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Today

 Sorting algorithms

 Bubblesort

 Simple and similar to Mergesort

 Quicksort

 Popular algorithm, very fast on average

 Selection sort 

 Simple algorithm, inefficient for large structures

 Heapsort 

 Heap data structure
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Importance of Sorting

 One of the principles of algorithm design

 “When in doubt, sort”

 Sorting is used as a subroutine in many 
algorithms:

 Searching in databases, to allow binary search to be 
applied to sorted data

 Element uniqueness, by duplicate elimination

 Several computer graphics and computational 
geometry problems

 Find the closest pair
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Importance of Sorting

 A large number of sorting algorithms have 
been  developed 

 Representing different algorithm design 
techniques

 Lower bound for sorting, W(n log n), is 
often used to prove lower bounds of other 
problems
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Definitions

 Input: 

 A sequence of n items a1, a2,…, an

 Output: 

 A permutation (reordering) a1’, a2’, …, an’ of the 

input sequence such that  a1’ ≤ a2’ ≤ …≤ an’

 The items to be sorted are usually part of a 

collection of data, named record

 Usually, a file store the records R1 … Rn
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Definitions

 Each record Ri has:

 A key Ki

 Possibly other (satellite) data

 Input: n records, R1 … Rn , from a file

 Output: n records, R1’ … Rn’ , from a file 
ordered by the  value of ki

© André de Carvalho - ICMC/USP 6

Key Other data

Record
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Definitions

 Sorting: defines permutation  = (p1, … , pn) of 
n records with the keys in non-decreasing order

 Kp1 < … < Kpn

 Permutation: a one-to-one function from 
{1, …, n} onto itself  
 There are n! distinct permutations of n items

 Rank:  Given a collection of n keys, the rank of a 
key is the number of keys before it

 Rank(Kj) = |{Ki| Ki < Kj}|

 If the keys are distinct, the rank of a key gives its 
position in the sorted sequence
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Definitions

 Internal Sort

 Data to be sorted are all stored in the main 
memory

 External Sort

 Some of the data to be sorted might be stored 
in an external, slower, device

 In Place Sort

 The amount of extra space required to sort the 
data is constant with the input size
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Bubblesort

 Repeatedly pass through the array to be 
sorted

 Swap adjacent elements that are not in the 
correct order

 Easier to implement, but usually slower 
than insertion sort
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Bubblesort

 What is the complexity of bubblesort?

 Exercise
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1329648
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i

Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

Bubblesort
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Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]
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Sorting Algorithms so far

 Insertion sort, selection sort, bubble sort

 Worst-case running time Q(n2)

 Sort in place

 Use a constant number of items outside the array

 Merge sort

 Worst-case running time Q(n log n), but 
requires additional memory Q(n)

 Does not sort in place

© André de Carvalho - ICMC/USP
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Quicksort

 Main characteristics

 Like insertion sort, sorts in-place 

 Unlike merge sort

 Worst case O(n2)

 But, on average, its complexity is O(n log n)
 With small constant factors

 In practice, the best choice for sorting

 Works well in virtual memory environments
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Quicksort

 A divide-and-conquer algorithm

 Divide: partition array into 2 subarrays with 
elements in the lower part <= elements in the 
higher part

 For such, uses a pivot

 Conquer: recursively sort the 2 subarrays

 Combine: trivial since sorting occurs in place

© André de Carvalho - ICMC/USP
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Quicksort Algorithm

Initial call: Quicksort(A, 1, length[A])

Quicksort(A,p,r)
if p < r
then q  Partition(A,p,r)

Quicksort(A,p,q)
Quicksort(A,q+1,r)
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Partitioning

 Linear time procedure

Suppose array A[p..r]

Partition(A,p,r)
x  A[r] /* pivot */
i  p-1
j  r+1
while TRUE

repeat j  j-1
until A[j]  x

repeat i  i+1
until A[i]  x

if i<j
then exchange A[i] A[j]
else return j

17 12 6 19 23 8 5 10

i i j j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

x=a[8]=10 
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Analysis of Quicksort

 Assume that all input items are distinct

 Exchange items with the same value

 Running time depends on the distribution 
of array splits

 Whether they are balanced

 Which element (pivot) is used for partitioning

© André de Carvalho - ICMC/USP 18

Best Case

 Partition splits the array evenly
( ) 2 ( / 2) ( )T n T n n 

© André de Carvalho - ICMC/USP
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Worst Case

 One side of the partition has only one item
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Worst Case

© André de Carvalho - ICMC/USP
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Worst Case

 Worst case appear when

 The input is sorted (Ex.: 1, 2, 3)

 The input is reverse sorted (Ex.: 3, 2, 1)

 Same recurrence for the worst case of 
insertion sort

 However, sorted input produces the best 
case for insertion sort: �(n)
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Analysis of Quicksort

 Suppose the split is 1/10 : 9/10
( ) ( /10) (9 /10) ( ) ( log )!T n T n T n n n n    
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Average Case Scenario

 Suppose, we alternate 
best and worst cases 
to get an average 
behavior

n

1 n-1

(n-1)/2 (n-1)/2

( )n
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L(n) = 2U(n/2) + Q(n)   Best
U(n) = 2L(n-1) + Q(n)  Worst
Substituting:
L(n) = 2(L(n/2-1) + Q(n/2)) + Q(n)

= 2L(n/2-1) + Q(n)
= Q(nlgn)
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Average Case Scenario

 How to be sure that we are usually lucky?

 Partition around the ”middle” (n/2th) element?
 No difference

 Partition around a random element (works well in 
practice)

 Randomized algorithm

 Running time is independent of the input ordering

 No specific input triggers worst-case behaviour

 The worst-case is only determined by the output of the 
random-number generator

© André de Carvalho - ICMC/USP
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Randomized Quicksort

 Assume all elements are distinct

 Partition around a random element

 All splits (1:n-1, 2:n-2, ..., n-1:1) become 
equally likely with probability 1/n

 Randomization is a general tool to improve 
algorithms with bad worst-case but good 
average-case complexity
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Randomized Quicksort

Randomized-Partition(A,p,r)
i Random(p,r)
exchange A[r]A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p<r then

q  Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p,q)
Randomized-Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP
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Selection Sort

 A takes Q(n) and B takes Q(1): Q(n2) in total 

 Possibility of improvement: 

 Use a smart data structure to do both A and B in Q(1) 

 Spend only O(lg n) time in each iteration reorganizing 
the structure 

 Result: total running time of O(n log n)
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Selection-Sort(A[1..n]):
For i  n downto 2

A:    Find the largest element in A[1..i]   
B:    Exchange it with A[i]

Binary trees

 Binary tree: tree in which 
each node is either a leaf 
or has degree ≤ 2

 Full binary: a binary tree in 
which each node is either a 
leaf or has degree exactly 2

 Complete binary tree: a full 
binary tree in which all 
leaves are on the same level

© André de Carvalho - ICMC/USP 28

Full binary tree
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Complete binary tree

2

1

16

4

3

9 10

Binary trees

 Height of a node: number of edges on the 
longest simple path from the node to a leaf

 Level of a node: length of a path from the root to 
the node

 Height of a tree: height of its root node 

© André de Carvalho - ICMC/USP 29
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Heap Sort

 Uses an array A as a binary heap data structure

 Array A can be seen as a nearly complete binary tree
 Each node in the tree is an item in A

 The value in the root is larger than or equal to all its 
children

 The left and right subtrees are again binary heaps

 Does sort in place

 Array A has two external attributes

 length[A]: number of items in A

 heap-size[A]: number of items in the heap stored in A

 No item after A[heap-size[A]] is an item of the heap

© André de Carvalho - ICMC/USP
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Heap Sort

 In a heap stored as an array A

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[ i/2 ]

 Heapsize[A] ≤ length[A]

 The elements in the subarray 

A[(n/2+1) .. n] are leaves

© André de Carvalho - ICMC/USP 31 32

Heap Sort

 Implicit tree links:

 Children of node i are nodes 2i and 2i+1

 Parent of node i is node i/2

 Why is this useful?

 In the binary representation

 Multiplication (division) by two is left (right) shift

 To add 1, just add to the lowest bit

© André de Carvalho - ICMC/USP

Heap types

 Max-heaps 
 Largest element at root, have the max-heap 

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≥ 

A[i]

 Min-heaps 
 Smallest element at root, have the min-heap 

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≤ 

A[i]
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Operations on heaps

 Adding nodes:
 New nodes are always inserted at the bottom 

level (left to right)

 Deleting nodes:
 Nodes are removed from the bottom level 

(right to left)

© André de Carvalho - ICMC/USP 34
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Operations on heaps

 Maintain/Restore the max-heap property
 Max-Heapify

 Create a max-heap from an unordered 
array
 Build-Max-Heap

 Sort an array in place
 Heapsort

© André de Carvalho - ICMC/USP 35

Maintaining heap properties

 Max-Heapify
 Binary trees rooted at Left(i) 

and Right(i) are heaps
 However, A[i] may be smaller 

than its children, violating the 
max-heap property

 To eliminate the violation:
 Exchange A[i] with larger child
 Move down the tree until node 

is not smaller than its children

© André de Carvalho - ICMC/USP 36
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Maintaining heap properties
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 Assumptions:

 Left and Right 
subtrees of i are 
max-heaps

 A[i] may be smaller 
than its children

Max-Heapify(A, i)
n  ← heap-size(A)
l ← Left (i)
r ← Right(i)
if l ≤ n and A[l] > A[i]
then largest ←l
else largest ←i
if r ≤ n and A[r] > A[largest]
then largest ←r
if largest  i
then exchange A[i] ↔ A[largest]

Max-Heapify (A, largest)

Example
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Max-Heapify (A, 2)

A[2] violates the heap property

A[2]  A[4]

A[4] violates the heap property

A[4]  A[9]

Heap property restored

Max-Heapify running time

 Intuitively:
 Max-Heapify runs a path from the root to a 

leaf
 Longest path: h

 At each level, it makes exactly 2 comparisons
 Total number of comparisons: 2h

 Height of the heap (h) is lgn

 Running time: O(h) = O (lgn)

 Running time of Max-Heapify: O(lgn) 
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Building a Heap

 Convert an array A[1...n] into a heap

 Consider n = length[A]

 Elements in the subarray A[(n/2 + 1)...n], which are 
leaves, are already 1-element heaps

 Apply Max-Heapify to elements from 1 to n/2

© André de Carvalho - ICMC/USP

Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i) 2
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4 1 3 2 16 9 10 14 8 7A:

Building a Heap
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i = 2 i = 1

4 1 3 2 16 9 10 14 8 7A:Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)

Build-Max-Heap running time

 Running time: O(nlgn)
 As sometimes heaps are built for other reasons, it 

would be nice to have a tight bound
 It is possible to derive a tighter bound

 Time for Max-Heapify to run at a node varies with the height 
of the node

 Heights of most nodes are small
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O(lgn) O(n)

Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)
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Build-Max-Heap running time

 Max-Heapify takes O(h)  Cost of Max-Heapfy
on a node i ~ the height of node i in the tree

© André de Carvalho - ICMC/USP 43

i

h
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Height Level
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No. of nodes

20

21

22

23

hi = h – i (height of the heap rooted at level i)
ni = 2i (number of nodes at level i)

Build-Max-Heap running time
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
h

k
k

h k

0 2
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
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k
n The sum above is smaller than the sum of all elements 

to  and h = lgn

)(nO The sum above is smaller than 2

Running time of Build-Max-Heap : T(n) = O(n)

Heapsort

 Goal: sort an array using heap 
representations

 Procedure:
 Build a max-heap from the array
 Swap the root (the maximum element) with 

the last element in the array
 “Discard” this last node by decreasing the 

heap size
 Call Max-Heapfy on the new root
 Repeat process until only one node remains 
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Heapsort running time

 We discard the previous root when applying Max-
Heap (to the remaining heap)

 Running time is O(n lg n) + Build-Heap(A) time, 
which is O(n)
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Heapsort (A)
Build-Max-Heap (A)
for i ← length[A] downto 2

do exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A]-1 
Max-Heapfy (A,1)

O(n)
n-1 times

O(1)
O(1)
O(lgn)

O(n)

O(lgn)

n-1 times

Example 1
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Max-Heapify (A, 1) Max-Heapify (A, 1) Max-Heapify (A, 1)

Max-Heapify (A, 1)

A:

1 2 3 4 7

7 4 3 1 2

A:

1

2

4 5

3

Example 2
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16 14 10 9 8 7 4 3 2 1A:
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Summary

 Heapsort uses a heap data structure to 
improve selection sort and make the 
running time asymptotically optimal

 Running time is O(n log n) 
 Like merge sort, but unlike selection, insertion, 

or bubble sorts

 Sorts in place

 Like insertion, selection or bubble sorts, but 
unlike merge sort
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Summary

 Why Max-Heapify instead of Min-Heapify

 It is not easy to recover the elements in 
increasing order if we use Min-Heapify

 See heap below

 We could use Min-Heapify to sort in the 
decreasing order

© André de Carvalho - ICMC/USP
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Exercise

 Assuming the data in a max-heap are 
distinct, what are the possible locations of 
the second-largest element?
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Exercise

1. Given a max heap B of height h 

a) What is the maximum number of nodes  in B?

b) What is the maximum number of leaves?

c) What is the maximum number of internal 

nodes?
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Exercise

 Demonstrate, step by step, the operation 
of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]
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Exercise

 Let A be a heap of size n. Give the most 
efficient algorithm for the following tasks:

(a) Find the sum of all elements

(b) Find the sum of the largest lgn elements

© André de Carvalho - ICMC/USP 54
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Next Week

 Hashing
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Questions
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