LISTA 2 PROBABILIDADES PRIMEIRO SEMESTRE 2018. ENTREGA NA AULA ANTES DA PROVA

Probabilidades

Lista 1

Exercício 1. Leia Notas até o capítulo sobre a distribuição normal.

Exercício 2. Considere um problema de "urnas" onde há cartas em lugar de bolas. Suponha que ninguém sabe fazer maço. Um baralho de 52 cartas é formado por cartas numeradas de 1 a 13 de 4 naipes (a) Três cartas são selecionadas de um baralho sem reposição. Encontre a probabilidade de não tirar um coração.

(b) Um jogador recebe 5 cartas. Qual é a probabilidade que três tenham o mesmo número?

Exercício 3. (a) A variável aleatória X é distribuida uniformemente no intervalo $0 \le x < 2\pi$. Fora desse intervalo a densidade de probabilidade é zero. A variável Y toma valores no intervalo $-1 \le y \le 1$ está relacionada com X por $Y = \sin X$. Encontre a densidade de probabilidade de y.

- (b) A variável X tem densidade de probabilidade dada pela função f(x). A variável Y é definida pela transformação Y = f(X). Qual é a densidade de probabilidade de Y?
- (c) Em Física 1 (ou antes) foi calculado o alcance $A(\theta, v_0)$ de um projétil, sob a ação de um campo gravitacional g uniforme num terreno plano, como função do ângulo de lançamento e da velocidade inicial de módulo v_0 . Encontre a probabilidade de A, $P(A|I_1)$ sob a informação $I_1: v_0$ é conhecido e θ é uniforme entre θ_1 e θ_2 .
- (d) $P(A|I_2)$ o mesmo do anterior onde I_2 : θ é conhecido e v_0 é uniforme entre v_1 e v_2 .
- (e) $P(A|I_3)$ o mesmo do anterior onde I_3 : θ é uniforme entre θ_1 e θ_2 e v_0 é uniforme entre v_1 e v_2 .
- (f) Refaça (c-e) com atrito...(brincadeira)

Exercício 4. Uma variável tem distribuição normal

$$P(x|\mu,\sigma) = N \exp{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- (1) Encontre a normalização $N(\sigma)$
- (2) Encontre os valores esperados $I\!\!E(x|\mu,\sigma)$ e $I\!\!E(x^2|\mu,\sigma)$.
- (3) Para diferentes valores de $\mu=0,3$ e $\sigma=1,4,$ desenhe a função $\phi(x|\mu,\sigma),$ a distribuição cumulativa de x, definida por

$$\phi(x|\mu,\sigma) = \int_{-\infty}^{x} P(x'|\mu,\sigma)dx'$$

(o esboço deve ser feito à mão)

Exercício 5. Duas variáveis que tomam valores nos reais tem distribuição conjunta normal

$$P(x, y|\rho) = N \exp{-\frac{1}{2C}(x^2 - 2\rho xy + y^2)}$$

onde ρ é um parâmetro positivo dado, entre 0 e 1.

- (1) Encontre $C(\rho)$ para que as marginais sejam gaussianas padrão $P(x) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{1}{2}x^2}$, $P(y) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{1}{2}y^2}$.
- (2) Encontre a normalização $N(\rho)$
- (3) Encontre os valores esperados $E(x|\rho)$, $E(y|\rho)$ e $E(xy|\rho)$. Interprete o significado de C. Dica: Use as regras do produto e da soma.