
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Advanced Sort

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

2

Today

 Sorting algorithms

 Bubblesort

 Simple and similar to Mergesort

 Quicksort

 Popular algorithm, very fast on average

 Selection sort

 Simple algorithm, inefficient for large structures

 Heapsort

 Heap data structure

© André de Carvalho - ICMC/USP

3

Importance of Sorting

 One of the principles of algorithm design

 “When in doubt, sort”

 Sorting is used as a subroutine in many
algorithms:

 Searching in databases, to allow binary search to be
applied to sorted data

 Element uniqueness, by duplicate elimination

 Several computer graphics and computational
geometry problems

 Find the closest pair

© André de Carvalho - ICMC/USP 4

Importance of Sorting

 A large number of sorting algorithms have
been developed

 Representing different algorithm design
techniques

 Lower bound for sorting, W(n log n), is
often used to prove lower bounds of other
problems

© André de Carvalho - ICMC/USP

Definitions

 Input:

 A sequence of n items a1, a2,…, an

 Output:

 A permutation (reordering) a1’, a2’, …, an’ of the

input sequence such that a1’ ≤ a2’ ≤ …≤ an’

 The items to be sorted are usually part of a

collection of data, named record

 Usually, a file store the records R1 … Rn

© André de Carvalho - ICMC/USP 5

Definitions

 Each record Ri has:

 A key Ki

 Possibly other (satellite) data

 Input: n records, R1 … Rn , from a file

 Output: n records, R1’ … Rn’ , from a file
ordered by the value of ki

© André de Carvalho - ICMC/USP 6

Key Other data

Record

CHOROCHRONOS Midter Review

Timos Sellis 2

Definitions

 Sorting: defines permutation  = (p1, … , pn) of
n records with the keys in non-decreasing order

 Kp1 < … < Kpn

 Permutation: a one-to-one function from
{1, …, n} onto itself
 There are n! distinct permutations of n items

 Rank: Given a collection of n keys, the rank of a
key is the number of keys before it

 Rank(Kj) = |{Ki| Ki < Kj}|

 If the keys are distinct, the rank of a key gives its
position in the sorted sequence

© André de Carvalho - ICMC/USP 7

Definitions

 Internal Sort

 Data to be sorted are all stored in the main
memory

 External Sort

 Some of the data to be sorted might be stored
in an external, slower, device

 In Place Sort

 The amount of extra space required to sort the
data is constant with the input size

© André de Carvalho - ICMC/USP 8

Bubblesort

 Repeatedly pass through the array to be
sorted

 Swap adjacent elements that are not in the
correct order

 Easier to implement, but usually slower
than insertion sort

© André de Carvalho - ICMC/USP 9

1 2 3 n

i

1329648

j

Bubblesort

 What is the complexity of bubblesort?

 Exercise

© André de Carvalho - ICMC/USP 10

1329648

i = 1 j

i

Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

Bubblesort

© André de Carvalho - ICMC/USP 11

1329648

i = 1 j

3129648

i = 1 j

3219648

i = 1 j

3291648

i = 1 j

3296148

i = 1 j

3296418

i = 1 j

3296481

i = 1 j

3296481

i = 2 j

3964821

i = 3 j

9648321

i = 4 j

9684321

i = 5 j

9864321

i = 6 j

9864321

i = 7
j

Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

12

Sorting Algorithms so far

 Insertion sort, selection sort, bubble sort

 Worst-case running time Q(n2)

 Sort in place

 Use a constant number of items outside the array

 Merge sort

 Worst-case running time Q(n log n), but
requires additional memory Q(n)

 Does not sort in place

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 3

13

Quicksort

 Main characteristics

 Like insertion sort, sorts in-place

 Unlike merge sort

 Worst case O(n2)

 But, on average, its complexity is O(n log n)
 With small constant factors

 In practice, the best choice for sorting

 Works well in virtual memory environments

© André de Carvalho - ICMC/USP 14

Quicksort

 A divide-and-conquer algorithm

 Divide: partition array into 2 subarrays with
elements in the lower part <= elements in the
higher part

 For such, uses a pivot

 Conquer: recursively sort the 2 subarrays

 Combine: trivial since sorting occurs in place

© André de Carvalho - ICMC/USP

15

Quicksort Algorithm

Initial call: Quicksort(A, 1, length[A])

Quicksort(A,p,r)
if p < r
then q  Partition(A,p,r)

Quicksort(A,p,q)
Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP 16

Partitioning

 Linear time procedure

Suppose array A[p..r]

Partition(A,p,r)
x  A[r] /* pivot */
i  p-1
j  r+1
while TRUE

repeat j  j-1
until A[j]  x

repeat i  i+1
until A[i]  x

if i<j
then exchange A[i] A[j]
else return j

17 12 6 19 23 8 5 10

i i j j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

x=a[8]=10 

© André de Carvalho - ICMC/USP

1 2 3 4 5 6 7 8

17

Analysis of Quicksort

 Assume that all input items are distinct

 Exchange items with the same value

 Running time depends on the distribution
of array splits

 Whether they are balanced

 Which element (pivot) is used for partitioning

© André de Carvalho - ICMC/USP 18

Best Case

 Partition splits the array evenly
() 2 (/ 2) ()T n T n n 

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 4

19

Worst Case

 One side of the partition has only one item

© André de Carvalho - ICMC/USP

� � = �
1 �� � = 1

� � − 1 + Q � �� � > 1

T(n) = � � − 1 + Q �
= ∑ Q ��

���

= Q (∑ �)�
���

= Q (�2)

20

Worst Case

© André de Carvalho - ICMC/USP

21

Worst Case

 Worst case appear when

 The input is sorted (Ex.: 1, 2, 3)

 The input is reverse sorted (Ex.: 3, 2, 1)

 Same recurrence for the worst case of
insertion sort

 However, sorted input produces the best
case for insertion sort: �(n)

© André de Carvalho - ICMC/USP 22

Analysis of Quicksort

 Suppose the split is 1/10 : 9/10
() (/10) (9 /10) () (log)!T n T n T n n n n    

© André de Carvalho - ICMC/USP

23

Average Case Scenario

 Suppose, we alternate
best and worst cases
to get an average
behavior

n

1 n-1

(n-1)/2 (n-1)/2

()n

© André de Carvalho - ICMC/USP

L(n) = 2U(n/2) + Q(n) Best
U(n) = 2L(n-1) + Q(n) Worst
Substituting:
L(n) = 2(L(n/2-1) + Q(n/2)) + Q(n)

= 2L(n/2-1) + Q(n)
= Q(nlgn)

24

Average Case Scenario

 How to be sure that we are usually lucky?

 Partition around the ”middle” (n/2th) element?
 No difference

 Partition around a random element (works well in
practice)

 Randomized algorithm

 Running time is independent of the input ordering

 No specific input triggers worst-case behaviour

 The worst-case is only determined by the output of the
random-number generator

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 5

25

Randomized Quicksort

 Assume all elements are distinct

 Partition around a random element

 All splits (1:n-1, 2:n-2, ..., n-1:1) become
equally likely with probability 1/n

 Randomization is a general tool to improve
algorithms with bad worst-case but good
average-case complexity

© André de Carvalho - ICMC/USP 26

Randomized Quicksort

Randomized-Partition(A,p,r)
i Random(p,r)
exchange A[r]A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p<r then

q  Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p,q)
Randomized-Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP

27

Selection Sort

 A takes Q(n) and B takes Q(1): Q(n2) in total

 Possibility of improvement:

 Use a smart data structure to do both A and B in Q(1)

 Spend only O(lg n) time in each iteration reorganizing
the structure

 Result: total running time of O(n log n)

© André de Carvalho - ICMC/USP

Selection-Sort(A[1..n]):
For i  n downto 2

A: Find the largest element in A[1..i]
B: Exchange it with A[i]

Binary trees

 Binary tree: tree in which
each node is either a leaf
or has degree ≤ 2

 Full binary: a binary tree in
which each node is either a
leaf or has degree exactly 2

 Complete binary tree: a full
binary tree in which all
leaves are on the same level

© André de Carvalho - ICMC/USP 28

Full binary tree

2

14 8

1

16

7

4

3

9 10

12

Complete binary tree

2

1

16

4

3

9 10

Binary trees

 Height of a node: number of edges on the
longest simple path from the node to a leaf

 Level of a node: length of a path from the root to
the node

 Height of a tree: height of its root node

© André de Carvalho - ICMC/USP 29

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

30

Heap Sort

 Uses an array A as a binary heap data structure

 Array A can be seen as a nearly complete binary tree
 Each node in the tree is an item in A

 The value in the root is larger than or equal to all its
children

 The left and right subtrees are again binary heaps

 Does sort in place

 Array A has two external attributes

 length[A]: number of items in A

 heap-size[A]: number of items in the heap stored in A

 No item after A[heap-size[A]] is an item of the heap

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 6

Heap Sort

 In a heap stored as an array A

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[i/2]

 Heapsize[A] ≤ length[A]

 The elements in the subarray

A[(n/2+1) .. n] are leaves

© André de Carvalho - ICMC/USP 31 32

Heap Sort

 Implicit tree links:

 Children of node i are nodes 2i and 2i+1

 Parent of node i is node i/2

 Why is this useful?

 In the binary representation

 Multiplication (division) by two is left (right) shift

 To add 1, just add to the lowest bit

© André de Carvalho - ICMC/USP

Heap types

 Max-heaps
 Largest element at root, have the max-heap

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≥

A[i]

 Min-heaps
 Smallest element at root, have the min-heap

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≤

A[i]

© André de Carvalho - ICMC/USP 33

Operations on heaps

 Adding nodes:
 New nodes are always inserted at the bottom

level (left to right)

 Deleting nodes:
 Nodes are removed from the bottom level

(right to left)

© André de Carvalho - ICMC/USP 34

8

2 4

14

7

1

16

10

9 3

Operations on heaps

 Maintain/Restore the max-heap property
 Max-Heapify

 Create a max-heap from an unordered
array
 Build-Max-Heap

 Sort an array in place
 Heapsort

© André de Carvalho - ICMC/USP 35

Maintaining heap properties

 Max-Heapify
 Binary trees rooted at Left(i)

and Right(i) are heaps
 However, A[i] may be smaller

than its children, violating the
max-heap property

 To eliminate the violation:
 Exchange A[i] with larger child
 Move down the tree until node

is not smaller than its children

© André de Carvalho - ICMC/USP 36

CHOROCHRONOS Midter Review

Timos Sellis 7

Maintaining heap properties

© André de Carvalho - ICMC/USP 37

 Assumptions:

 Left and Right
subtrees of i are
max-heaps

 A[i] may be smaller
than its children

Max-Heapify(A, i)
n ← heap-size(A)
l ← Left (i)
r ← Right(i)
if l ≤ n and A[l] > A[i]
then largest ←l
else largest ←i
if r ≤ n and A[r] > A[largest]
then largest ←r
if largest  i
then exchange A[i] ↔ A[largest]

Max-Heapify (A, largest)

Example

© André de Carvalho - ICMC/USP 38

Max-Heapify (A, 2)

A[2] violates the heap property

A[2]  A[4]

A[4] violates the heap property

A[4]  A[9]

Heap property restored

Max-Heapify running time

 Intuitively:
 Max-Heapify runs a path from the root to a

leaf
 Longest path: h

 At each level, it makes exactly 2 comparisons
 Total number of comparisons: 2h

 Height of the heap (h) is lgn

 Running time: O(h) = O (lgn)

 Running time of Max-Heapify: O(lgn)

© André de Carvalho - ICMC/USP 39 40

Building a Heap

 Convert an array A[1...n] into a heap

 Consider n = length[A]

 Elements in the subarray A[(n/2 + 1)...n], which are
leaves, are already 1-element heaps

 Apply Max-Heapify to elements from 1 to n/2

© André de Carvalho - ICMC/USP

Build-Max-Heap (A)
n ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i) 2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

Building a Heap

© André de Carvalho - ICMC/USP 41

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

1

16

7

4

10

9 3

1

2 3

4 5 6 7

8 9 10

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10
14

2 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

16

7

1

4

10

9 3

1

2 3

4 5 6 7

8 9 10
8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

i = 5 i = 4 i = 3

i = 2 i = 1

4 1 3 2 16 9 10 14 8 7A:Build-Max-Heap (A)
n ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)

Build-Max-Heap running time

 Running time: O(nlgn)
 As sometimes heaps are built for other reasons, it

would be nice to have a tight bound
 It is possible to derive a tighter bound

 Time for Max-Heapify to run at a node varies with the height
of the node

 Heights of most nodes are small

© André de Carvalho - ICMC/USP 42

O(lgn) O(n)

Build-Max-Heap (A)
n ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)

CHOROCHRONOS Midter Review

Timos Sellis 8

Build-Max-Heap running time

 Max-Heapify takes O(h)  Cost of Max-Heapfy
on a node i ~ the height of node i in the tree

© André de Carvalho - ICMC/USP 43

i

h

i
ihnnT 




0

)( ih
h

i

i 
0

2)(nO
Height Level

h0 = 3 (lgn)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (lgn)

No. of nodes

20

21

22

23

hi = h – i (height of the heap rooted at level i)
ni = 2i (number of nodes at level i)

Build-Max-Heap running time

© André de Carvalho - ICMC/USP 44

i

h

i
ihnnT 




0

)(Cost of Max-Heapfy at level i  number of nodes at that
level

 ih
h

i

i 
0

2 Replace the values of ni and hi computed before

h
h

i
ih

ih
2

20







 Multiply by 2h both at the nominator and denominator

and write 2i as
i2

1





h

k
k

h k

0 2
2 Change variables: k = h - i







0 2k

k

k
n The sum above is smaller than the sum of all elements

to  and h = lgn

)(nO The sum above is smaller than 2

Running time of Build-Max-Heap : T(n) = O(n)

Heapsort

 Goal: sort an array using heap
representations

 Procedure:
 Build a max-heap from the array
 Swap the root (the maximum element) with

the last element in the array
 “Discard” this last node by decreasing the

heap size
 Call Max-Heapfy on the new root
 Repeat process until only one node remains

© André de Carvalho - ICMC/USP 45

Heapsort running time

 We discard the previous root when applying Max-
Heap (to the remaining heap)

 Running time is O(n lg n) + Build-Heap(A) time,
which is O(n)

© André de Carvalho - ICMC/USP 46

Heapsort (A)
Build-Max-Heap (A)
for i ← length[A] downto 2

do exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A]-1
Max-Heapfy (A,1)

O(n)
n-1 times

O(1)
O(1)
O(lgn)

O(n)

O(lgn)

n-1 times

Example 1

© André de Carvalho - ICMC/USP 47

Max-Heapify (A, 1) Max-Heapify (A, 1) Max-Heapify (A, 1)

Max-Heapify (A, 1)

A:

1 2 3 4 7

7 4 3 1 2

A:

1

2

4 5

3

Example 2

© André de Carvalho - ICMC/USP 48

16 14 10 9 8 7 4 3 2 1A:

CHOROCHRONOS Midter Review

Timos Sellis 9

49

Summary

 Heapsort uses a heap data structure to
improve selection sort and make the
running time asymptotically optimal

 Running time is O(n log n)
 Like merge sort, but unlike selection, insertion,

or bubble sorts

 Sorts in place

 Like insertion, selection or bubble sorts, but
unlike merge sort

© André de Carvalho - ICMC/USP 50

Summary

 Why Max-Heapify instead of Min-Heapify

 It is not easy to recover the elements in
increasing order if we use Min-Heapify

 See heap below

 We could use Min-Heapify to sort in the
decreasing order

© André de Carvalho - ICMC/USP

8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

Exercise

 Assuming the data in a max-heap are
distinct, what are the possible locations of
the second-largest element?

© André de Carvalho - ICMC/USP 51

8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

Exercise

1. Given a max heap B of height h

a) What is the maximum number of nodes in B?

b) What is the maximum number of leaves?

c) What is the maximum number of internal

nodes?

© André de Carvalho - ICMC/USP 52

Exercise

 Demonstrate, step by step, the operation
of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]

© André de Carvalho - ICMC/USP 53

Exercise

 Let A be a heap of size n. Give the most
efficient algorithm for the following tasks:

(a) Find the sum of all elements

(b) Find the sum of the largest lgn elements

© André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

55

Next Week

 Hashing

© André de Carvalho - ICMC/USP

Acknowledgement

 A large part of this material were adapted from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 56

Questions

57© André de Carvalho - ICMC/USP

