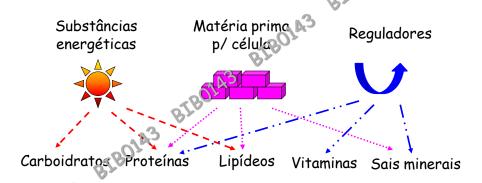
2018

Plantas Alimentícias: Fontes tradicionais e potencias, Nutrição e Dieta Preventiva

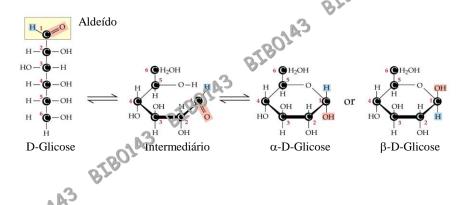
Prof. Marcelo J. Pena Ferreira


BIB 0143 – Recursos Econômicos Vegetais

BIBO143

2018

Plantas Alimentícias

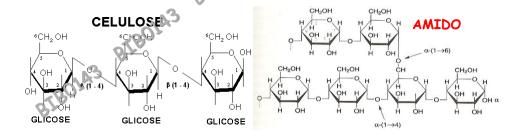

NECESSIDADES NUTRICIONAIS DO ORGANISMO

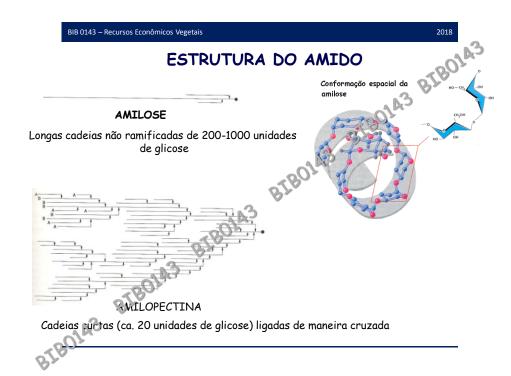
2018

Monossacarídeos: aldoses (D-glicose) ou cetoses (D-fruitose)

• Estrutura linear que em solução origina as formas cíclicas

BIB 0143 – Recursos Econômicos Vegetais


2018


Polissacarídeos:

✓ Os organismos vegetais podem formar polímeros com centenas ou milhares de monossacarídeos que possuem diferentes funções

Celulose: cadeia linear de moléculas de glicose, cuja função é estrutural.

Amido: cadeia pouco ramificada de moléculas de glicose, cuja função é reserva de energia.

2018

ARMAZENAMENTO DO AMIDO EM PLANTAS

É armazenado em células grandes (amiloplastos) de membrana celgada, na forma de grânulos característicos.

Simpson & Ogorzaly

COMO CARACTERIZAR
A PRESENÇA DO
AMIDO?

Amido amilos

amilose + amilopectina

2018

Fontes amiláceas

Cereais - Poaceae

Gramíneas forrageiras

Triticum aestivum - trigo

Oryza sativa - arroz

Zea mays - milho

Sorghum bicolor - sorgo

Hordeum vulgare - centeio

Avena sativa - aveia

Secale cereale - cevada

Tubérculos e Raízes

Solanum tuberosum - batata Manihot esculenta - mandioca Ipomoea baratas - batata-doce Dioscorea spp. - inhame

órgãos subterrâneos

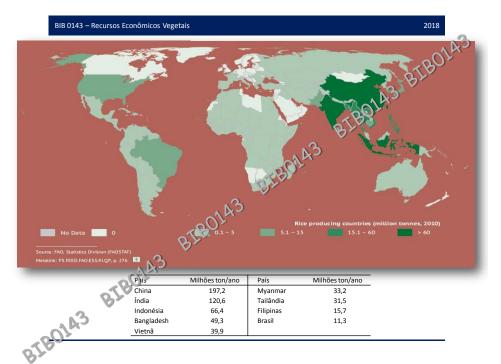

BIB 0143 – Recursos Econômicos Vegetais

BIBO1A3

2018

Características importantes para cultivo das gramíneas

- 1. Crescem densamente em habitat abertos (coleta)
- 2. Anuais \rightarrow investem a maioria dos recursos em culturas de sementes
- 3. Frutos secos \rightarrow melhor condição armazenamento
- 4. Amido fonte majoritoria de reserva (↑ caloria e fácil digestão)
- 5. Dieta adequada complementada com fonte proteica.


Arroz - Oryza sativa L.

BIB 0143 – Recursos Econômicos Vegetais

- ✓ Cultura mais importante mundialmente
- LA3 BIBOLA3 ✓ Alimento mais consumido no mundo (680 miñões ton/ano)
- ✓ Endosperma quase completamente composto por grãos de amido
- ✓ Brasil: maior produtor mundial do arroz de terras altas

Fonte: Food and Agriculture Organization

2018

Polimento e Parboilização do Arroz

- ✓ Técnicas moagem: Arroz marrom → Arroz branco
 Consequência: séc. XIX manifestação do beriberi
 Deficiência vitamina B1 (tiamina) en teor carboidratos
- ✓ Estratégia utilizada:
 Parboilização do arroz não-branqueado
 Nutrientes: pericarpo → cariopse do grão

BIB 0143 – Recursos Econômicos Vegetais

BIBO1A3

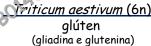
2018

Arroz Integral, Branco e "Golden Rice"

Vitamina	Arroz integral µg g 1	Arroz branco polido µg g	
Retinol (A)	0-0,11	0-tr ^a	
Tiamina (B ₁)	2,9-6,1	0,2-1,1	
Riboflavina (B2)	0,4-1,4	0,2-0,6	
Niacina (B ₃)	35-53	13-24	
Ácido pantotênico (B5)	9-15	3-7	
Piridoxina (B ₆)	5-9 0,04-0.10	0,4-1,2	
Biotina (B ₇)	0,04-0,10	0,01-0,06	
Ácido fólico (B ₉)	0,1-0,5	0,03-0,14	
Cianocobalamina (B ₁₂)	0-0,004	0-0,0014	
Ácido ρ-aminobenzóico	De03	0,12-0,14	
α-tocoferol (E)	9-25	tr-3	

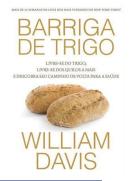
^atraços

Ciência Rural, Santa Maria, v.38, n.4, p.1184-1192, jul, 2008


"Golden Rice": arrez transgênico contém carotenóides no endosperma Concentração media de $25\mu g.g^{-1}$ β -caroteno, atinge-se 50% da recomendação diária de vitamina A para crianças com 72g desse arroz

Trigo - Triticum sp.

- ✓ Cultura que possui mais terras plantadas
- ✓ Várias espécies empregadas para diversas finalidades com diferente % de amido
- √ Adaptado a regiões temperadas e sub-temperadas
- ✓ Amido derivado do trigo: mais antiga fonte de amido comercial



Triticum durum (4n) sêmola (moagem incompleta do trigo)

BIB 0143 - Recursos Econômicos Vegetais

- ✓ Ocorrem no endosperma do **trigo**, cevada e centeio ✓ Proteínas insolúveis em H₂O ✓ Permitem a produção de uma massa //
- ✓ Adição de leveduras permite a fermentação

2018

Doença Celíaca

- ✓ Doença autoimune que atinge 0,5-1,0% população mundial
- ✓ Síndrome provoca diarréia, dor abdomino, perda de peso, fraqueza e enxaquecas
- ✓ Causa física: inflamação intestinal que impede a absorção de nutrientes
- ✓ Celíacos: a glicdina forma complexo com a transglutaminase

 (†TG) que dispara a produção de anticorpos anti-†TG e
 antigliadina. Impedem a execução das funções da enzima

PRODUÇÃO MUNDIAL DE TRIGO

Produção mundial de trigo (milhões ton., 2010)

No Data

Ophical Description (Milhões ton., 2010)

Source: FAO, Statistics Division (FAUSTAT)

Metalinic: PS.FEED, Description (PAUSTAT)

MILHO - Zea mays L.

V Mais eficiente na conversão fotossintética

V Muito deficiente do ponto de vista proteico

Valor nutricional inferior: deficiência en lisina e triptofano; baixo teor proteína total (glúten ausente)

Variedades de milho EUA: ~40% da produção mundial

2018

Pelagra

- ✓ Síndrome provoca dermatite, diarréia e demência
- ✓ Deficiência de niacina (complexo B) e de triptofano

- ✓ Afeta populações que subexistem com dietas ricas de milho
- ✓ Solução: uso de leveduras como suplemento alimentar

Aplicações - Indústria Alimentícia

- ✓ Produção de produtos matinais, espessantes, rações e óleos vegetais
- ✓ Xarope de milho: adoçante em confeitaria, alimentos para neonatos, soluções intravenosas

BIB 0143 – Recursos Econômicos Vegetais

2018

Fontes Amiláceas - Tubérculos e Raízes

BATATA - Solanum tuberosum

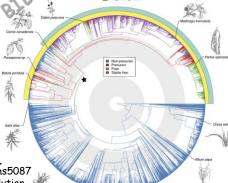
- √ 4^a principal cultura alimentícia mundial
- √ apresenta mais de 4000 variedades
- \checkmark alto poder calórico
- ✓ cultura com alto rendimento: mais de 18 ton/ha, porém pobre em proteinas
- √ tubérculo cultivado em grandes altitudes pelos povos andinos, onde o clima não favorece o desenvolvimento do milho

Fontes proteicas

Leguminosas - Fabaceae

Glycine max - soja Phaseolus vulgaris - feijão Arachis hypogaea - amendoim Lens culinaris - lentilha Pisum sativum - ervilha Cicer ar etinum - grão de bico

Medicago sativa - alfafa Trifolium - trevos



2018

Características importantes para cultivo e domesticação dos legumes

- 1. Hábito anual \rightarrow alto investimento no cultivo semente
- 2. Tendência herbácea → permite crescimento rápido
- 3. Frutos secos → melhor condição armozenamento
- 4. ↑ % de proteína

Nature Communications (2014) DOI: 10.1038/ncomms5087
A stigle evolutionary innovation drives the deep evolution

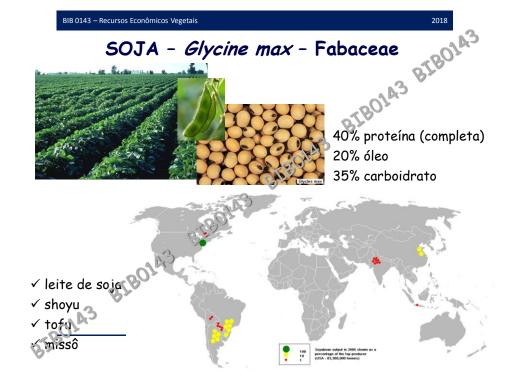
of symbiotic N2-fixation in angiosperms

BIB 0143 – Recursos Econômicos Vegetais

2018

Proteínas: polímero de aas.

Aminoácidos essenciais presentes em alguns alimentos (mg/g co N)


	Aminoácidos essenciais (mg/g de N)							
Alimento	Iso	Leu	Lis	Met	Fen	Treo	Tri	Val
Ovo de galinha	393	551	436	210	358	320	93	428
Carne bovina	301	507	556	169	235	287	70	313
Leite bovino	295	596	487	1510	336	278	88	362
Frango	334	460	497	157	250	248	64	318
Peixe	299	480	569	179	245	286	70	382
Milho	230	783	167	120	305	225	44	303
Trigo	204	417	179	94	282	183	68	276
Arroz	238	514	237	145	322	244	78	344
Feijão	262	476	450	66	326	248	63	287
Feijão Soja	284	486	399	79	309	241	80	300
Batata	236	377	299	81	251	235	103	292
Mandioca	175	247	259	83	156	165	72	204
Coco	244	419	220	120	283	212	68	339

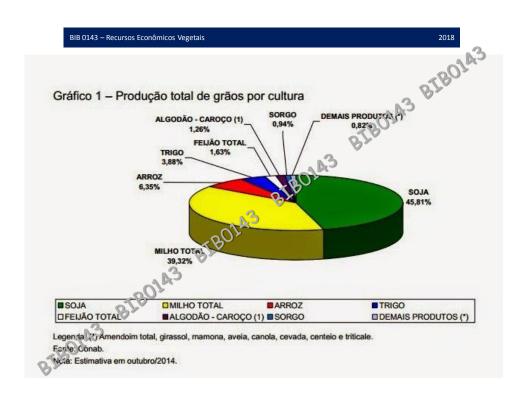
Ingestão de proteína em relação a calorias (g de proteína/100 calorias)

Criança = 4g/100cal

Adulto = 2,5g/100 cal

	Alimento	g de proteína/100 ca	<u> </u>
Cereais suficiente para adulto, mas não para crianças caloria vazia	Peixe	8,5	
	Carne bovina	8,5	
	Leite bovino	6,0	Leguminosas
	Feijão 0	7,5	boas fontes
	Amendoim	6,0	proteicas
	Trigo	3,7	
	Arroz	3,0	
	Milho	3,7	
	Batata	2,0	
8	Açúcar refinado	0,0	

FEIJÃO - Phaseolus vulgaris



- Maseolus vulgaris ✓ Legume + largamente cultivado no mundo
- ✓ Domesticado Am. Central e Sul-Andes (base agricultura Maias, Astecas e Incas)
- ✓ Contém olioossacarídeos de rafinose e estaquiose

AMENDOIM - Arachis hypogaea

- 3º colocado em área plantada e tons. coletada
- ✓ Frutos desenvolvem-se no solo
- ✓ Empregado em rações e pasta de amendoim
- ✓ Proteínas podem causar reações alérgicas
- ✓ Susceptíveis a infestação A. flavus

2018

Fontes oleaginosas

Helianthus annuus - girassol
Zea mays - milho
Glycine max - soja
Arachis hypogaea - amendoim
Linum usitatissimum - linho
Sesamum indicum - gergelim
Ricinus communis - mamona
Cocus nucifera - coco
Orbignya speciosa - babsçu
Elaeis guineensis - dendê
Olea europaea oliva

Geralmente em:

- ✓ Sementes (legumes, cereais e palmeiras)
- √ Frutos (oliva, abacate)

Importância como reserva energética para o embrião

BIB 0143 – Recursos Econômicos Vegetais

2018

Ácidos graxos: Frequentemente possuem nº par de C e esterificados ao glicerol

Triglicerídeos: Lipídeos de reserva de plantas oleaginosas

2018

Ácidos graxos

Espécies vegetais e peixes contém predominantemente triglicerídeos de ácidos graxos insaturados.

Acido oleico - 18:1 (9c)

Espécies de clima frio produzem ↑% de &idos graxos poliinsaturados →

manter a fluidez.

Variedades genetica//e modificadas: Canola "Canadian oil low acid"

↑% de ω-3 e ω-6

↑[] C₂₀, C₂₂ (ácido erúcico) e de

glicosinolatos

BIB 0143 – Recursos Econômicos Vegetais

2018

Óleos Comestíveis e Saúde

А́cido oleico - 18:1 (9c)

13 10 Ino\(\text{ei.vo}\) (18:2) ω-6

16 15 10 OH

Implemico (18:3) ω-3

Ácidos graxos essenciais

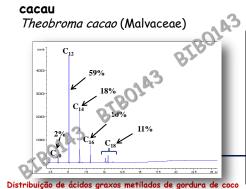
Ácidos graxos das séries 03 e 00

- ✓ comuns em peixes de áqua fria (salmão, atum, sardinha, bacalhau)
- √ em óleos vegetais, sementes de linhaça, nozes
- √ são importantes precursores de prostaglandinas, leucotrienos e tromboxanos com atividade anti-inflamatória, anticoagulante, vasodilatadora e antiplaquetária
- 🗸 redução do nível do colesterol
- atacados por radicais livres (antioxidantes)

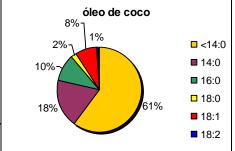
Gorduras Vegetais - cadeias curtas, saturadas

babaçu

Orbignya speciosa (Arecaceae)


dendê

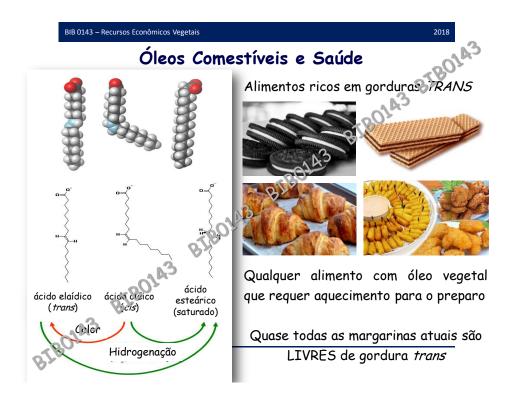
Elaeis quineensis (Arecaceae)

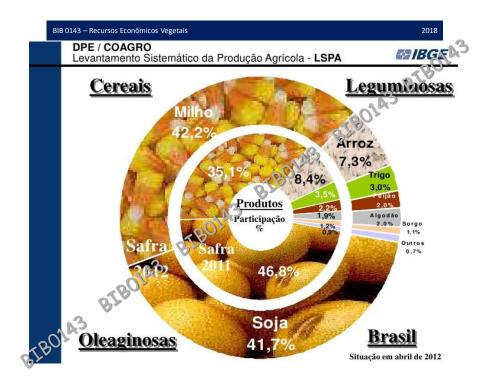

Cocos nucifera (Arecaceae)

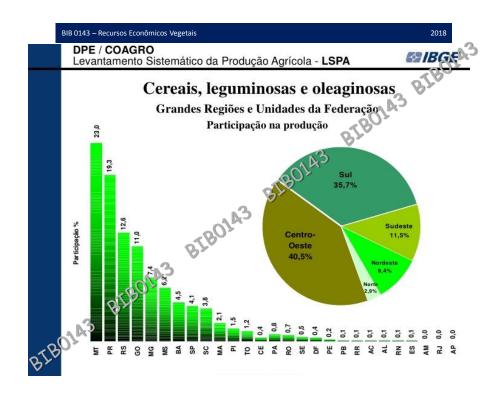
cacau

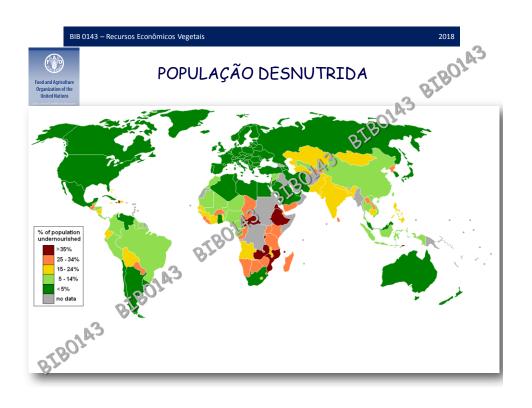
Theobroma cacao (Malvaceae)

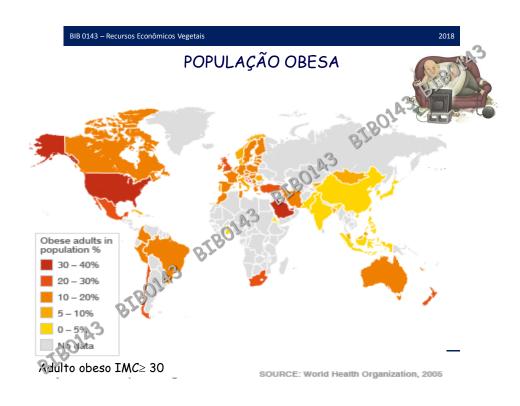
BIB 0143 – Recursos Econômicos Vegetais

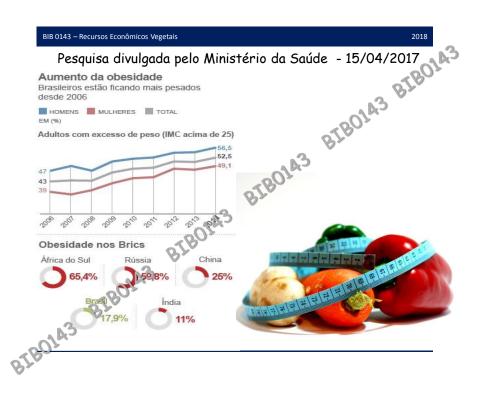


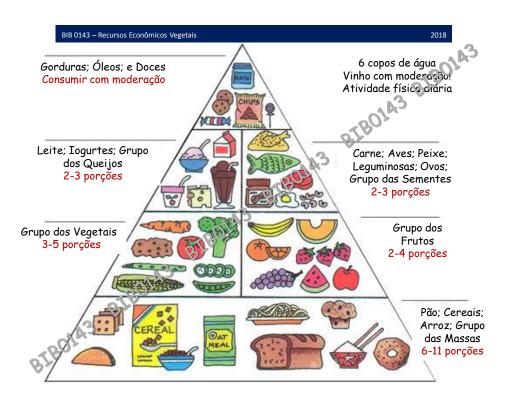

Composição:


- √ 28% proteína e 13% carboidratos
- ✓ 59% lipídeos : 42% saturados, 35% monoinsaturados, 20% poliinsaturados H.L. Teixeira, 2010 - Dissertação - UE do Sudoeste BA


Produção: ca. 20.000 ton/ano - extrativista


Fonre: selênio - redução câncer mama e próstata





2018

ALIMENTOS FUNCIONAIS (NUTRACÊUTICOS)

- ✓ alimentos convencionais e consumidos na dieta usual;
- ✓ efeitos positivos além do valor nutritivo básico: aumentar o bem-estar e a saúde e/ou reduzir o risco de ocorrência de doenças (proporcionam benefícios médicos e de saúde);
- ✓ embasamento científico na sua designação como alimento funcional;
- ✓ alimento notural ou um alimento no qual um ou mais componentes tenham sido reduzidos ou alterados.

201

Dieta mediterrânea

- √ rica em frutas frescas, azeite de oliva e vegetais
- √ rica em vitaminas, flavonoides e polifenóis
- √ baixa incidência de doenças cardiovasculares e câncer;

Paradoxo francês

- ✓ dieta rica em gorduras (queijos) com baixa incidência de problemas cardiovasculares

BIB 0143 – Recursos Econômicos Vegetais

2018

SUBSTÂNCIAS ANTIOXIDANTES

✓ Radicais livres: moléculas geradas por fontes endógenas ou exógenas que possuem um elétron desemparelhado para se ligar a qualquer outro elétron sendo, portanto, altamente reativas).

EXEMPLOS DE RADICAIS LIVRES - SUPER MISO $O_2 + e^{\cdot} \rightarrow O_2$

- ✓ Antioxidantes podem agir diretamente na inativação da ação dos radicais livres ou participar indiretamente dos sistemas enzimáticos que atuam nesse processo.
 - Exs.: vitamina C, glutationa, ácido úrico, vitamina E, carotenoides, flavonoides.

O lado medicinal das frutas

Açaí, acerola, cajá, goiaba, graviola, manga, abacaxi, tamarindo. O Brasil tem frutas para todos os gostos, mas outros atributos também são importantes nesses tempos em que se valorizam as propriedades funcionais dos alimentos. Em seu doutorado na Universidade Federal do Ceará, com um período no Instituto Politécnico do Porto, em Portugal, Mário Paz testou as atividades antioxidante antibacteriana da polpa dessas of frutas (Food Chemistry, abrit de 2015). A acerola e o açaí foram as campeãs em propriedades anticas cantes, que podem ser importantes la proteção contra doenças cardiovasculares e certos tipos de cân er, por exemplo. Nessa categoria, o abacaxi e o tamarindo foram as frutas menos bem cotadas. As posições nessa classificação foram invertidas quanto à atividade antibacteriana, que pode am-

pliar a durabilidade do alimento: o tamarindo apresentou boa ação contra todas as bactérias testadas, inclusive Salmonella e Escherichia coli, importantes agentes de infecções alimentares, e o açaí teve ação fraca contra microrganismos. Não é o caso de se transformar a fruteira em farmácia, mas o estudo sugere que o tamarindo deveria ser mais estudado para entrar na composição de alguns medicamentos contra doenças humanas e de animais.

Acaí: bom antioxidante. mau bactericida