho
et al. 1986]), Chaim and Araujo [Chaim and de Araujo 2013a; de Araujo and Chaim
2014] invented a Bitwise Algorithm (BA) algorithm, which uses bit vectors with bitwise
operations to track data-flow coverage for Java bytecode programs. For each instruction,
this approach computes the defined and used variables (local variables or fields) by
using known data-flow analysis techniques. After that, it instruments BA code at each
instruction (or block), which is used to determine the coverage of pairs. The BA code
tracks three working sets, that is, the alive pairs, the covered pairs, and the current
sleepy pairs, which are updated during the execution of tests. These working sets are
implemented in bit vectors and manipulated with efficient bitwise operations, whose
sizes are given by the number of pairs of the method under test.

The authors also give the correctness proof [Chaim and de Araujo 2013b] and the
theoretical analysis, which show their algorithm demands less memory and execu-
tion time than the previous demand-driven and matrix-based approaches [Misurda
et al. 2005b; Santelices and Harrold 2007]. In their evaluation [Chaim and de Araujo
2013a], this conclusion is further corroborated by simulating these instrumentation
strategies [Chaim et al. 2011]. In de Araujo and Chaim [2014], this approach is applied
to tackle large systems with more than 200KLOCs and 300K pairs, and its execution
overhead was comparable to that imposed by a popular control-flow testing tool.

7. APPLICATIONS

This section discusses three aspects of the applications of DFT: (1) software fault
localization, (2) web application testing, and (3) specification consistency checking.

7.1. Software Fault Localization

Software fault localization is a tedious and time-consuming activity in program debug-
ging to locate program errors and bugs. Agrawal et al. [1995] propose a novel method
that combines DFT and execution slices together to achieve more efficient fault local-
ization. Their work is based on an assumption that the fault lies in the slice of a test
case that fails on execution instead of succeeding on execution. As a result, testers can
focus the statements on the failed slice. A data-flow testing tool called ATAC [Horgan
and London 1992] is used to generate data-flow tests. These tests are later used to de-
tect seeded faults and calculate execution slices from a Unix sort program. They found
data-flow tests could effectively detect those seeded errors and the dice could notably
improve the fault localization performance.

Santelices et al. [2009] propose a lightweight fault localization technique that uses
different coverage criteria to detect suspicious faulty statements in a program. In their
approach, they use tests against lightweight coverage entities including statements,
branches, and def-use pairs to investigate the benefits of different coverage types in
fault localization. The study shows that different faults are found by different coverage
types, but the combination of these different coverage types can achieve the overall
best performance.

ACM Computing Surveys, Vol. 50, No. 1, Article 5, Publication date: March 2017.



A Survey on Data-Flow Testing 5:25

7.2. Web Application Testing

In recent years, the rapid development of web applications have enriched people’s
daily lives. But testing web applications becomes a tough job when the architecture
and implementation become more and more complicated. Several efforts have been
devoted to apply data-flow testing against web applications.

Since the data in web applications can be stored in HTML documents, it could affect
the data interactions between the server and the client. Liu et al. [2000] extend the
DFT method for web applications to check the correctness of such data interactions. In
their approach, they propose a Web Application Test Model to describe the application
under test and a DFT structure model to capture the data-flow information. In WATM,
each part in the application will be modeled as an object, which can be client pages
for an HTML document, server pages for a Common Gateway Interface script, and
components for a Java applet or an ActiveX tool and so forth. Each of these models is
composed of attributes and operations to store the fundamental information. The DFT
structural model uses four flow graphs to capture the relevant data-flow information.
After obtaining the data-flow information, the test cases will be generated to cover the
intraobject, interobject, and interclient aspects. In this way, DFT is extended to test
web applications.

Qi et al. [2006] develop a multiple agent-based DFT method to test web applications.
They split the testing task into three levels: a method level, an object level, and an
object cluster level. Each test agent from these levels will construct a corresponding
program model annotated with data-flow information. The whole task of data-flow
testing can be divided into subtasks and performed by these test agents.

Mei et al. [2008] exploit DFT to test service-oriented workflow applications such as
WS-BPEL applications. They find that XPath plays an important role in workflow inte-
gration but may contain wrong data extracted from XML messages, which undermines
the reliability of these applications. Thus, they develop the XPath Rewriting Graph as
a data structure to model the XPath in WS-BPEL. And then they conceptually deter-
mine the def-use pairs in the XRG and propose a set of data-flow testing criteria to test
WS-BPEL applications.

Alshahwan and Harman [2012] propose a state-based DFT technique for web appli-
cations, which generates new sequences of HTTP requests to enhance the existing test
suites in terms of coverage and fault detection. The new tests are designed to execute
the definitions of state variables (e.g., session variables) and to ensure that these val-
ues reach the corresponding uses unchanged. They find that the resultant test suite
can indeed improve the quality of test suites.

7.3. Specification Consistency Checking

Various specification models are widely used in software development to build reli-
able systems, which help automatically generate a conforming implementation. As
a result, checking model consistency is an important vehicle to ensure implementa-
tion correctness. Wang and Cavarra [2009] propose a DFT-based approach to check
requirement model consistency. The approach can be summarized as four procedures:
(1) construct the requirement model from system requirements, (2) construct relevant
call sequences to cover the intermethod usages in these models, (3) obtain Boolean
constraints from these call sequences and derive a test suite, and (4) check model con-
sistency by applying this DFT-based test suite. Additionally, developers can compare
their original understanding against the requirements through examining this test
suite.

There is also some work that generates data-flow-based test suites from specifica-
tion models like SDL (Specification and Description Language) [Ural et al. 2000] and
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Fig. 11. Percentage of each language to which data-flow testing is applied.

Fig. 12. Number of evaluation programs that data-flow testing is applied to since 1990, including the total
number, the number of real-world, and the number of laboratory programs on each year.

statecharts [Hong et al. 2000]. The resulting test suites provide the capability to test
whether the implementation is in accordance with high-level specification models.

7.4. Other Applications

DFT has also been applied to test other programs or applications. Zhao [2003] use
DFT to test aspect-oriented programs. Harrold and Malloy [1992] use DFT to check
parallelized code. DFT has also been applied to test object-oriented libraries [Chatterjee
and Ryder 1999] and service choreography [Mei et al. 2009].

In addition, we investigate the percentage of each language that DFT has been
applied to (shown in Figure 11). We can observe the following: First, DFT is originally
applied to procedural languages (e.g., Fortran, Pascal, C), but in recent years, object-
oriented programs have gained more emphasis because DFT can help find more subtle
faults when checking object states. Second, the object-oriented languages (e.g., C++ and
Java) are the most popular language in enforcing data-flow testing. Third, specification
languages and web services also attract research interests.

Figure 12 shows the number of evaluation programs in each year reported by the
publications since 1990 (we omit the papers before 1990 because they mainly focus on
theory and formal analysis). We can observe that (1) DFT has become more practical in
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the past 10 years since the number of evaluated programs is increasing, and (2) DFT
is gradually being applied to real-world programs other than laboratory programs.
Moreover, we find that the techniques of data-flow analysis and coverage tracking (at
the largest scale of 200KLOC) are more scalable than those of test generation (at the
largest scale of 15KLOC). It indicates that more research efforts are required to narrow
this gap.

8. NEW INSIGHTS AND FUTURE WORK

This section presents the new insights that we have gained during this survey.
Following the three basic testing process of DFT, that is, data-flow analysis, test
data generation, and coverage tracking, we recommend the following future research
directions.
Data-Flow Analysis. Data-flow analysis is responsible for identifying def-use pairs.

(1) To better encompass test objectives, one can combine known static data-flow anal-
ysis techniques with dynamic data-flow analysis techniques [Denaro et al. 2014,
2015] and strike a balance between scalability and precision.

(2) The data-flow analysis procedure can leverage the idea of collateral coverage to
infer the coverage relation between def-use pairs themselves or between def-use
pairs and other program structs (e.g., statements and branches). The intention is
to identify a minimal set of pairs whose coverage implies the coverage of others so
that data-flow testing can focus on these critical pairs, and the testing cost can be
reduced.

(3) The type of data-flow analysis techniques should be determined according to the
testing scenarios. For example, for unit testing, traditional exhaustive data-flow
analysis can be used. But for regression testing or integration testing, demand-
driven data-flow analysis techniques are more suitable, which can avoid unneces-
sary overhead.

(4) New data-flow analysis techniques can be developed and adapted for different
programming languages. For example, procedural language and object-oriented
language are much different in the construction of def-use pairs.

Test Data Generation. Test data generation aims to efficiently generate suitable test
cases for def-use pairs.

(1) Various dynamic testing approaches can be combined, including random testing,
genetic/optimization-based testing, and symbolic-execution-based testing, to satisfy
def-use pairs. They have different strengths in test generation, despite the fact that
they are incapable of dealing with infeasible pairs.

(2) Model-checking-based approaches can be used to complement the dynamic testing
approaches. It can generate tests for feasible def-use pairs as well as handle parts
of infeasible pairs. The test requirements imposed by the pairs can be transformed
into acceptable forms of model checkers, and then model checkers can be used to
check path feasibility and output counterexamples as test cases.

(3) The symbolic-execution-based approach is effective in path-based test generation
but faces the path explosion problem, while the model-checking approach (CEGAR)
is effective in checking path feasibility. As a result, the symbolic execution can
be informed by the runtime information of CEGAR to avoid unnecessary path
explorations and improve its performance in DFT.

(4) The combination of search-based and symbolic-execution-based testing techniques
has already been applied to achieve more efficient branch testing [Inkumsah and
Xie 2008; Baars et al. 2011]. Their combination may also be able to improve DFT.

ACM Computing Surveys, Vol. 50, No. 1, Article 5, Publication date: March 2017.



5:28 T. Su et al.

Fig. 13. The hybrid data-flow testing framework.

Coverage Tracking. Efficient coverage tracking algorithms can be proposed to im-
prove the usability of data-flow testing on large real-world systems. Such instrumen-
tation approaches as the BA algorithm [de Araujo and Chaim 2014] can be employed.

Based on the aforementioned new insights and research directions, a novel hybrid
data-flow testing framework (shown in Figure 13) could be proposed to achieve more
practical data-flow testing. It is composed of three basic components: a data-flow an-
alyzer, a test data generator, and a coverage monitor. Given a program as input, this
hybrid framework (1) outputs test data for feasible test objectives and (2) eliminates
infeasible test objectives. It interleaves between dynamic testing approaches and static
model checkers to maximize the data-flow coverage. It hopefully can achieve better
performance by combining the strengths from its component approaches and benefit
from the future advances in data-flow analysis, test data generation, and coverage
tracking. Moreover, this framework can facilitate DFT research from two aspects. One
is the evaluation and comparison between different testing techniques on a more fair
basis. The other is the enforcement of data-flow coverage testing on more real-world
programs to gain deeper understanding of its effectiveness and complexities [Namin
and Andrews 2009; Inozemtseva and Holmes 2014].

Additionally, future research efforts can be endeavored to develop new cost-effective
coverage criteria to complement data-flow coverage criteria. The new criterion should
be easy to enforce, and it has comparable fault detection ability against DFT (e.g.,
Hassan and Andrews [2013] and Li et al. [2013]). Data-flow coverage criteria can also
be extended to various testing scenarios (e.g., object-oriented systems, web applications,
and mobile apps) to check the correctness of data manipulations.

9. CONCLUSION

In the last 40 years, data-flow testing has been increasingly and extensively studied.
Various approaches and techniques have been developed to pursue efficient and auto-
mated data-flow testing, given its ability to check data interactions. To our knowledge,
this is the first systematic survey for data-flow testing. We have constructed a publi-
cation repository with 97 research papers, demonstrated the current state of research,
and provided comprehensive analysis in this field. We have classified data-flow-based
test generation approaches into five categories. For each category, we have explained its
technical principle and have discussed its strengths and weaknesses. The techniques
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of coverage tracking and data-flow analysis are also summarized. Based on this inves-
tigation, we have proposed the new insights and future research directions, which aim
to make DFT more efficient and practical.
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