Protozooses Cavitárias

>Tricomoníase

> Amebiase

✓ Enfoque desta aula:

- > Agente etiológico
- > Epidemiologia
- > Transmissão
- > Ciclo de vida
- > Diferentes formas do parasita
- > Patogenia
- > <u>Diagnóstico</u>
- > Tratamento
- > Controle

Tricomoníase

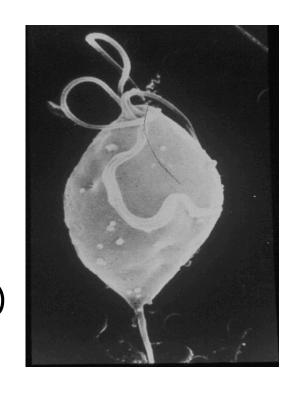
Agente etiológico

✓ Tricomoníase é uma doença causada pelo protozoário Trichomonas vaginalis.

✓ Taxonomia

·Reino: Protista

·Sub-reino: Protozoa


•Filo: Sarcomastigophora

Sub-filo: Mastigophora

•Classe: Trichomonadae (Zoomastigophorea)

·Família: Trichomonadidae

·Gênero: Trichomonas

Epidemiologia

Estimativa de incidência global de doenças sexualmente transmissíveis em 2005 e 2008 (milhões de casos).

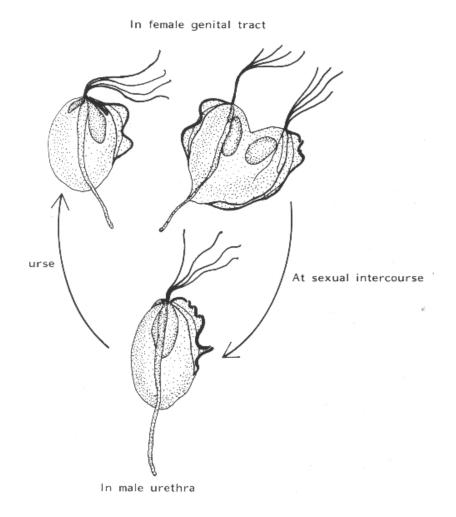
	2005	2008	% change
Chlamydia trachomatis	101.5	105.7	4.1
Neisseria gonorrhoeae	87.7	106.1	21.0
Syphilis	10.6	10.6	0
Trichomonas vaginalis	248.5	276.4	11.2
Total	448.3	498.9	11.3

Incidência e Prevalência (em milhões de casos) de Tricomoníase. (2008)

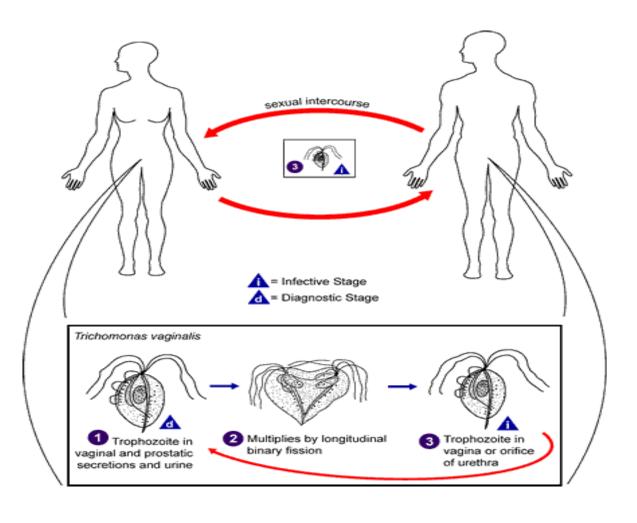
Região	Incidência	Prevalência
África	59,7	42,8
Américas	85,4	57,8
Sudeste Asiático	42,9	28,7
Europa	22,6	14,3
Mediterrâneo Oriental	20,2	13,2
Pacífico Ocidental	45,7	30,1

<u>Prevalência</u> mede quantas pessoas **estão** doentes, *incidência* mede quantas pessoas **tornaram-se** doentes.

Epidemiologia


- > É uma doença sexualmente transmitida e de distribuição mundial;
- Doença sexualmente transmissível não-viral mais prevalente;
- > 4,3 milhões de casos por ano no Brasil (SVS, 2006);
- > Infecta homens e mulheres na mesma proporção, porém as mulheres apresentam mais sintomas.

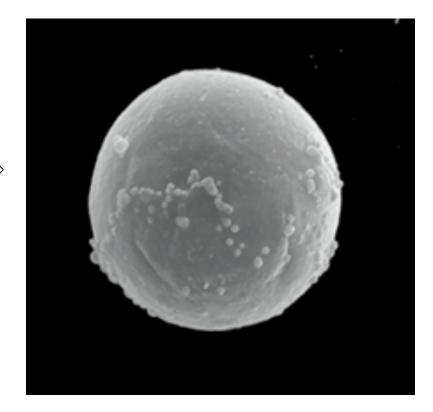
Epidemiologia


- > A maioria dos homens infectados é assintomática;
- > Cerca de 25 a 50% das mulheres positivas são assintomáticas;
- > Nas mulheres, a infecção com T. vaginalis está associada a:
- câncer cervical;
- doença inflamatória pélvica;
- parto prematuro devido ao rompimento das membranas placentárias;
- baixo peso do recém nascido;
- aquisição e transmissão do HIV (também em homens).

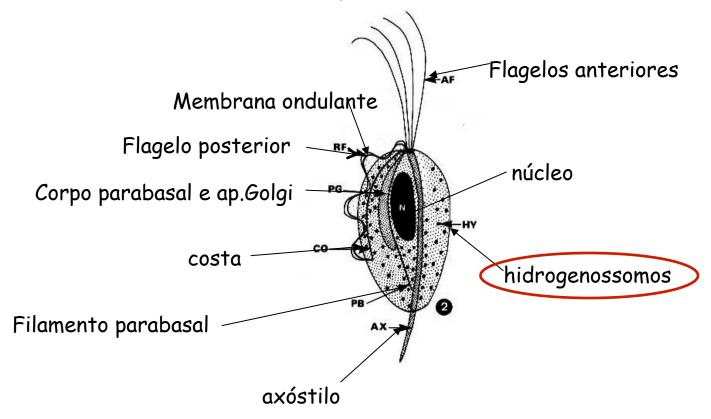
Mecanismos de Transmissão

- 1. Relação sexual (+ frequente)
- 2. Durante o parto
- 3. Outras formas de transmissão
- ✓ roupa íntima ou de cama
- √ instalações sanitárias

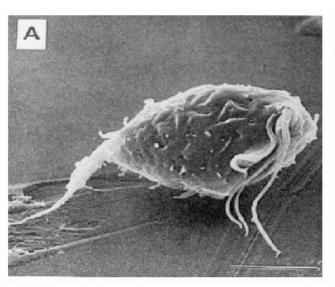
Ciclo de Vida

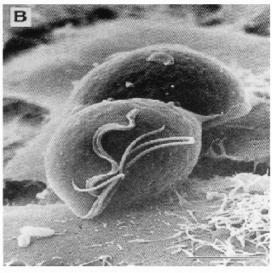

> Trofozoítos

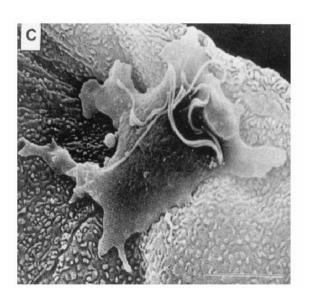
- Reproduz-se por divisão binária longitudinal
- Não forma cistos


Forma normal flagelos externalizados

Pseudocisto: forma intraflagelar

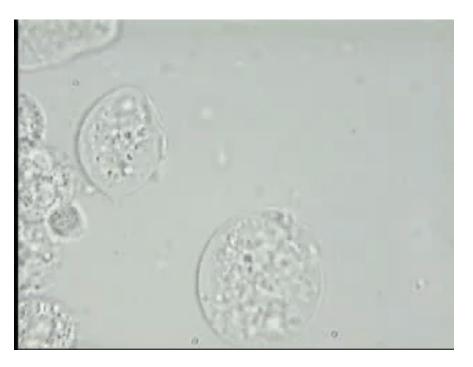



Trofozoítos

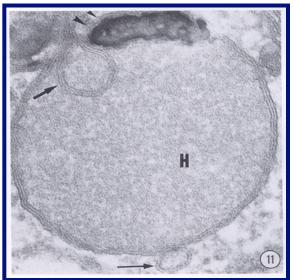


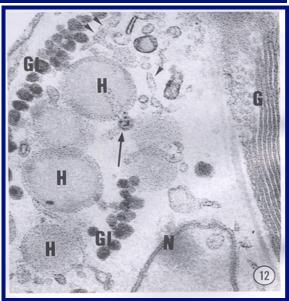
- ✓ Habita o trato genito-urinário masculino e feminino;
- ✓ Seu formato pode variar entre ovoides, arredondados ou elipsoides;
- Possui 4 flagelos anteriores desiguais, uma membrana ondulante e emitem pseudópodes para captar alimentos;
- ✓ Medem em média 9,7 μ m de comprimento por 7 μ m de largura;

Morfologia

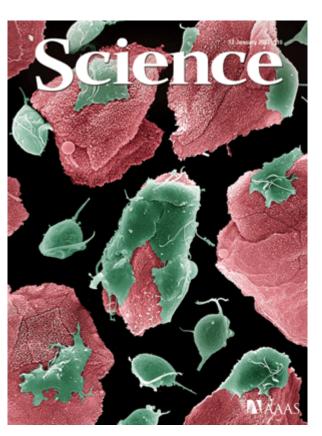


A: T. vaginalis vista em meio de cultura. O axóstilo, a membrana ondulante e os flagelos são bastante visíveis

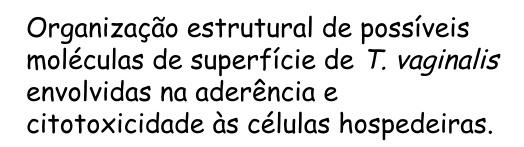

B: T. vaginalis na superfície de uma célula epitelial vaginal

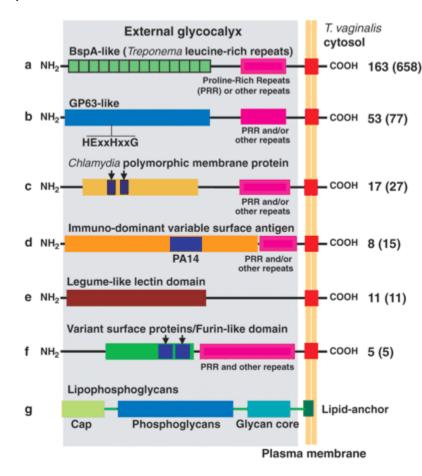

C: Morfologia ameboide da T. vaginalis aderida a uma célula de cultura.


- ✓ É anaeróbio utilizando glicose, maltose e galactose como fontes de energia;
- ✓ Precisa que o hospedeiro sintetize moléculas essenciais (nucleotídeos, ácidos graxos, aminoácidos);
- ✓ A presença de ferro é importante para sua sobrevivência;
- ✓ Cresce bem em pH entre 5 e 7,5;
- ✓ Não possui mitocôndrias;
- ✓ Contém hidrogenossomos (envolvidos no metabolismo de carboidratos). Hidrogenases transformam piruvato em acetato e liberam ATP e H₂.



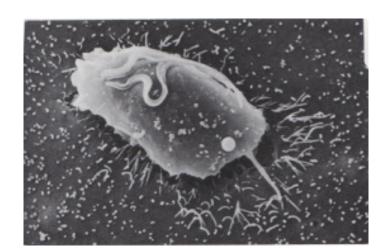
- 0.5-2 μm de tamanho com membrana dupla
- · não contém material genético

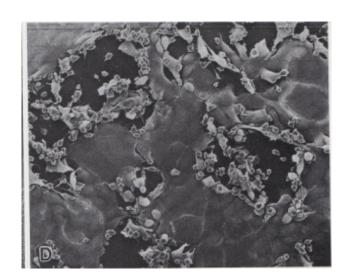

Metabolismo no Hidrogenossomo



Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

Science 2007, 315:207

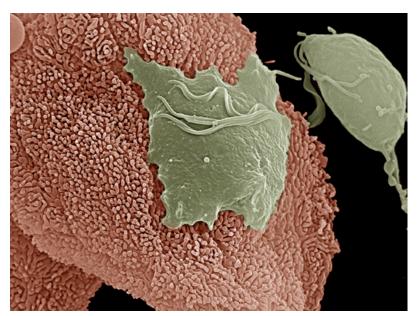


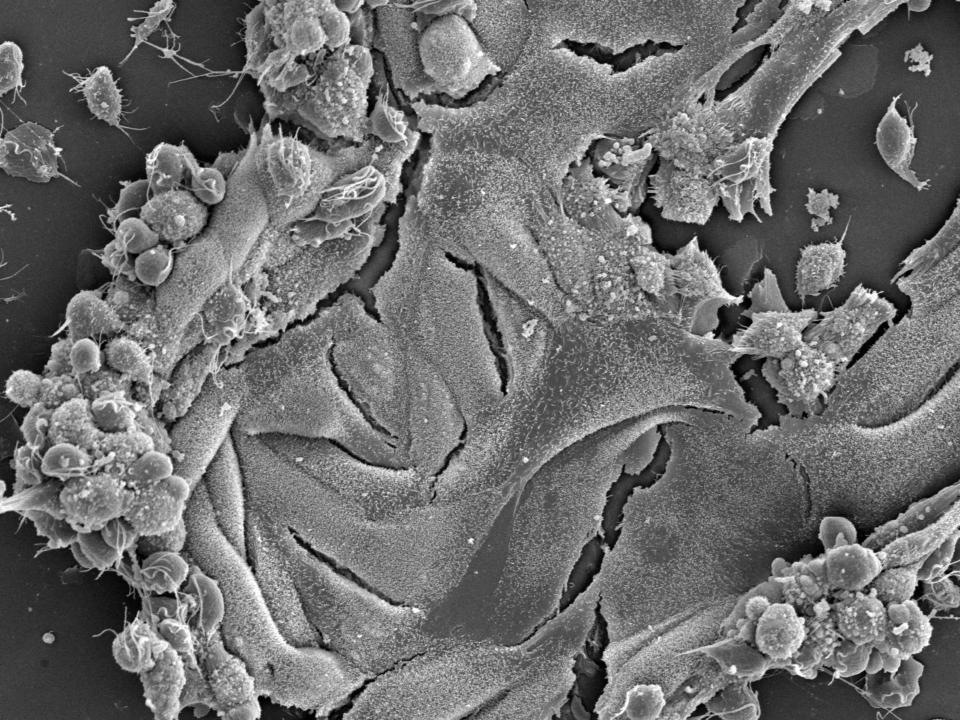


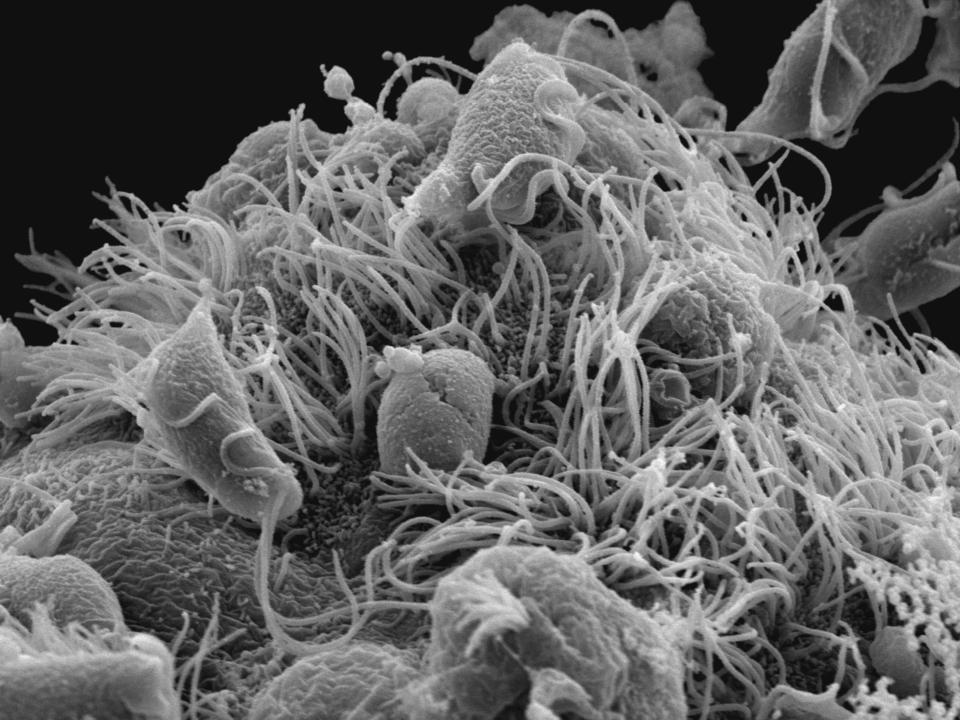
Patogênese

Mecanismos moleculares:

- ✓ Infecta o epitélio do trato genital;
- √ A capacidade de adesão tem papel muito importante na patogênese;
- √ A adesão é dependente de temperatura, pH e tempo;
- ✓ Adesão dá-se através de proteínas: adesinas (tratamento com tripsina abole adesão). São 5 tipos: AP23, AP33, AP51, AP65 e AP120.






Patogênese

Mecanismos moleculares:

- ✓ Expressa lipofosfoglicanos (LPG) que tem também a função de auxiliar na ligação à matriz extracelular e as células endoteliais;
- ✓ Expressa cisteíno-proteases (CPs) extracelulares que digerem diferentes proteínas;
- ✓ São pelo menos 23 classes de CPs;
- ✓ Produz o chamado fator de descolamento de células (cell detaching factor) que é uma glicoproteína de 200kDa ativa em pH 5-8.5.

Apoptose > Necrose secundária

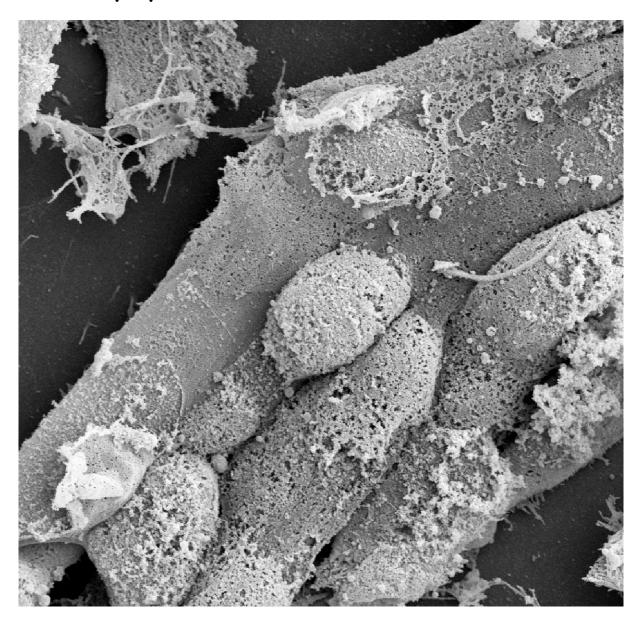
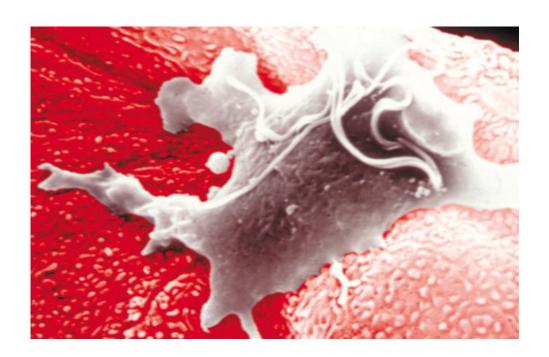


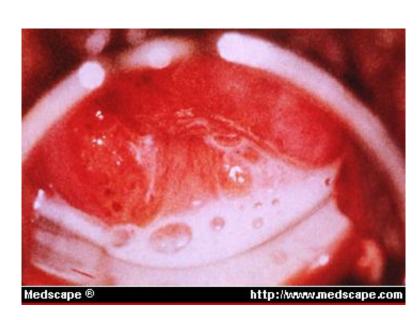
Table 1. Virulence mechanisms that involve cysteine proteinases in Trichomonas vaginalis.

Virulence mechanisms	References	
Invasion of the mucous layer	Lehker & Sweeney (1999) [65]	
Cytoadherence	Arroyo & Alderete (1989, 1995); Mendoza-López et al. (2000); Hernández et al. (2004) [12, 13, 49, 70]	
Cytotoxicity	Alvarez-Sánchez et al. (2000, 2007, 2008); Hernández-Gutíerrez et al. (2003, 2004); Kummer et al. (2008); de Jesus et al. (2009); Ramón-Luing et al. (2011) [8–10, 28, 45, 46, 60, 81]	
Cytoskeleton disruption of red blood cells and hemolysis	Dailey et al. (1990); Fiori et al. (1993, 1997) [27, 36, 37]	
Degradation of immunoglobulins	Provenzano & Alderete (1995); Hernández-Gutierrez et al. (2004) [45, 78]	
Apoptosis	Chang et al. (2004, 2006); Sommer et al. (2005); Kang et al. (2006);	
	Fichorova (2009) [24, 25, 32, 55, 91]	


H.M. Hernández et al.: Parasite 2014, 21, 54

Mecanismos de Evasão do Sistema Imune

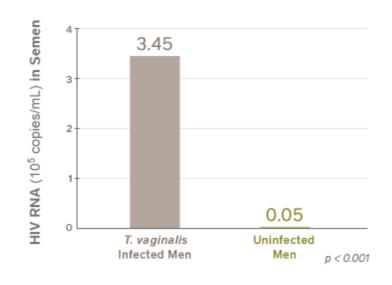
- > CPs dependentes de ferro são expressas e degradam o fator C3 da cascata do complemento;
- CPs digerem também um inibidor de proteases solúvel produzido por leucócitos (SLPI);
- > TVCP39 degrada fibronectina, colágeno, imunoglobulinas locais (IgA e IgG);
- > TVCP30 induz apoptose de células epiteliais e também de linfócitos T, macrofágos e células dendríticas;
- > T. vaginalis pode fagocitar os lactobacilos responsáveis pela manutenção do pH ácido da vagina.


Indução de imunidade

- > Resposta imune protetora- IgA secretora
- > Reinfecções ausência de imunidade adquirida
 - grande variabilidade de isolados

Manifestações Clínicas

- >Na mulher
- ✓ Assintomática: 25 a 50% dos casos
- √ Vaginite aguda:
- Corrimento vaginal fluido, bolhoso e abundante de cor amarelo-esverdeada e de odor fétido
- Prurido ou irritação vulvovaginal
- Dor durante as relações sexuais
- Dor ao urinar (disúria)
- Dor pélvica (mais rara)
- ✓ Vaginite crônica: sintomas leves
- ✓ Aumenta a transmissão do HIV



Manifestações Clínicas

- >No homem:
- ✓ Assintomática (a maioria)
- ✓ Uretrite aguda: corrimento abundante
- ✓ Sintomatologia leve: escasso corrimento, disúria, prurido
- √Complicações (raras): epididimite, infertilidade e prostatite
- ✓ Aumenta a transmissão do HIV

Aumento da transmissão do HIV associado à tricomoníase pode ser o resultado de:

- 1. Inflamação local produzida pela doença
- 2. Rompimento dos tecidos produzido pela doença
- 3. Susceptibilidade à doença pode ser resultado da imunossupressão associada ao HIV

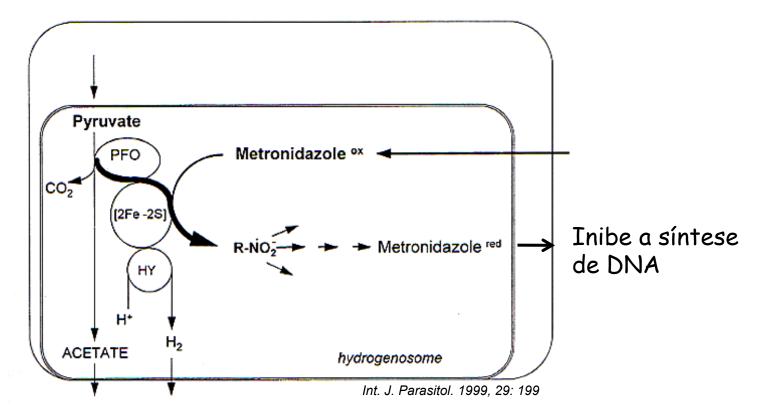
Homens seropositivos para HIV com uretrite sintomática e Trichomonas tiveram 69X mais RNA viral no sêmen do que homens HIV positivos não infectados com Trichomonas.

Diagnóstico

- >Coleta da amostra
- √ Homem
- Materiais: secreção uretral, urina primeiro jato, esperma, secreção prostática e material sub-prepucial
- ✓ Mulher
- Material: secreção vaginal
- > Exame
- Exame microscópico de preparações a fresco ou coradas (baixa sensibilidade)
- · Imunofluorescência direta (sensível + cara)
- · Cultura do parasito (resultados em 3 a 7 dias)

Diagnóstico

- > Amplificação por PCR
- ✓ Altamente sensível porém caro;
- ✓ Difícil aplicação em países subdesenvolvidos.


Tratamento

- > Instituído sob supervisão médica e deve incluir todos os parceiros sexuais
- > Derivados nitroimidazólicos:
- ✓ Metronidazol
- contra-indicado para grávidas (1º trimestre)
- · linhagens de parasitas resistentes na Europa
- √ Tinidazol
- ✓ Ornidazol
- ✓ Nimorazol

Tratamento

Agente	1ª opção	2ª opção	Outras opções (gestantes após o 1º trimestre e durante a amamentação)
Tricomoníase	Metronidazol 2g VO dose única ou Metronidazol 400- 500mg 12/12hs VO 7 dias	Secnidazol 2g, VO, dose única ou Tinidazol 2g VO dose única	Metronidazol 2 g VO dose única ou Metronidazol 400mg 12/12hs VO 7 dias ou 250 mg VO 3 vezes ao dia por 7 dias

Mecanismo de Ação do Metronidazol

Na presença do metronidazol, elétrons gerados pela PFO (piruvato ferrodoxina oxidoredutase) são transportados pela ferrodoxina [2Fe-2S] para a droga e não para o seu aceptor natural que é a hidrogenase (HY). Metronidazol é reduzido e ocorre a formação de um nitro ânion que é um radical livre. O radicais livres citotóxicos (R-NO $_2$ -) são formados como produtos intermediários da redução da droga.

Desenvolvimento de Vacinas

> Não há nenhuma vacina disponível;

➤ Em modelo murino: teste usando parasitas misturados a adjuvante completo de Freund. Proteção possivelmente mediada por IgA e IgG;

➤ Uso de uma forma altamente glicosilada de LPG (TF1.17) levou a proteção em gado contra *T. foetus*.

Amebiase

Agente etiológico

✓ Amebíase é uma doença causada pelo protozoário Entamoeba histolytica

✓ Taxonomia

•Reino: Protista

·Sub-reino: Protozoa

•Filo: Sarcomastigophora

Sub-filos: Mastigophora

·Classe: Lobosea

·Família: Endamoebidae

·Gênero: Entamoeba

Amebas

Protozoários com inúmeros habitats:

> Vida livre

Vários gêneros e espécies

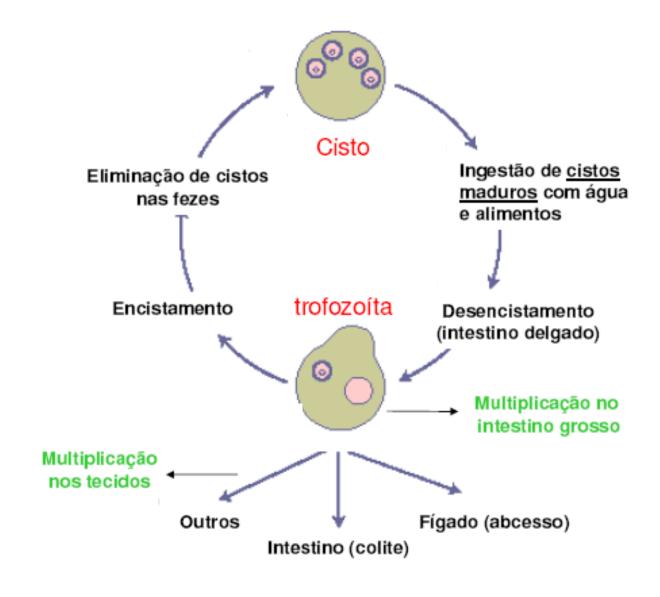
Entamoeba coli, E. dispar, E. hartmanni, E. gengivalis, Endolimax nana, Iodamoeba bütschlii

eventualmente Acanthamoeba, Naegleria parasitas

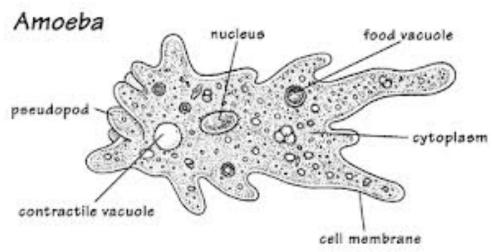
Complexo: E. histolytica / E. dispar

- Aproximadamente durante um século E. histolytica foi considerada como única espécie. Descobriu-se no entanto outra espécie (E. dispar) que é morfologicamente idêntica porém não patogênica.
- > Diferenças entre E. histolytica e E. dispar:
- ✓ Evidências bioquímicas: diferenças no perfil isoenzimático (zimodemas);
- ✓ Padrão de crescimento em culturas axênicas (*E. histolytica* cresce melhor);
- ✓ Capacidade de adesão a células alvo (mediada por lectinas): há diferenças antigênicas (detectadas por anticorpos monoclonais) e funcionais entre as lectinas de adesão;
- ✓ Diferenças na composição de glicoconjugados de membrana: lipofosfoglicano (LPG) abundante em *E. histolytica*;
- ✓ Diferenças genéticas demonstráveis por métodos moleculares.

Epidemiologia

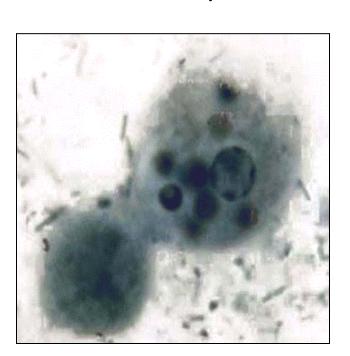

> Cosmopolita- varia de acordo com a região de 5 a 50% pessoas infectadas

Região	Infecção/ ano	Doença/ ano	Mortes/ ano
África	85 milhões	10 milhões	10-30 mil
Ásia	300 milhões	20-30 milhões	25-50 mil
Europa	20 milhões	100 mil	Mínima
Américas	95 milhões	10 milhões	10-30 mil
Totais	650 milhões	40-50 milhões	40-110 mil


Mecanismos de transmissão

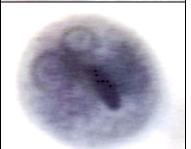
- > Ingestão de cistos
- √ fecal-oral
- Çgua ou alimentos contaminados
- > Cistos são viáveis por até ~ 30 dias no meio externo
- passam pelo estômago (quitina)
- resistem ao pH ácido e as enzimas digestivas
- · pH alcalino do intestino delgado: desencistamento
- Ciclo: luz intestino grosso: trofozoítos dividem-se por divisão binária
- ◆ Trofozoítas destruídos no estômago

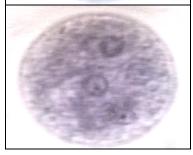
Ciclo de vida


- Até recentemente era considerada um <u>eucarioto</u> <u>primitivo</u> por não possuir Mitocôndria, REG ou Aparelho de Golgi;
- > Porém, houve a identificação de:
- Proteína dissulfeto isomerase (abundante no REG);
- Galactose-UDP e glucose-UDP (componentes do Aparelho de Golgi).
- Possui uma organela chamada mitossoma (exerce função de mitocôndria)

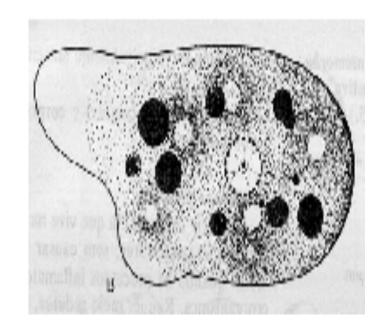
Formas de Vida

Trofozoíto


- > 1 núcleo
- > citoplasma: ecto e endoplasma
- > ingestão pinocitose/fagocitose: bactérias/hemáceas (forma invasiva)
- > multiplicação: divisão binária simples

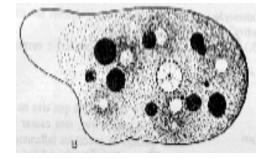


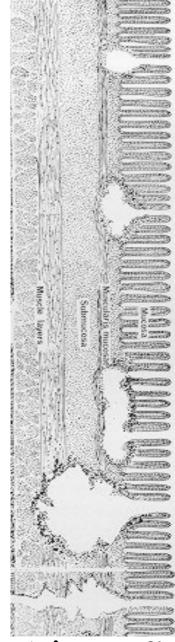
Cisto

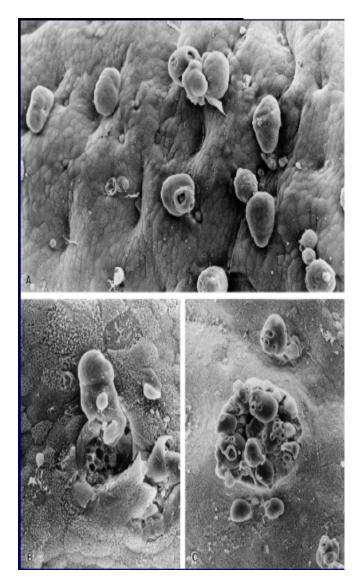

- ≥1-4 núcleos
- >esféricos/ovais
- >forma de resistência
- >eliminado nas fezes


- > Trofozoíto: forma ativa, que se alimenta (via pinocitose, fagocitose) e se reproduz rapidamente
- > Metabolismo
- ✓ principalmente anaeróbico
- ✓ microaerófila
- ✓ principal fonte energética glicose (estoque vacúolos de
 glicogênio), metabolizada
 principalmente em etanol, acetato e
 CO₂
- ✓ não sintetiza bases nitrogenadas e precisa obtê-las do hospedeiro

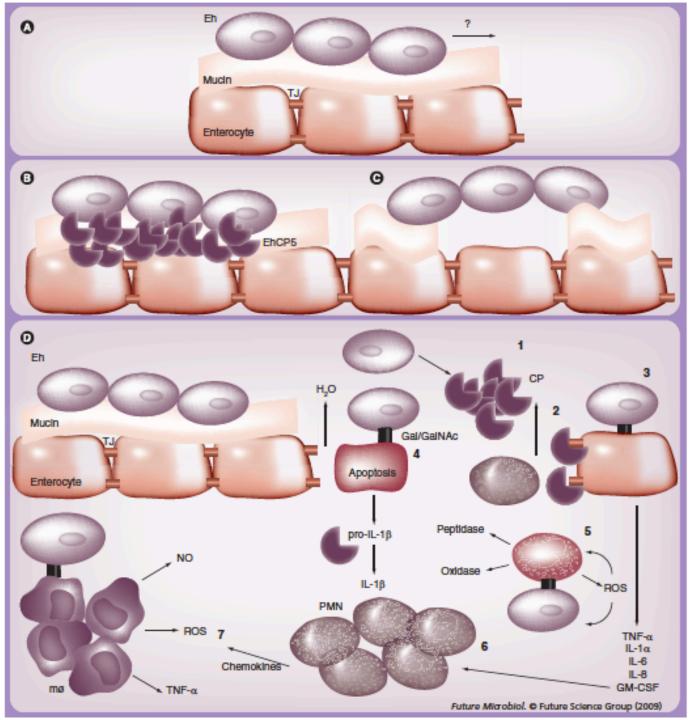
Trofozoíto


- > pleomórfico, com grande variabilidade tamanho
- > motilidade pseudópodes




Formas clínicas e Sintomatologia

- > Forma assintomática
- > Forma intestinal (não invasiva)
- √ dores abdominais (cólicas)
- √ diarreias ~6 episódios/dia (pode ficar crônica)
- > Forma intestinal invasiva
- √ colite amebiana aguda, disenteria grave (fezes líquidas)
- √ úlceras intestinais, abscessos
- Forma extra-intestinal
- √ fígado (+ comum): dor, febre, hepatomegalia mais comum
- em homens
- √ pulmão (+ raro)
- √ cérebro (+ raro)
- √ pele (região perianal e órgãos genitais)



Ulceração perfuração

Abscesso fígado

Patogenicidade

A. Relação normal: sem dano ao tecido

B. Eh se torna virulenta com liberação da CP5;

C: destruição da camada de muco;

D: adesão e lesão tecidual

CP: Cysteine protease; Eh: Entamoeba histolytica; GM-CSF: Granulocyte monocyte colony stimulating factor; mø: Macrophage; NO: Nitric oxide; PMN:

NO: Nitric oxide; PMN: Polymorphonuclear leukocyte; ROS: Reactive oxygen species.

Future Microbiol. (2009) 4(1)

Principais Fatores de Virulência envolvidos na patogênese da *E. hystolitica*

E. histolytica molecule	Role in pathogenesis	Ref.
EhCP	Cleaves MUC2 polymer specifically at the cysteine-rich C-terminal domains and depolymerizes mucins Lyse villin and microvilli Cleaves immunoglobulins, complements, as well as cytokines such as IL-18 Signaling role in the development of ALA	[15,16,20,24,33]
Gal–lectin	Surface adhesion molecule in parasite colonization Mediates apoptotic death of epithelial cells that the trophozoites contact	[17]
LPPG	Parasite surface molecule utilized for epithelial adhesion and cytotoxicity	[18,22]
EhSTIRP	Parasite surface molecule utilized for epithelial adhesion and cytotoxicity	[19]
Perioxiredoxin	Neutralize ROS and NO, which are released from activated macrophages	[25,26]
Ehserp	Forms a complex with cathepsinG that are released from neutrophils and neutralizes them	[27]
Eh arginase	Converts ι -arginine, the precursor of NO, into ι -ornithine and thus hinders NO production in the macrophage	[29]
β1 integrin-like receptors	Interact with fibronectin and laminin of endothelial cells as well as extracellular matrix protein, and activate trophozoites that enter systemic circulation	[31]
Amoebapore	Pore-forming peptide that plays a major role in ALA	[32]
KERP1	Specifically upregulated on parasite surface during ALA, but the role in pathogenesis is not clearly known	[34]
	abscess; Eh: Entamoeba histolytica; EhCP: E. histolytica cysteine proteinase; Ehserp: E. histolytica serine proteinase; EhSTIRP: Serini in; KERP1: Lysine and glutamic acid-rich protein-1; MUC2: Secretory mucin; LPPG: Lipophosphopeptidoglycan; NO: Nitric oxide; Ri	

Relação Parasita-Hospedeiro

Mecanismos de defesa do hospedeiro

- Camada Mucosa mucinas: gel aderente, previne adesão às células epiteliais e facilita a eliminação do parasita
- 2. Glicosidases produzidas pelas bactérias da flora intestinal e proteases do lúmen degradam a lectina da *E. hystolyica*

Relação Parasita-Hospedeiro

- 3. Resposta Imune
- proteção está ligada a presença dos alelos de MHC II DQB1*0601 em homozigose ou DQB1*0601/ DQB1*1501;
- Produção de IgA anti-lectina ligadora de Gal/NAcGal está associada a imunidade contra o abcesso no fígado;
- Associação entre níveis de IgA específica para o domínio de reconhecimento de carboidratos da lectina ligadora de Gal/NAcGal e imunidade contra re-infecção.

Diagnóstico

- > Clínico diarreia/síndrome do cólon irritável
- > Parasitológico de fezes
- ✓ Pesquisa de cistos em fezes sólidas (diferenciar amebas não patogênicas)
- ✓ Trofozoítos em fezes líquidas
- ✓ Cultura de fezes
- > Diagnóstico imunológico
- ✓ ELISA para detecção de antígeno nas fezes
- ✓ ELISA para detecção Acs IgG soro amebíase invasiva
- > Diagnóstico Molecular
- ✓ PCR (distingue espécies)

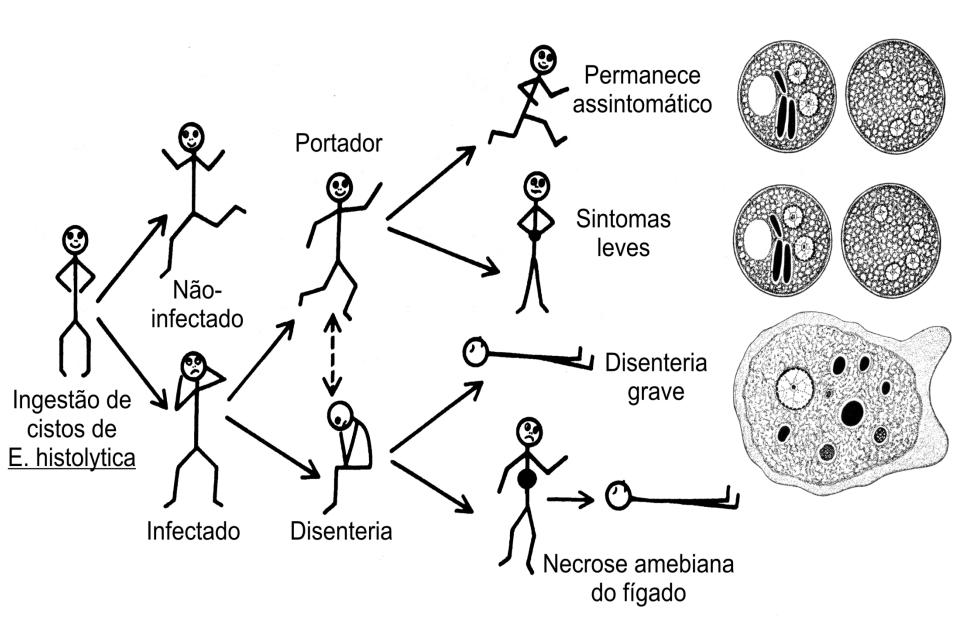
Diagnóstico

- > Problemas
- ✓ Diagnóstico diferencial amebas não patogênicas
- •E. histolytica x E. coli
- •E. histolytica x E. dispar

	TROFOZOÍTO	CISTO	NÚCLEO
Entamoeba histolytica			
Entamoeba coli			

Tratamento

Formas intestinais


Medicamento	Adulto	Criança
SECNIDAZOL	2g, VO, dose única	30mg/kg/dia, VO
METRONIDAZOL	500mg, VO, 3x/dia, 5 dias	35mg/kg/dia, VO, 5 dias
TINIDAZOL	2g, VO 2 dias	
TECLOZAM (somente formas leves ou assintomáticas)	1,5g, VO, dose única	15mg/kg/dia, VO, 5 dias

Tratamento

Formas graves

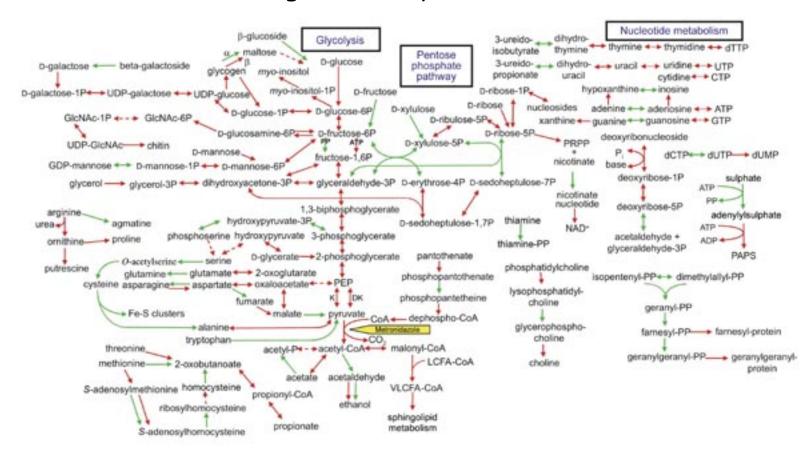
Medicamento	Adulto	Criança
METRONIDAZOL	750mg, VO, 3x/ dia, 10 dias	50mg/kg/dia, VO, 10 dias
TINIDAZOL	50mg/kg/dia, VO, 2-3 dias	50mg/kg/dia,

História natural da amebíase

Profilaxia e Controle

- 1. Saneamento básico
- 2. Educação sanitária
- 3. Tratamento de água
- 4. Controle de alimentos (lavar frutas e verduras)
- 5. Tratamento das fontes de infecção
- 6. Cuidados com higiene pessoal (lavar as mãos)

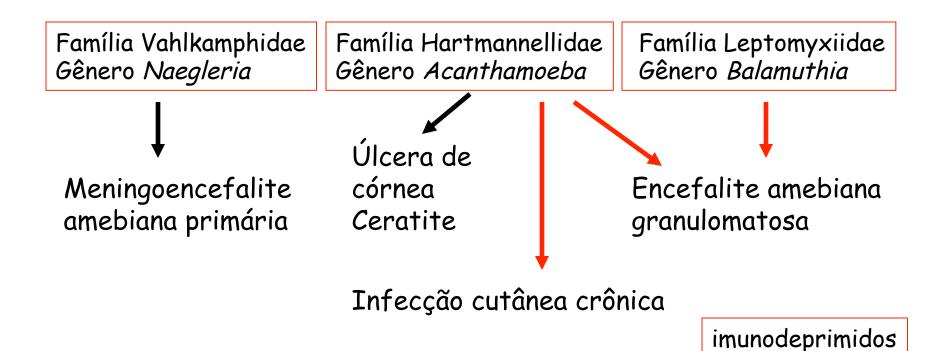
Portadores assintomáticos!


E. histolytica vaccine candidate	Animal model	Route of delivery	Adjuvant	Vaccine responses	Type of immunity	Ref.
Amoebapore deficient E. histolytica	SCID mice	Intraperitoneal injection	None	No liver abscess (induce amoebic colitis in human intestinal xenografts in SCID mice)	Humoral (Ab)	[32,106]
EhADH243	Syrian hamster	Intraperitoneal/ subcutaneous injection	Freunds	Reduction in liver abscess and antibodies against EhCPADH complex	Only Ab assessed	[107]
MLIF-multiple antigen peptide system	Gerbils	Intramuscular injection	None	Protection against ALA, and splenic mononuclear cell proliferation	Not known	[108]
E. histolytica lectins on Yersinia enterocolitica carrier	Gerbils/mice	Oral	None	Protection against ALA	Cell-mediated Th-1 cytokine response	[109]
25-mer peptide derived from heavy Gal–lectin subunit coupled with keyhole limpet hemocyanin	Gerbils/mice	Intraperitoneal or oral	None	33 and 67% protection against ALA in gerbils and SCID mice, respectively	Humoral and fecal IgA	[110]
Native Gal-lectin (or recombinant 578–1154 amino acid fragment of heavy subunit)	Mice	Intranasal and intraperitoneal	Cholera toxin	No measurable fecal IgA produced unless intraperitoneal FCA booster was used	Fecal antilectin IgA	[88]
Gal-lectin subunit (residues 596-998 of the cysteine rich region)	Not applicable	In vitro assessment using THP-1 human macrophage cell line	None	Immunogenicity in addition to IL-12 induction, which acts as a natural adjuvant	Not applicable	[98]
Native Gal-lectin	Gerbils/mice	Intranasal or intramuscular	CpG-ODN	Increased IgG production, T-cell proliferation and secretion of Th-1 cytokines, and DC maturation and upregulation of IL-12 electide; DC: Dendritic cell; FCA: Freund	Humoral and fecal IgA Th-1 cytokine response	[89,99,100]

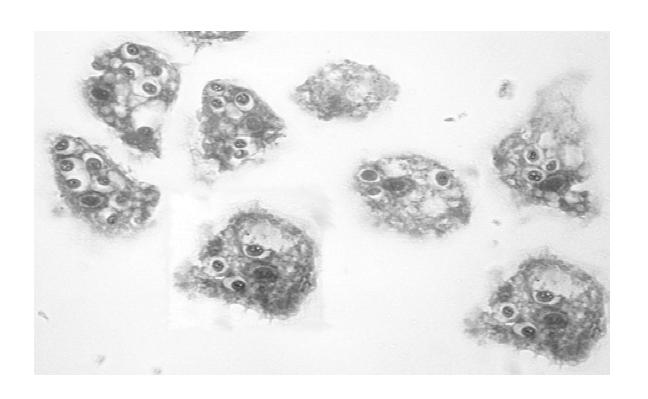
Ab: Antibody; ALA: Amoebic liver abscess; CPG-ODN: Cytosine guanine oligodeoxynucleotide; DC: Dendritic cell; FCA: Freund's complete adjuvant; MLIF: Monocyte locomotion inhibitory factor; SCID: Severe-combined immunodeficiency syndrome; THP-1: Human acute monocytic leukemia cell line.

The genome of the protist parasite Entamoeba histolytica.

Nature 2005, 433:865


Predicted metabolism of *E. histolytica* based on analysis of the genome sequence data.

Amebiase como doença oportunista


Amebas encontradas no solo e na água, bacteriófagas.

Parasitas facultativos em vertebrados.

Amebas de vida livre

Trofozoítos fagocitam e digerem microorganismos

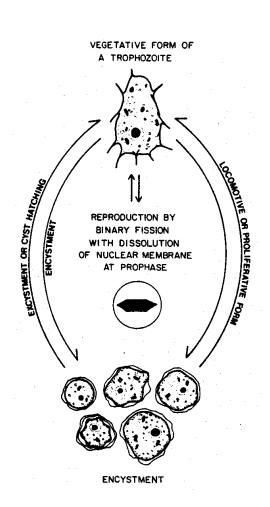
Mecanismos de transmissão

Naegleria fowleri

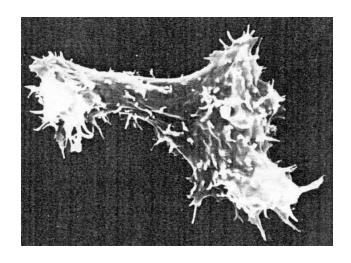
Acanthamoeba

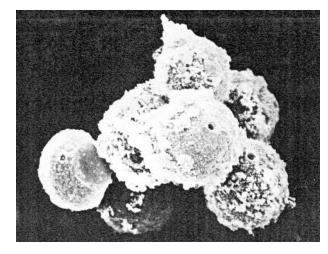
Encontradas em todo o mundo no solo, água (rios, lagos, piscinas, água encanada).

Cistos estáveis por 8 meses a temperatura ambiente.


Naegleria fowleri – contato com água, contaminação via epitélio neurolfatório – indivíduos sadios

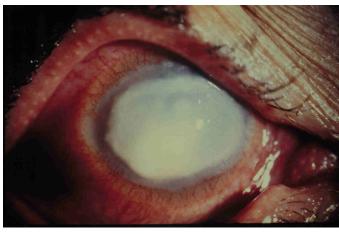
Acanthamoeba – contato com água, uso de lentes de contato. Contaminação local, via epitélio olfatório, via hematogênica.

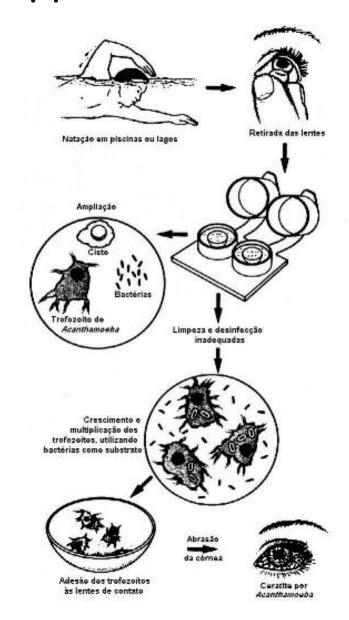

Fatores determinantes para infecção:


Temperatura, dose infectante, capacidade de persistir nas mucosas, imunidade de mucosa, imunodeficiência

Acanthamoeba

- A. culbertsoni
- A. polyphaga
- A. hatchetti
- A. castellanii





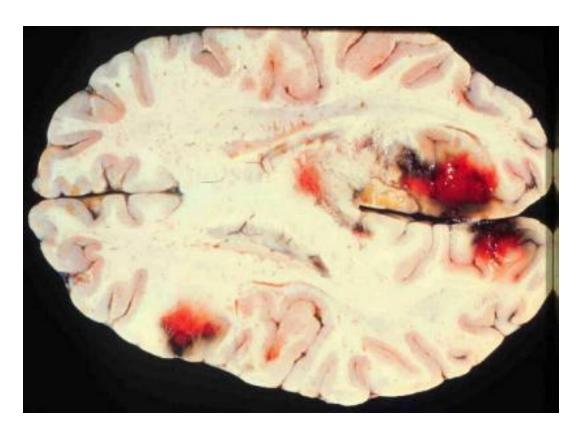
Acanthamoeba spp

Infecção ocular (ceratites)

Acanthamoeba - Patogenia

Infecção ocular

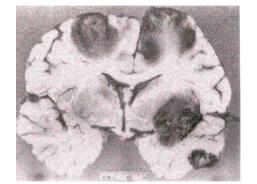
Micro-lesão ou trauma pré-existente (lentes de contato, por exemplo)


Contato → adesão

Serino e cisteíno-proteases --- efeito citopático

Fagocitose/ apoptose — lesão/morte celular

AMEBAS DE VIDA LIVRE

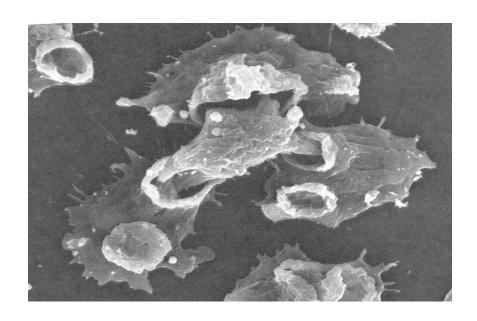

Acanthamoeba spp.

· Encefalite amebiana granulomatosa

Acanthamoeba

Pacientes com imunodepressão

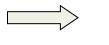
Infecção cutânea crônica


Encefalite amebiana granulomatosa

Endossimbiontes - Legionella e outras bactérias

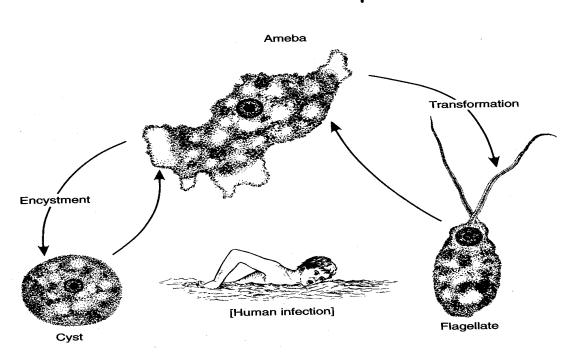
Amebiase como doença oportunista

Família Vahlkamphidae Gênero Naegleria



Termofílica

Naegleria fowleri


Família Vahlkamphidae Gênero *Naegleria*

Meningoencefalite amebiana primária

N.gruberi N. lovaniensis N. australiensis

Patogenia

Naegleria

- > Meningoencefalite amebiana primária, ocorre principalmente em indivíduos jovens.
- > Doença rara, mas fulminante.

> Mecanismos de invasão: adesão, proteína formadora de poros, fosfolipase, outras proteases.

Diagnóstico

- > Exame do LCR: hemorrágico, neutrófilos, glicose normal ou baixa, proteína elevada
- > Pesquisa de trofozoítos
- > Ceratite raspado de córnea e cultura
- > Exame direto
- > Cultura