Heapsort

- Goal: sort an array using heap representations
- Procedure:

- Build a max-heap from the array
- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call Max-Heapfy on the new root
- Repeat process until only one node remains

Heapsort running time

```
Heapsort (A)
    Build-Max-Heap (A)
    for }i\leftarrow\mathrm{ length [A] downto 2
        do exchange }A[1]\leftrightarrowA[i
        heap-size[A] \leftarrow heap-size[A]-1
        Max-Heapfy (A,l)
```

$\left.\begin{array}{ll}O(n) & O(n) \\ n-1 \text { times } \\ \\ O(1) \\ O(1) \\ O(\operatorname{lgn}) & O(\operatorname{lgn})\end{array}\right\} n$ n-1 times

- We discard the previous root when applying MaxHeap (to the remaining heap)
- Running time is $O(n / g n)+$ Build-Heap (A) time, which is $O(n)$

Example 1

Max-Heapify (A, 4)

(3) i
${ }^{i}$ (2)
(4)
(7)
(1)
(3)

Max-Heapify (A, 3)

Max-Heapify (A, 2)
i (4)
(4) 7

Max-Heapify (A, 1)

A: | 1 | 2 | 3 | 4 | 7 |
| :--- | :--- | :--- | :--- | :--- |

Example 2

(a)

(b)

i (10) (14) (d)

(10) (14) (e)

(10) (14) (16)
(f)

(1)

© André de Carvalho - ICMC/USP

Summary

- Heapsort uses a heap data structure to improve selection sort and make the running time asymptotically optimal
- Running time is $O(n \log n)$
- Like merge sort, but unlike selection, insertion, or bubble sorts
- Sorts in place
- Like insertion, selection or bubble sorts, but unlike merge sort

Exercise

- Assuming the data in a max-heap are distinct, what are the possible locations of the second-largest element?

Exercise

1. Given a max heap B of height h
a) What is the maximum number of nodes in B ?
b) What is the maximum number of leaves?
c) What is the maximum number of internal nodes?

Exercise

- Demonstrate, step by step, the operation of Build-Heap on the array

$$
A=[5,3,17,10,84,19,6,22,9]
$$

Exercise

- Let A be a heap of size n . Give the most efficient algorithm for the following tasks:
(a) Find the sum of all elements
(b) Find the sum of the largest Ign elements

Next Week

- Hashing

Acknowledgement

- A large part of this material were adapted from
- Simonas Šaltenis, Algorithms and Data Structures, Aalborg University, Denmark
- Mary Wootters, Design and Analysis of Algorithms, Stanford University, USA
- George Bebis, Analysis of Algorithms CS 477/677, University of Nevada, Reno
- David A. Plaisted, Information Comp 550-001, University of North Carolina at Chapel Hill

Questions

© André de Carvalho - ICMC/USP

