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Monitor: Joao Pedro Rodrigues Mattos

i Today

= Sorting algorithms
= Bubblesort
= Simple and similar to Mergesort
= Quicksort
= Popular algorithm, very fast on average
= Selection sort
= Simple algorithm, inefficient for large structures
= Heapsort
= Heap data structure
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i Importance of Sorting

= One of the principles of algorithm design
= "When in doubt, sort”

= Sorting is used as a subroutine in many
algorithms:

= Searching in databases, to allow binary search to be
applied to sorted data

= Element uniqueness, by duplicate elimination

= Several computer graphics and computational
geometry problems
Find the closest pair
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i Importance of Sorting

= A large number of sorting algorithms have
been developed
= Representing different algorithm design
techniques
= Lower bound for sorting, «2(n log n), is
often used to prove lower bounds of other
problems
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i Definitions

= Input:
= A sequence of nitems a,, a..., a,

= Qutput:
= A permutation (reordering) a;, a,; ..., a,” of the

input sequence such that a,’<a,’<s..5a,”

= The items to be sorted are usually part of a
collection of data, named record

= Usually, a file store the records R, ... R,
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i Definitions

= Each record R; has:
= A key K;
= Possibly other (satellite) data
= Input: n records, R, ... R,, from a file

= Output: n records, R, ... R,’, from a file
ordered by the value of k;

Record
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i Definitions

= Sorting. defines permutation IT = (p,, ..., p,) of
n records with the keys in non-decreasing order
" KD < .. < KD,
= Permutation. a one-to-one function from
{1, ..., n} onto itself
= There are n! distinct permutations of n items
= Rank. Given a collection of nkeys, the rank of a
key is the number of keys before it
= Rank(K) = {K] Ki< K3}
= If the keys are distinct, the rank of a key gives its
position in the sorted sequence
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i Definitions

= Internal Sort

= Data to be sorted are all stored in the main
memory

= External Sort

= Some of the data to be sorted might be stored
in an external, slower, device

= In Place Sort

= The amount of extra space required to sort the
data is constant with the input size
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i Bubblesort

= Repeatedly pass through the array to be
sorted

= Swap adjacent elements that are not in the
correct order

lelalofol2]s[1]
D ;
= Easier to implement, but usually slower
than insertion sort
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i Bubblesort

Bubblesort(A)
for i < 1 to length[A]
do for j < length[A] downto i+ 1
do if A[j] <A[j-1]
then exchange A[j] < A[j-1]

i

le]sfefof2]a] ]

= What is the complexity of bubblesort?
= Exercise
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Bubblesort(A)
fori « 1 to length[A]
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i Sorting Algorithms so far

= Insertion sort, selection sort, bubble sort
= Worst-case running time &(r¥#)
= Sort in place
= Use a constant number of items outside the array
= Merge sort

= Worst-case running time ©(n log n), but
requires additional memory ©(n)

= Does not sort in place
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i Quicksort

= Main characteristics

= Like insertion sort, sorts in-place
= Unlike merge sort

= Worst case O(r?)

= But, on average, its complexity is O(n log n)
= With small constant factors

= In practice, the best choice for sorting
= Works well in virtual memory environments
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i Quicksort

= A divide-and-conquer algorithm
= Divide: partition array into 2 subarrays with
elements in the lower part <= elements in the
higher part
= For such, uses a pivot
= Conquer: recursively sort the 2 subarrays

= Combine: trivial since sorting occurs in place
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i Quicksort Algorithm

Quicksort (A,p,r)
if p < r
then g ¢« Partition (A,p,r)
Quicksort (A,p,q)
Quicksort (A,qg+1,r)

Initial call: Quicksort(A, 1, length[A])
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i Partitioning

= Linear time procedure

[ <x=amsi=10< [ ]

Suppose array A[p..r] 1 5 54
Partition(A,p,r) 17{ 12{ 6 {19‘23‘ 8 ‘ 5 ‘10
x «A[r] /* pivot */ ’ T 2 3 T g 0 7 g
i «p-1 i j
while TRUE [10]12 6 [19[23] 8 | 5 [47]

repeat j « j-1
until A[j] <x
repeat i ¢« i+l
until A[i] 2x
if i<j
then exchange A[i]¢<>A[F]
else return j

i i
[10]'57 6 [19]23] 8 [12]17]
j i
[10]5]6[8]23]19]12]17]
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i Analysis of Quicksort

= Assume that all input items are distinct
= Exchange items with the same value
= Running time depends on the distribution
of array splits
= Whether they are balanced
= Which element (pivot) is used for partitioning
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i Best Case

= Partition splits the array evenly
T(n)=2T(n/2)+O(n)

n/2 n2 ———————> n
I A I A N A N G

L e e e e b ]

On Ig n)
© André de Carvalho - ICMC/USP 18

Timos Sellis




CHOROCHRONOS Midter Review

i Worst Case

= One side of the partition has only one item

1 ifn=1
T(n)_{T(n—1)+ om) ifn>1

i Worst Case

x

Tm) = T(h—1) + O(n) \z—> 3
= Zi=1 6(K) 1 7N — 2
o) —
=0n? o)
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i Worst Case

= Worst case appear when
= The input is sorted (Ex.: 1, 2, 3)
= The input is reverse sorted (Ex.: 3, 2, 1)
= Same recurrence for the worst case of
insertion sort

= However, sorted input produces the best
case for insertion sort: &(n)
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i Analysis of Quicksort

= Suppose the split is 1/10 : 9/10
T(n)=T(n/10)+T(9n/10) + O(n) = O(nlogn)!
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i Average Case Scenario

= Suppose, we alternate L(n) = 2U(n/2) + On) Best
best and worst cases U =2L(n-1) + On) Worst

Substituting:
EO r?et.an average L(n) =2(L(n/2-1) + Om/2)) + On)
enhavior = 2L(n/2-1) + O)
m s @(l’l) = O(nign)
1 n-1
(n-1)/2 (n-1)/2
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i Average Case Scenario

= How to be sure that we are usually lucky?

= Partition around the "middle” (n/2th) element?
= No difference

= Partition around a random element (works well in
practice)
= Randomized algorithm
= Running time is independent of the input ordering
= No specific input triggers worst-case behaviour

= The worst-case is only determined by the output of the
random-number generator
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i Randomized Quicksort

= Assume all elements are distinct
= Partition around a random element
= All splits (1:n-1, 2:n-2, ..., n-1:1) become
equally likely with probability 1/n
= Randomization is a general tool to improve
algorithms with bad worst-case but good
average-case complexity
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i Randomized Quicksort

Randomized-Partition(A,p,r)
i «Random (p,r)
exchange A[r] ¢<»A[1i]
return Partition (A,p,r)

Randomized-Quicksort (A,p,r)
if p<r then
q ¢« Randomized-Partition(A,p,r)
Randomized-Quicksort (A,p,q)
Randomized-Quicksort (A,q+1,r)
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i Selection Sort

Selection-Sort (A[l1..n]):

For i — n downto 2
A: Find the largest element in A[l..1i]
B: Exchange it with A[i]

= Atakes ©(n)and B takes ©(1): ©(r?)in total
= Possibility of improvement:
= Use a smart data structure to do both A and B in ©(1)
= Spend only O(/g n)time in each iteration reorganizing
the structure
= Result: total running time of O(n /log n)
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i Binary trees

= Binary tree: tree in which ©
each node is either a leaf (Y O)
or has degree < 2 & WE ®
=« Full binary: a binary tree in @ ®0 ®
which each node is either a Full binary tree
leaf or has degree exactly 2

= Complete binary tree: a full /
binary tree in which all @ ’ o)
leaves are on the same level o ,: o 0
Complete binary tree
© André de Carvalho - ICMC/USP 28

i Binary trees

= Height of a node: number of edges on the
longest simple path from the node to a leaf

= Level of a node: length of a path from the root to
the node

= Height of a tree: height of its root node

O, Height of root = 3
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i Heap Sort

= Uses an array A as a binary heap data structure
= Array A can be seen as a nearly complete binary tree
= Each node in the tree is an item in A
= The value in the root is larger than or equal to all its
children
= The left and right subtrees are again binary heaps
= Does sort in place
= Array A has two external attributes
= length[A]: number of items in A
= heap-size[A]: number of items in the heap stored in A
= No item after A[heap-size[A]] is an item of the heap
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i Heap Sort

= In a heap stored as an array A
= Root of tree is A[1] 1 2.3 4.5 6.7 8 910
= Left child of A[i] = A[2i] [ie]t4f10] 8 [7]9]3]2]4]1]
= Right child of A[i] = A[2i + 1] S
« Parent of A[i] = A[ Li/2] ]
= Heapsize[A] < length[A]

= The elements in the subarray
Al(Ln/2+1) .. n] are leaves
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i Heap Sort

= Implicit tree links:
= Children of node /are nodes 2/and 241
= Parent of node /is node /j/2/

= Why is this useful?

= In the binary representation
= Multiplication (division) by two is left (right) shift
» To add 1, just add to the lowest bit
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i Heap types

= Max-heaps
= Largest element at root, have the max-heap
property:
= for all nodes i, excluding the root: A[PARENT(i)] >
Ali]
= Min-heaps
= Smallest element at root, have the min-heap
property:
» for all nodes i, excluding the root: A[PARENT(i)] <
Ali]
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i Operations on heaps

= Adding nodes:
= New nodes are always inserted at the bottom
level (left to right)
= Deleting nodes:
= Nodes are removed from the bottom level
(right to left) @
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i Operations on heaps

= Maintain/Restore the max-heap property
= Max-Heapify

= Create a max-heap from an unordered
array
= Build-Max-Heap

= Sort an array in place
= Heapsort
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i Maintaining heap properties

= Max-Heapify
= Binary trees rooted at Left(/) 10
and Right(/) are heaps '

= However, A[/] may be smaller
than its children, violating the
max-heap property
= To eliminate the violation: e ° o
= Exchange A[/] with larger child
= Move down the tree until node
is not smaller than its children
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i Maintaining heap properties

= Assumptions: Max-Heapify(4, i)
= Left and Right n <« heap-size(4)

subtrees of i are L= Left ()
max-heaps r < Right(i)
if | <nand A[l] > A[i]

= Afi] may be smaller

than its children then largest ]

else largest —i
i ° if r <nand A[r] > Aflargest]
then largest —r
@ o if largest #i
then exchange A[i] < A[largest]
e ° o Max-Heapify (4, largest)
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Example
Max-Heapify (A, 2)

Heap property restored
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i Max-Heapify running time

= Intuitively:
= Max-Heapify runs a path from the root to a
leaf
= Longest path: A
= At each level, it makes exactly 2 comparisons
= Total humber of comparisons: 2h
= Height of the heap (#) is /ign/
= Running time: O¢h) = O (lgn)
= Running time of Max-Heapify: O(lgn)
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i Building a Heap

= Convert an array A[1...n] into a heap
= Consider n = length[A]
=« Elements in the subarray A[(Ln/2] + 1)...71], which are
leaves, are already 1-element heaps
=« Apply Max-Heapify to elements from 1 to [ n/2]

Build-Max-Heap (4)
n <« length(4)
fori < |n/2) downto 1
do Max-Heapify (4,1)

A [a]1]3]2]16]oJ10]1a]8]7]
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n  length(4)
Sor i« [n/2] downto 1
do Max-Heapify (A.i)

i Building a Heap
puild-Mav-tieap(t) | A: [4 [1]3]2]16]0[10]14]8]7
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i Build-Max-Heap running time

Build-Max-Heap (4)
n <« length(4)
for i« |n/2] downto 1
do Max-Heapify (4,i) O(lgn) } O

~

= Running time: O(nign)
= As sometimes heaps are built for other reasons, it
would be nice to have a tight bound
= It is possible to derive a tighter bound
= Time for Max-Heapify to run at a node varies with the height
of the node
= Heights of most nodes are small

© André de Carvalho - ICMC/USP 42

Timos Sellis




CHOROCHRONOS Midter Review

i Build-Max-Heap running time

= Max-Heapify takes O(h) = Cost of Max-Heapfy
on anode j~ the helght of node /in the tree

T(n)= Znh 22' =0(n)

HC!Eh! Level No. of nodes
hy=3 (Ugnl) i=0 20
\p Q ! ;
¥
h=1 O O 0 i-2 »

_

v, _OL3D3O3L wm s

h;=h—1i (height of the heap rooted at level i)
n, =2 (number of nodes at level i)
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Build-Max-Heap running time

i
T(n)= nh Cost of Max-Heapfy at level i * number of nodes at that
o level
i=0

h
= 22’ (h —i) Replace the values of n; and h; computed before

" .
_ Z h—i oh Multiply by 2" both at the nominator and denominator
i =i and write 2'as
i=0 27

Lk
i
=2 ’227 Change variables: k = h - i

k=0
< n2£ The sum above is smaller than the sum of all elements
- 2k towand h = Ign

k=0
= O(n) The sum above is smaller than 2
Running time of Build-Max-Heap : 7(n) = O(n)
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* Heapsort

= Goal: sort an array using heap (1)
representations (4] ©
= Procedure: O O

= Build a max-heap from the array

= Swap the root (the maximum element) with
the last element in the array

= "Discard” this last node by decreasing the
heap size

= Call Max-Heapfy on the new root

= Repeat process until only one node remains
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* Heapsort running time

Heapsort (4)
Build-Max-Heap (4) O(n) o(n)
Jor i — length[A] downto 2 n-1 times
do exchange A[1] < A[i] 0o(1)

heap-size[A] «— heap-size[A]-1 ~ O(1) n-1 times

Max-Heapfy (4,1) O(lgn) O(lgn)

= We discard the previous root when applying Max-
Heap (to the remaining heap)

= Running time is O(n /g n) + Build-Heap(A) time,
which is O(n)
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i Example 1

Max-Heapify (A, 1)

®/@@ @ ®®

@@

Max-Heapify (A, 1) Max-Heapify (A, 1)

Max-Heapify (A, 1)
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* Example 2

A [16]14J10] o8 7[a]3]2]1

0 00 e  (EEFTEFENS
O" [0

@
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i Summary

= Heapsort uses a heap data structure to
improve selection sort and make the
running time asymptotically optimal
= Running time is O(n log n)
= Like merge sort, but unlike selection, insertion,
or bubble sorts
= Sorts in place

= Like insertion, selection or bubble sorts, but
unlike merge sort
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i Summary

= Why Max-Heapify instead of Min-Heapify
= It is not easy to recover the elements in
increasing order if we use Min-Heapify
= See heap below
= We could use Min-Heapify to sort in the
decreasing order !
/

8
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i Exercise

= Assuming the data in a max-heap are
distinct, what are the possible locations of
the second-largest element?

/

2/

4/5
8]0
& ©
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i Exercise

1. Given a max heap B of height h
2  What is the maximum number of nodes in B?
» What is the maximum number of leaves?

o What is the maximum number of internal

nodes?
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i Exercise

= Demonstrate, step by step, the operation
of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]
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i Exercise

= Let A be a heap of size n. Give the most
efficient algorithm for the following tasks:
@ Find the sum of all elements
® Find the sum of the largest Ign elements

© André de Carvalho - ICMC/USP 54

Timos Sellis




CHOROCHRONOS Midter Review

i Next Week

= Hashing
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* Questions
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