
Programming Manual

Logix 5000 Controllers Structured Text
1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix,
1769 Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix,
5069 Compact GuardLogix, Studio 5000 Logix Emulate

Important user information
Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this
equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and
wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried
out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the
manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or
application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements
associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the
examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described
in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in
a hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal
injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a
hazard, and recognize the consequence

Important: Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to
alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert
people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control
center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear
proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work
practices and for Personal Protective Equipment (PPE).

Allen-Bradley, Rockwell Software, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 3

Summary of changes

This manual includes new and updated information. Use these reference
tables to locate changed information.

Grammatical and editorial style changes are not included in this summary.

Global changes

This table identifies changes that apply to all information about a subject in
the manual and the reason for the change. For example, the addition of new
supported hardware, a software design change, or additional reference
material would result in changes to all of the topics that deal with that
subject.

Subject Reason

Updated supported controller
models.

New controller models have been released.

Updated screen shots. The Logix Designer interface has been updated.

New or enhanced features

This table contains a list of topics changed in this version, the reason for the
change, and a link to the topic that contains the changed information.

Topic Name Reason

Comments on page 38 Added information on using the Comment text
block command.

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 5

Table of contents

Studio 5000 environment .. 7
Additional resources ... 8
Legal Notices .. 8

Chapter 1

Introduction ... 11
Assignments .. 13

Specify a non-retentive assignment .. 14
Assign an ASCII character to a string data member 15

Expressions ... 15
Use Arithmetic Operators and Functions ... 16
Use Relational Operators ... 18
How Strings Are Evaluated .. 19
Use Logical Operators .. 19
Use Bitwise Operators .. 20
Determine the order of execution ... 21

Instructions ... 22
Constructs ... 23

Some Key Words Are Reserved for Future Use 23
IF...THEN ... 23
CASE...OF .. 26
FOR...DO .. 29
WHILE...DO ... 32
REPEAT...UNTIL .. 35
Comments ... 38

Preface

Program Structured
Text

Index

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 7

Preface

This manual shows how to program Logix 5000 controllers with structured
text programming language.

This manual is one of a set of related manuals that show common procedures
for programming and operating Logix 5000™ controllers.

For a complete list of common procedures manuals, refer to the Logix 5000
Controllers Common Procedures Programming Manual , publication 1756-
PM001.

• The term Logix 5000 controller refers to any controller that is based on
the Logix 5000 operating system.

The Studio 5000 Automation Engineering & Design Environment®
combines engineering and design elements into a common environment. The
first element is the Studio 5000 Logix Designer® application. The Logix
Designer application is the rebranding of RSLogix 5000® software and will
continue to be the product to program Logix 5000™ controllers for discrete,
process, batch, motion, safety, and drive-based solutions.

The Studio 5000® environment is the foundation for the future of
Rockwell Automation® engineering design tools and capabilities. The Studio
5000 environment is the one place for design engineers to develop all
elements of their control system.

Studio 5000
environment

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf

Preface

8 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

These documents contain additional information concerning related
Rockwell Automation products.

Resource Description

LOGIX 5000 Controllers Program
Parameters Programming Manual
publication 1756-PM021

Describes how to use program
parameters when programming Logix
5000 controllers.

LOGIX 5000 Controllers General
Instructions Reference Manual ,
publication 1756-RM003

Describes the available instructions for
a Logix 5000 controller.

LOGIX 5000 Controllers Process and
Drives Instructions Reference Manual ,
publication 1756-RM006

Describes how to program a Logix 5000
controller for process or drives
applications.

LOGIX 5000 Controllers Motion
Instruction Set Reference Manual ,
publication MOTION-RM002

Describes how to program a Logix 5000
controller for motion applications.

Product Certifications website,
http://ab.rockwellautomation.com

Provides declarations of conformity,
certificates, and other certification
details.

You can view or download publications at
http://www.rockwellautomation.com/literature . To order paper copies of
technical documentation, contact your local Rockwell Automation distributor
or sales representative.

Copyright notice

Copyright © 2018 Rockwell Automation Technologies, Inc. All Rights
Reserved. Printed in USA.

This document and any accompanying Rockwell Software products are
copyrighted by Rockwell Automation Technologies, Inc. Any reproduction
and/or distribution without prior written consent from Rockwell Automation
Technologies, Inc. is strictly prohibited. Please refer to the license agreement
for details.

End User License Agreement (EULA)

You can view the Rockwell Automation End-User License Agreement
("EULA") by opening the License.rtf file located in your product's install
folder on your hard drive.

Other Licenses

The software included in this product contains copyrighted software that is
licensed under one or more open source licenses. Copies of those licenses are
included with the software. Corresponding Source code for open source
packages included in this product can be located at their respective web
site(s).

Additional
resources

Legal Notices

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm006_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm006_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm006_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm002_-en-p.pdf
http://ab.rockwellautomation.com/
http://www.rockwellautomation.com/literature

Preface

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 9

You may alternately obtain complete Corresponding Source code by
contacting Rockwell Automation via our Contact form on the Rockwell
Automation website: http://www.rockwellautomation.com/global/about-
us/contact/contact.page .
Please include "Open Source" as part of the request text.

The following open source software is used in this product:

Software Copyright License Name License Text

AngularJS Copyright 2010-2017 Google, Inc. MIT License AngularJS 1.5.9 License

Bootstrap Copyright 2011-2017 Twitter, Inc.
Copyright 2011-2017 The Bootstrap Authors

MIT License Bootstrap 3.3.7 License

jQuery Copyright 2005, 2014 JS Foundation and
other contributors

MIT License jQuery 2.1.1 License

OpenSans Copyright 2017 Google, Inc. Apache License,
Version 2.0

OpenSans License

Trademark Notices

Allen-Bradley, ControlBus, ControlFLASH, Compact GuardLogix, Compact
I/O, ControlLogix, CompactLogix, DCM, DH+, Data Highway Plus,
DriveLogix, DPI, DriveTools, Explorer, FactoryTalk, FactoryTalk
Administration Console, FactoryTalk Alarms and Events, FactoryTalk Batch,
FactoryTalk Directory, FactoryTalk Security, FactoryTalk Services Platform,
FactoryTalk View, FactoryTalk View SE, FLEX Ex, FlexLogix, FLEX I/O,
Guard I/O, High Performance Drive, Integrated Architecture, Kinetix,
Logix5000, Logix 5000, Logix5550, MicroLogix, DeviceNet, EtherNet/IP,
PLC-2, PLC-3, PLC-5, PanelBuilder, PowerFlex, PhaseManager, POINT
I/O, PowerFlex, Rockwell Automation, RSBizWare, Rockwell Software,
RSEmulate, Historian, RSFieldbus, RSLinx, RSLogix, RSNetWorx for
DeviceNet, RSNetWorx for EtherNet/IP, RSMACC, RSView, RSView32,
Rockwell Software Studio 5000 Automation Engineering & Design
Environment, Studio 5000 View Designer, SCANport, SLC, SoftLogix,
SMC Flex, Studio 5000, Ultra 100, Ultra 200, VersaView, WINtelligent,
XM, SequenceManager are trademarks of Rockwell Automation, Inc.

Any Rockwell Automation logo, software or hardware product not
mentioned herein is also a trademark, registered or otherwise, of Rockwell
Automation, Inc.

Other Trademarks

CmFAS Assistant, CmDongle, CodeMeter, CodeMeter Control Center, and
WIBU are trademarks of WIBU-SYSTEMS AG in the United States and/or
other countries. Microsoft is a registered trademark of Microsoft Corporation
in the United States and/or other countries. ControlNet is a trademark of
ControlNet International. DeviceNet is a trademark of the Open DeviceNet
Vendors Association (ODVA). Ethernet/IP is a trademark of ControlNet
International under license by ODVA.

http://www.rockwellautomation.com/global/about-us/contact/contact.page
http://www.rockwellautomation.com/global/about-us/contact/contact.page

Preface

10 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

All other trademarks are the property of their respective holders and are
hereby acknowledged.

Warranty

This product is warranted in accordance with the product license. The
product’s performance may be affected by system configuration, the
application being performed, operator control, maintenance, and other related
factors. Rockwell Automation is not responsible for these intervening factors.
The instructions in this document do not cover all the details or variations in
the equipment, procedure, or process described, nor do they provide
directions for meeting every possible contingency during installation,
operation, or maintenance. This product’s implementation may vary among
users.

This document is current as of the time of release of the product; however,
the accompanying software may have changed since the release. Rockwell
Automation, Inc. reserves the right to change any information contained in
this document or the software at any time without prior notice. It is your
responsibility to obtain the most current information available from Rockwell
when installing or using this product.

Environmental compliance

Rockwell Automation maintains current product environmental information
on its website at
http://www.rockwellautomation.com/rockwellautomation/about-
us/sustainability-ethics/product-environmental-compliance.page

Contact Rockwell Automation

Customer Support Telephone — 1.440.646.3434

Online Support — http://www.rockwellautomation.com/support/

http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page
http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page
http://www.rockwellautomation.com/support/

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 11

Chapter 1

Program Structured Text

Structured text is a textual programming language that uses statements to
define what to execute.

• Structured text is not case sensitive.

• Use tabs and carriage returns (separate lines) to make your structured
text easier to read. They do not effect on the execution of the structured
text.

Structured text can contain these components.

Term Definition Examples

Assignment Use an assignment statement to assign
values to tags.
The := operator is the assignment
operator.
Terminate the assignment with a semi
colon ";".

tag := expression;

Expression An expression is part of a complete
assignment or construct statement. An
expression evaluates to a number
(numerical expression) or to a true or
false state (BOOL expression).

An expression contains these
components.

Tags A named area of the
memory where data is
stored (BOOL, SIN,
INT, DINT, REAL,
String type).

value1

Immediates A constant value. 4

Operators A symbol or mnemonic
that specifies an
operation within an
expression.

tag1 + tag2
tag1 >= value1

Introduction

Chapter 1 Program Structured Text

12 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Functions When executed, a
function yields one
value. Use parentheses
to contain the operand
of a function.
Even though their
syntax is similar,
functions differ from
instructions in that
functions can only be
used in expressions.
Instructions cannot be
used in expressions.

function(tag1)

Instruction An instruction is a standalone statement.
An instruction uses parenthesis to
contain its operands.
Depending on the instruction, there can
be zero, one, or multiple operands.
When executed, an instruction yields one
or more values that are part of a data
structure.
Terminate the instruction with a semi
colon ";".
Even though their syntax is similar,
instructions differ from functions in that
instructions cannot be used in
expressions. Functions can only be used
in expressions.

instruction();

instruction(operand);

instruction(operand1,
operand2, operand3);

Construct A conditional statement used to trigger
structured text code, such as other
statements.
Terminate the construct with a semi
colon ";".

IF...THEN

CASE

FOR...DO

WHILE...DO

REPEAT...UNTIL

EXIT

Comment Text that explains or clarifies what a
section of structured text does.
• Comments make it easier to interpret

the structured text.
• Comments do not affect the execution

of the structured text.
• Comments can appear anywhere in

structured text.

//comment

(*start of comment . .
. end of comment*)

/*start of comment . . .
end of comment*/

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 13

Important: Use caution when copying and pasting components between
different versions of the Logix Designer application. The
application only supports pasting to the same version or newer
version. Pasting to a prior version of the application is not
supported. When pasting to a prior version, the paste action may
succeed, but the results may not be as intended.

Use an assignment to change the value stored within a tag. An assignment
has this syntax:

tag := expression;

where:

Component Description
Tag Represents the tag that is getting the new value; the tag must

be a BOOL, SINT, INT, DINT, STRING, or REAL.
Tip: The STRING tag is applicable to CompactLogix 5380,
CompactLogix 5480, ControlLogix 5580, Compact GuardLogix
5380, and GuardLogix 5580 controllers only.

:= Is the assignment symbol

Expression

Represents the new value to assign to the tag
If tag is this data type Use this type of expression

BOOL BOOL expression

SINT
INT
DINT
REAL

numeric expression

STRING (CompactLogix
5380, CompactLogix 5480,
ControlLogix 5580, Compact
GuardLogix 5380, and
GuardLogix 5580 controllers
only).

String type, including string tag
and string literal.

; Ends the assignment

The tag retains the assigned value until another assignment changes the
value.

The expression can be simple, such as an immediate value or another tag
name, or the expression can be complex and include several operators and
functions, or both. Refer to Expressions on page 15 for more information.

Assignments

Chapter 1 Program Structured Text

14 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Tip: I/O module data updates asynchronously to the execution of logic. If you
reference an input multiple times in your logic, the input could change
state between separate references. If you need the input to have the
same state for each reference, buffer the input value and reference that
buffer tag. For more information, see Logix 5000 Controllers Common
Procedures , publication 1756-PM001 .
You can also use Input and Output program parameters which
automatically buffer the data during logix execution. See LOGIX 5000
Controllers Program Parameters Programming Manual , publication 1756-
PM021 .

The non-retentive assignment is different from the regular assignment
previously shown because the tag in a non-retentive assignment is reset to
zero each time the controller:

• Enters the Run mode.

• Leaves the step of an SFC if you configure the SFC for Automatic
reset. This applies only if you embed the assignment in the action of
the step or use the action to call a structured text routine by using a JSR
instruction.

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component Description
tag Represents the tag that is getting the new value; the tag

must be a BOOL, SINT, INT, DINT, STRING, or REAL.
Tip: The STRING tag is applicable to CompactLogix 5380,
CompactLogix 5480, ControlLogix 5580, Compact
GuardLogix 5380, and GuardLogix 5580 controllers only.

[:=] Is the non-retentive assignment symbol.
expression

Represents the new value to assign to the tag.
If tag is this data type Use this type of expression

BOOL BOOL expression

SINT Numeric expression

INT

DEAL

REAL

STRING (CompactLogix
5380, CompactLogix 5480,
ControlLogix 5580,
Compact GuardLogix 5380,
and GuardLogix 5580
controllers).

String type, including string
tag and string literal.

; ends the assignment

Specify a non-retentive
assignment

http://www.http/literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://www.http/literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://www.http/literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 15

Use the assignment operator to assign an ASCII character to an element of
the DATA member of a string tag. To assign a character, specify the value of
the character or specify the tag name, DATA member, and element of the
character.

This is OK This is not OK

string1.DATA[0]:= 65; string1.DATA[0] := A;

string1.DATA[0]:= string2.DATA[0]; string1 := string2;
Tip: string1: = string2 erroneously
assigns all the content of string2 to
string1.

To add or insert a string of characters to a string tag, use either of these
ASCII string instructions.

To Use this instruction

Add characters to the end of a string CONCAT

Insert characters into a string INSERT

An expression is a tag name, equation, or comparison. To write an
expression, use any of these elements.

• Tag name that stores the value (variable)

• Number that you enter directly into the expression (immediate value)

• String literal that you enter directly into the expression (CompactLogix
5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix
5380, and GuardLogix 5580 controllers)

• Functions, such as: ABS, TRUNC

• Operators, such as: +, -, <, >, And, Or

As you write expressions, follow these general rules.

• Use any combination of upper-case and lower-case letters. For
example, these three variations of "AND" (AND, And, and) are
acceptable.

• For more complex requirements, use parentheses to group expressions
within expressions. This makes the whole expression easier to read and
ensures that the expression executes in the desired sequence.

Important: You may add user comments inline. Therefore,
local language switching does not apply to your
programming language.

In structured text, you use two types of expressions.

Assign an ASCII
character to a string
data member

Expressions

Chapter 1 Program Structured Text

16 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

BOOL expression: An expression that produces either the BOOL value of 1
(true) or 0 (false).

• A bool expression uses bool tags, relational operators, and logical
operators to compare values or check if conditions are true or false.
For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, use bool expressions to condition the execution of other
logic.

Numeric expression: An expression that calculates an integer or floating-
point value.

• A numeric expression uses arithmetic operators, arithmetic functions,
and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression. For
example, (tag1+5)>65.

String expression: An expression that represents a string

• A simple expression can be a string literal or a string tag

Use the following table to choose operators for your expressions.

If you want to Then

Calculate an arithmetic value Use Arithmetic Operators and
Functions on page 16.

Compare two values or strings Use Relational Operators on page 18.

Check if conditions are true or
false

Use Logical Operators on page 19.

Compare the bits within values Use Bitwise Operators on page 20.

You can combine multiple operators and functions in arithmetic expressions.

Arithmetic operators calculate new values.

To Use this operator Optimal data type

Add + DINT, REAL

Subtract/negate - DINT, REAL

Multiply * DINT, REAL

Exponent (x to the
power of y)

** DINT, REAL

Divide / DINT, REAL

Modulo-divide MOD DINT, REAL

Use Arithmetic
Operators and
Functions

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 17

Arithmetic functions perform math operations. See the following table to
specify a constant, a non-boolean tag, or an expression for the function.

For Use this function Optimal data type

Absolute value ABS (numeric_expression) DINT, REAL

Arc cosine ACOS (numeric_expression) REAL

Arc sine ASIN (numeric_expression) REAL

Arc tangent ATAN (numeric_expression) REAL

Cosine COS (numeric_expression) REAL

Radians to degrees DEG (numeric_expression) DINT, REAL

Natural log LN (numeric_expression) REAL

Log base 10 LOG (numeric_expression) REAL

Degrees to radians RAD (numeric_expression) DINT, REAL

Sine SIN (numeric_expression) REAL

Square root SQRT (numeric_expression) DINT, REAL

Tangent TAN (numeric_expression) REAL

Truncate TRUNC (numeric_expression) DINT, REAL

For example:

Use this format Example

For this situation You write

value1 operator value2 If gain_4 and gain_4_adj are
DINT tags and your specification
says: "Add 15 to gain_4 and
store the result in gain_4_adj."

gain_4_adj :=
gain_4+15;

operator value1 If alarm and high_alarm are
DINT tags and your specification
says: "Negate high_alarm and
store the result in alarm."

alarm:= -high_alarm;

function(numeric_expr
ession)

If overtravel and overtravel_POS
are DINT tags and your
specification says: "Calculate the
absolute value of overtravel and
store the result in
overtravel_POS."

overtravel_POS :=
ABS(overtravel);

value1 operator
(function((value2+valu
e3)/2)

If adjustment and position are
DINT tags and sensor1 and
sensor2 are REAL tags and your
specification says: "Find the
absolute value of the average of
sensor1 and sensor2, add the
adjustment, and store the result
in position."

position := adjustment
+ ABS((sensor1 +
sensor2)/2);

Chapter 1 Program Structured Text

18 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Relational operators compare two values or strings to provide a true or false
result. The result of a relational operation is a BOOL value.

If the comparison is The result is

True 1

False 0

Use these relational operators.

For this comparison Use this operator Optimal data type
Equal = DINT, REAL, String type

Less than < DINT, REAL, String type

Less than or equal <= DINT, REAL, String type

Greater than > DINT, REAL, String type

Greater than or equal >= DINT, REAL, String type

Not equal <> DINT, REAL, String type

The table shows some examples.

Use this format Example
For this situation Write

value1 operator value2 If temp is a DINT tag and your
specification says: ‘If temp is less than
100 then,

IF temp<100 THEN...

stringtag1 operator stringtag2 If bar_code and dest are string tags and
your specification says: ‘If bar_code
equals dest then,

IF bar_code=dest THEN...

stringtag1 operator 'character
string literal'

If bar_code is a string tag and your
specification says: ‘If bar_code equals
’Test PASSED’ then,

IF bar_code=’Test PASSED’
THEN...

char1 operator char2
To enter an ASCII character
directly into the expression,
enter the decimal value of the
character.

If bar_code is a string tag and your
specification says: ‘If bar_code.DATA[0]
equals ’A’ then,

IF bar_code.DATA[0]=65
THEN...

bool_tag := bool_expressions If count and length are DINT tags, done is
a BOOL tag, and your specification says:
‘If count is greater than or equal to length,
you are done counting.’

Done := (count >= length);

How strings are evaluated

The hexadecimal values of the ASCII characters determine if one string is
less than or greater than another string.

Use Relational
Operators

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 19

• When the two strings are sorted as in a telephone directory, the order of
the strings determines which one is greater.

• Strings are equal if their characters match.

• Characters are case sensitive. Upper case "A" ($41) is not equal to
lower case "a" ($61).

The hexadecimal values of the ASCII characters determine if one string is
less than or greater than another string.

• When the two strings are sorted, the order of the strings determines
which one is greater.

• Strings are equal if their characters match.

• Characters are case sensitive. Uppercase ‘A’ ($41) is not equal to
lowercase ‘a’ ($61).

Logical operators let you check if multiple conditions are true or false. The
result of a logical operation is a BOOL value.

If the comparison is The result is

True 1

False 0

Use these logical operators.

How Strings Are
Evaluated

Use Logical Operators

Chapter 1 Program Structured Text

20 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

For Use this operator Data Type

Logical AND &, AND BOOL

Logical OR OR BOOL

Logical exclusive OR XOR BOOL

Logical complement NOT BOOL

For example:

Use this format Example

For this situation You write

BOOLtag If photoeye is a BOOL tag and
your specification says: "If
photoeye_1 is on then…"

IF photoeye THEN...

NOT BOOLtag If photoeye is a BOOL tag and
your specification says: "If
photoeye is off then…"

IF NOT photoeye THEN...

expression1 &
expression2

If photoeye is a BOOL tag, temp
is a DINT tag, and your
specification says: "If photoeye
is on and temp is less than 100⋅
then…".

IF photoeye & (temp<100)
THEN...

expression1 OR
expression2

If photoeye is a BOOL tag, temp
is a DINT tag, and your
specification says: "If photoeye
is on or temp is less than 100⋅
then…".

IF photoeye OR (temp<100)
THEN...

expression1 XOR
expression2

If photoeye1 and photoeye2 are
BOOL tags and your
specification says: "If:
• Photoeye1 is on while

photoeye2 is off or
• Photoeye1 is off while

photoeye2 is on
then…"

IF photoeye1 XOR photoeye2
THEN...

BOOLtag :=
expression1 &
expression2

If photoeye1 and photoeye2 are
BOOL tags, open is a BOOL
tag, and your specification says:
"If photoeye1 and photoeye2
are both on, set open to true."

open := photoeye1 &
photoeye2;

Bitwise operators manipulate the bits within a value based on two values.

See the following table for an overview of the Bitwise operators.

For Use this operator Optimal Data Type

Bitwise AND &, AND DINT

Bitwise OR OR DINT

Bitwise exclusive OR XOR DINT

Use Bitwise Operators

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 21

For Use this operator Optimal Data Type

Bitwise complement NOT DINT

For example:

Use this format Example
value1 operator value2 For this situation You write

If input1, input2, and
result1 are DINT tags
and your specification
says: "Calculate the
bitwise result of input1
and input2. Store the
result in result1."

result1 := input1 AND
input2;

The operations you write into an expression are performed in a prescribed
order, not necessarily from left to right.

• Operations of equal order are performed from left to right.

• If an expression contains multiple operators or functions, group the
conditions in parenthesis (). This ensures the correct order of
execution and makes it easier to read the expression.

The following table lists order of operation.

Order Operation

1. ()

2. function (…)

3. **

4. - (negate)

5. NOT

6. *, /, MOD

7. +, - (subtract)

8. <, <=, >, >=

9. =, <>

10 &, AND

11. XOR

12. OR

Determine the order of
execution

Chapter 1 Program Structured Text

22 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Structured text statements can also be instructions. A structured text
instruction:

• Executes each time it is scanned.

• Within a construct executes every time the conditions of the construct
are true.

If the conditions of the construct are false, the statements within the construct
are not scanned. There is no rung-condition or state transition that triggers
execution.

This differs from function block instructions that use EnableIn to trigger
execution. Structured text instructions execute as if EnableIn is always set.

This also differs from relay ladder instructions that use rung-condition-in to
trigger execution. Some relay ladder instructions only execute when rung-
condition-in toggles from false to true. These are transitional relay ladder
instructions. In structured text, instructions will execute each time they are
scanned unless you pre-condition the execution of the structured text
instruction.

For example, the ABL instruction is a transitional instruction in relay ladder.
In this example, the ABL instruction only executes on a scan when tag_xic
transitions from cleared to set. The ABL instruction does not execute when
tag_xic stays set or when tag_xic is cleared.

In structured text, if you write this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

The ABL instruction will execute every scan that tag_xic is set, not just when
tag_xic transitions from cleared to set.

If you want the ABL instruction to execute only when tag_xic transitions
from cleared to set, you have to condition the structured text instruction.

Use a one shot to trigger execution.

 osri_1.InputBit := tag_xic;

 OSRI(osri_1);

 IF (osri_1.OutputBit) THEN

Instructions

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 23

 ABL(0,serial_control);

 END_IF;

You can program constructs singly or nested within other constructs.

Follow this table to use the appropriate construct.

If you want to Use this construct

Do something if or when specific
conditions occur

IF...THEN on page 23

Select what to do based on a
numerical value

CASE...OF on page 26

Do something a specific number of
times before doing anything else

FOR…DO on page 29

Keep doing something as long as
certain conditions are true

WHILE…DO on page
32

Keep doing something until a
condition is true

REPEAT…UNTIL on
page 35

These constructs are not available.

• GOTO

• REPEAT

The Logix Designer application will not let you use them.

Use IF…THEN to do something if or when specific conditions occur.

Operands

If bool_expression THEN

<statement>;
END_IF;

Structured Text
Operand Type Format Tag Expression
bool_expression BOOL Tag

Expressio
n

BOOL tag or expression that
evaluates to a BOOL value
(BOOL expression)

Constructs

Some Key Words Are
Reserved for Future
Use

IF...THEN

Chapter 1 Program Structured Text

24 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Description:

 The syntax is:

 IF bool_expression1 THEN

<statement >;

 .
.
.

Optional

ELSIF bool_expression2 THEN

<statement>;
 .

.

.

Optional

ELSE

<statement>;
 .

.

.

 END_IF;

Statements to execute when bool_expression1 is true.

Statements to execute when bool_expression2 is true.

Statements to execute when both expressions are false.

To use ELSIF or ELSE, follow these guidelines.

1. To select from several possible groups of statements, add one or more
ELSIF statements.

• Each ELSIF represents an alternative path.

• Specify as many ELSIF paths as you need.

• The controller executes the first true IF or ELSIF and skips the rest
of the ELSIFs and the ELSE.

2. To do something when all of the IF or ELSIF conditions are false, add
an ELSE statement.

This table summarizes combinations of IF, THEN, ELSIF, and ELSE.

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 25

If you want to And Then use this construct

Do something if or
when conditions are
true

Do nothing if conditions are
false

IF…THEN

Do something else if
conditions are false

IF…THEN…ELSE

Choose from
alternative
statements or
groups of
statements based on
input conditions

Do nothing if conditions are
false

IF…THEN…ELSIF

Assign default statements if all
conditions are false

IF…THEN…ELSIF…ELS
E

Affects Math Status Flags:

Not affected

Fault Conditions:

None

Example 1: IF…THEN

If you want this Enter this structured text

IF rejects > 3 then IF rejects > 3 THEN

conveyor = off (0) conveyor := 0;

alarm = on (1) alarm := 1;
 END_IF;

Example 2: IF…THEN…ELSE

If you want this Enter this structured text

If conveyor direction contact =
forward (1) then

IF conveyor_direction THEN

light = off light := 0;

Otherwise light = on ELSE

 light [:=] 1;

END_IF;

The [:=] tells the controller to clear light whenever the controller:

• Enters the Run mode.

• Leaves the step of an SFC if you configure the SFC for Automatic
reset. This applies only if you embed the assignment in the action of
the step or use the action to call a structured text routine through a JSR
instruction.

Chapter 1 Program Structured Text

26 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Example 3: IF…THEN…ELSIF

If you want this Enter this structured text

If sugar low limit switch = low
(on) and sugar high limit switch =
not high (on) then

IF Sugar.Low & Sugar.High THEN

inlet valve = open (on) Sugar.Inlet [:=] 1;

Until sugar high limit switch =
high (off)

ELSIF NOT(Sugar.High) THEN

 Sugar.Inlet := 0;

END_IF;

The [:=] tells the controller to clear Sugar.Inlet whenever the controller:

• Enters the Run mode.

• Leaves the step of an SFC if you configure the SFC for Automatic
reset. This applies only if you embed the assignment in the action of
the step or use the action to call a structured text routine through a JSR
instruction.

Example 4: IF…THEN…ELSIF…ELSE

If you want this Enter this structured text

If tank temperature > 100 IF tank.temp > 200 THEN

then pump = slow pump.fast :=1; pump.slow :=0; pump.off
:=0;

If tank temperature > 200 ELSIF tank.temp > 100 THEN

then pump = fast pump.fast :=0; pump.slow :=1; pump.off
:=0;

otherwise pump = off ELSE
 pump.fast :=0; pump.slow :=0; pump.off

:=1;
 END_IF;

Use CASE to select what to do based on a numerical value. Use CASE...OF
in a Logix program to determine the next process to run based on the
evaluation of a numerical input value.

Operands

CASE numeric_expression OF

selector1: statement;

selectorN: statement; ELSE

CASE...OF

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 27

END_CASE;

Structured Text

Operand Type Format Enter
Numeric_
expression

SINT INT
DINT
REAL

Tag
expression

Tag or expression that evaluates
to a number
(numeric expression)

Selector SINT INT
DINT
REAL

Immediate Same type as numeric_expression

Important: As a best practice, use a range of values for a selector when
evaluating numeric expressions with REAL data types.

Description

The following table depicts how the CASE syntax is evaluated.

 CASE numeric_expression OF

Optional

selector1: <statement>;
.
.
.

Optional

selector2: <statement>;
.
.
.

Optional

selector3: <statement>;
.
.
.

Optional

ELSE>

<statement>

.

.

.
 END_CASE;

Statements to execute when numeric_expression = selector1

Statements to execute when numeric_expression = selector2

Chapter 1 Program Structured Text

28 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Statements to execute when numeric_expression = selector3

 Statements to execute when numeric_expression ≠ selector1

Use the following to help determine the selector values.

When selector is Enter
One value value: statement

Multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

A range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

Distinct values plus a
range of values

valuea, valueb, value1..valueN : <statement>

The CASE construct is similar to a switch statement in the C or C++
programming languages. However, with the CASE construct the controller
executes only the statements that are associated with the first matching
selector value. Execution always breaks after the statements of that selector
and goes to the END_CASE statement.

Affects Math Status Flags

No

Fault Conditions

None.

Example

The following table provides examples that illustrate how to translate a
functional requirement into structured text using the standard syntax of
CASE ... OF, and modifying it with the requirement variables.

If you want this Enter this structured text
If recipe number = 1 then
Ingredient A outlet 1 =
open (1) Ingredient B
outlet 4 = open (1)

CASE recipe_number OF

1:
Ingredient_A.Outlet_1 :=1; Ingredient_B.Outlet_4
:=1;

If recipe number = 2 or 3
then

Ingredient A outlet 4 =
open (1)
Ingredient B outlet 2 =
open (1)

2,3:
Ingredient_A.Outlet_4 :=1; Ingredient_B.Outlet_2
:=1;

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 29

If recipe number = 4, 5,
6, or 7 then Ingredient A
outlet 4 = open (1)
Ingredient B outlet 2 =
open (1)

4…7: Ingredient_A.Outlet_4 :=1;
Ingredient_B.Outlet_2 :=1;

If recipe number = 8, 11,
12, or 13 then Ingredient
A outlet 1 = open (1)
Ingredient B outlet 4 =
open (1)

8,11…13
Ingredient_A.Outlet_1 :=1; Ingredient_B.Outlet_4
:=1;

Otherwise all outlets =
closed (0)

ELSE

 Ingredient_A.Outlet_1 [:=]0; Ingredient_A.Outlet_4
[:=]0; Ingredient_B.Outlet_2 [:=]0;
Ingredient_B.Outlet_4 [:=]0;

END_CASE;

The [:=] tells the controller to clear the outlet tags whenever the controller
does the following:

• Enters the RUN mode.

• Leaves the step of an SFC if you configure the SFC for Automatic
reset.

Use a FOR...DO loop to perform an evaluation process a specific number of
times before continuing on to the next instruction in the sequence.

Operands

FOR count:= initial_value TO

final_value BY increment DO

<statement>;

END_FOR;

Structured Text

Operand Type Format Description

count SINT
INT
DINT

Tag Tag to store count position as the
FOR…DO executes

initial_ value SINT
INT
DINT

Tag
expression
Immediate

Must evaluate to a number
Specifies initial value for count

final_ value SINT
INT
DINT

Tag
expression
Immediate

Specifies final value for count, which
determines when to exit the loop

FOR...DO

Chapter 1 Program Structured Text

30 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

increment SINT
INT
DINT

Tag
expression
Immediate

(Optional) amount to increment
count each time through the loop
If you don’t specify an increment, the
count increments by 1.

Important: The controller does not execute any other statements in the

routine until it completes the loop.
Make sure that you do not iterate within the loop too many times
in a single scan.
If the time that it takes to complete the loop is greater than the
Watchdog timer for the task, a major fault occurs. If you encounter
this fault, consider using a different construct, such as IF...THEN.

Description

The following table depicts how the FOR...DO syntax is evaluated.

The following diagrams show how a FOR ...DO loop executes and how an
EXIT statement leaves the loop early.

The FOR…DO loop executes a
specific number of times.

To stop the loop before the count
reaches the last value, use an EXIT
statement.

Affects Math Status Flags

No

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 31

Fault Conditions

A major fault will occur if Fault type Fault code
If the time that it takes to
complete the loop is greater
than the Watchdog timer for
the task.

6 1

Examples

The following tables provide examples that illustrate how to translate a
functional requirement into structured text using the standard syntax of
FOR...DO and then modifying it with the requirement variables.

If you want this Enter this structured text
Clear bits 0…31 in an array of
BOOLs:
1. Initialize the subscript tag to 0.
2. Clear i . For example, when

subscript = 5, clear array[5].
3. Add 1 to subscript.
4. If subscript is ≤ to 31, repeat 2

and 3.
Otherwise, stop.

For subscript:=0 to 31 by 1 DO
array[subscript] := 0;
End_FOR;

If you want this Enter this structured text
A user-defined data type (structure)
stores the following information about
an item in your inventory:

SIZE(Inventory,0,Inventory_Items);

FOR position:=0 to Inventory_Items - 1
DO

If Barcode = Inventory[position].ID then

Quantity := Inventory[position].QTY;

EXIT;

END_IF;

Chapter 1 Program Structured Text

32 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

• Barcode ID of the item (string data
type)

• Quantity in stock of the item (DINT
data type)

An array of the above structure
contains an element for each unique
item in your inventory. You want to
search the array for a specific product
(use its bar code) and determine the
quantity that is in stock.
1. Get the size (number of items) of

the Inventory array and store the
result in Inventory_Items (DINT
tag).

2. Initialize the position tag to 0.
3. If Barcode matches the ID of an

item in the array, then:
• Set the Quantity tag =

Inventory[position].Qty.
This produces the quantity
in stock of the item, or

• Stop.
Barcode is a string tag that stores the
bar code of the item for which you are
searching. For example, when
position = 5, compare Barcode to
Inventory[5].ID.
4. Add 1 to position.
5. If position is ≤ to (Inventory_Items -

1), repeat 3 and 4. Since element
numbers start at 0, the last element
is 1 less than the number of
elements in the array.

Otherwise, stop.

END_FOR;

Use a WHILE...DO loop to continue performing a process until the specified
condition is false before continuing on to the next instruction in the
sequence.

Operands

WHILE bool_expression DO

<statement>;

END_WHILE;

WHILE...DO

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 33

Structured Text

Operand BOOL Format Description
bool_expression BOOL tag

expressio
n

BOOL tag or expression that evaluates
to a BOOL value

Important: The controller does not execute any other statements in the routine
until it completes the loop.
Make sure that you do not iterate within the loop too many times in a
single scan.
If the time that it takes to complete the loop is greater than the
Watchdog timer for the task, a major fault occurs. If you encounter
this fault, consider using a different construct, such as IF...THEN.

Description

The following table depicts how the WHILE..DO syntax is evaluated.

The following diagrams show how a WHILE...DO loop executes and how an
EXIT statement leaves the loop early.

While the bool_expression is true,
the controller executes only the
statements within the WHILE…DO
loop.

To stop the loop before the conditions are
true, use an EXIT statement.

Affects Math Status Flags

No

Chapter 1 Program Structured Text

34 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Fault Conditions

A major fault will occur if Fault type Fault code
If the time that it takes to complete
the loop is greater than the
Watchdog timer for the task.

6 1

Examples

The following tables provide examples that illustrate how to translate a
functional requirement into structured text using the standard syntax of
WHILE...DO and then modifying it with the requirement variables.

If you want this Enter this structured text
The WHILE...DO loop evaluates its
conditions first. If the conditions are
true, the controller then executes the
statements within the loop.
This differs from the
REPEAT...UNTIL loop because the
REPEAT...UNTIL loop executes the
statements in the construct and then
determines if the conditions are true
before executing the statements
again. The statements in a
REPEAT...UNTIL loop are always
executed at least once. The
statements in a WHILE...DO loop
might never be executed.

pos := 0;

While ((pos <= 100) &
structarray[pos].value <> targetvalue)) do

pos := pos + 2;

String_tag.DATA[pos] :=
SINT_array[pos];

end_while;

If you want this Enter this structured text
Move ASCII characters from a SINT
array into a string tag. (In a SINT
array, each element holds one
character.) Stop when you reach the
carriage return.
1. Initialize Element_number to 0.
2. Count the number of elements in

SINT_array (array that contains
the ASCII characters) and store
the result in SINT_array_size
(DINT tag).

3. If the character at
SINT_array[element_number] =

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

While SINT_array[element_number] <> 13
do

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 35

13 (decimal value of the carriage
return), then stop.

4. Set String_tag[element_number] =
the character at
SINT_array[element_number].

5. Add 1 to element_number. This
lets the controller check the next
character in SINT_array.

6. Set the Length member of
String_tag = element_number.
(This records the number of
characters in String_tag so far.)

7. If element_number =
SINT_array_size, then stop. (You
are at the end of the array and it
does not contain a carriage
return.)

8. Go to step 3.

end_while;

Use a REPEAT...UNTIL loop to repeat an evaluation process until the
specified condition is true before continuing on to the next instruction in the
sequence.

Operands

REPEAT

<statement>;

END_REPEAT;

Structured Text

Operand Type Format Enter
bool_
expression

BOOL Tag
expression

BOOL tag or expression that
evaluates to a BOOL value
(BOOL expression)

REPEAT...UNTIL

Chapter 1 Program Structured Text

36 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Important: The controller does not execute any other statements in the
routine until it completes the loop.
Make sure that you do not iterate within the loop too many times
in a single scan.
If the time that it takes to complete the loop is greater than the
Watchdog timer for the task, a major fault occurs. If you encounter
this fault, consider using a different construct, such as IF...THEN.

Description

The following table depicts how the REPEAT...UNTIL syntax is evaluated.

The following diagrams show how a REPEAT...UNTIL loop executes and
how an EXIT statement leaves the loop early.

While the bool_expression is false, the
controller executes only the
statements within the
REPEAT…UNTIL loop.

To stop the loop before the conditions
are false, use an EXIT statement.

Affects Math Status Flags

No

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 37

Fault Conditions

A major fault will occur if Fault type Fault code

If the time that it takes to complete the
loop is greater than the Watchdog
timer for the task.

6 1

Examples

The following tables provide examples that illustrate how to translate a
functional requirement into structured text using the standard syntax of
REPEAT...UNTIL, and then modifying it with the requirement variables.

If you want this Enter this structured text

The REPEAT...UNTIL loop executes
the statements in the construct and
then determines if the conditions are
true before executing the statements
again. This differs from the
WHILE...DO loop because the
WHILE...DO The WHILE...DO loop
evaluates its conditions first.
If the conditions are true, the controller
then executes the statements within
the loop. The statements in a
REPEAT...UNTIL loop are always
executed at least once. The
statements in a WHILE...DO loop
might never be executed.

pos := -1;

REPEAT

pos := pos + 2;

UNTIL ((pos = 101) OR
(structarray[pos].value = targetvalue))

end_repeat;

If you want this Enter this structured text
Move ASCII characters from a SINT
array into a string tag. (In a SINT
array, each element holds one
character.) Stop when you reach the
carriage return.
Initialize Element_number to 0.
Count the number of elements in
SINT_array (array that contains the
ASCII characters) and store the result
in SINT_array_size (DINT tag).
Set String_tag[element_number] = the
character at
SINT_array[element_number].
Add 1 to element_number. This lets
the controller check the next character
in
SINT_array.

element_number := 0;

SIZE(SINT_array, 0,
SINT_array_size);

Repeat

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number
+ 1;

String_tag.LEN := element_number;

If element_number =
SINT_array_size then

exit;

end_if;

Until SINT_array[element_number] =
13

Chapter 1 Program Structured Text

38 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Set the Length member of String_tag =
element_number. (This records the
number of characters in String_tag so
far.)
If element_number = SINT_array_size,
then stop. (You are at the end of the
array and it does not contain a
carriage return.)
If the character at
SINT_array[element_number] = 13
(decimal value of the carriage return),
then stop.

end_repeat;

You can add comments to make your structured text easier to interpret.
Comments:

• Let you use plain language to describe how your structured text works.

• Do not affect the execution of the structured text.

• Download into the controller memory and are available for upload.

Follow this table to add comments to your structured text.

To add a comment Use one of these formats

On a single line //comment

(*comment*)

/*comment*/

At the end of a line of structured
text

Within a line of structured text (*comment*)

/*comment*/

That spans more than one line (*start of comment . . . end of comment*)

/*start of comment . . . end of comment*/

For example:

Comments

Program Structured Text Chapter 1

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 39

Format Example

//comment

At the beginning of a line
//Check conveyor belt direction
IF conveyor_direction THEN...

At the end of a line
ELSE //If conveyor isn’t moving, set alarm
light
light := 1;
END_IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High
(*high level LS*)THEN...

(*Controls the speed of the recirculation
pump. The speed depends on the
temperature in the tank.*)
IF tank.temp > 200 THEN...

/*comment*/

Sugar.Inlet:=0;/*close the inlet*/

IF bar_code=65 /*A*/ THEN...

/*Gets the number of elements in the
Inventory array and stores the value in the
Inventory_Items tag*/
SIZE(Inventory,0,Inventory_Items);

Tip: On the main menu, select Edit > Comment Text Block to add
comment text. Additionally, use the Comment Text Block command
to:
• Mark the entire selection as a multi-line comment.
• Add a single line comment to the line that contains the cursor when

no text is selected.
• Add "//" comment delimiter to the beginning of each line when

using line selection to select individual lines.
• Add "(*" and "*)" delimiters to the beginning and the end of the text

selection, respectively, when selecting a portion of text that spans
multiple lines, either entire lines or portions of them.

 Rockwell Automation Publication 1756-PM007G-EN-P - February 2018 41

A
arithmetic operators 16
ASCII character 15
assign ASCII character 15

B
bitwise operators 20

C
CASE 26
comments 38

E
evaluation in structured text 17
evaluation of strings 17

F
FOR?DO 29
functions 16

I
IF...THEN 23

L
logical operators 19

N
non-retentive 14
non-retentive assignment 14

R
relational operators 17
REPEAT?UNTIL 35

S
structured text 14, 16, 17, 19, 20, 21, 38
structured text assignment 15
structured text expression 21

W
WHILE?DO 32

Index

Rockwell Automation Publication 1756-PM007G-EN-P - February 2018

Supersedes Publication 1756-PM007F-EN-P - December 2016 Copyright © 2018 Rockwell Automation Technologies, Inc. All Rights Reserved. Printed in the U.S.A.

Rockwell Automation support
Rockwell Automation provides technical information on the web to assist you in using its products. At
http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service
packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com for software updates, support chats and forums,
technical information, FAQs, and to sign up for product notification updates.

In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact
your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone.

Installation assistance
If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can
contact Customer Support for initial help in getting your product up and running.

United States or Canada 1.440.646.3434
Outside United States or Canada Use the Worldwide Locator available at http://www.rockwellautomation.com/locations,

or contact your local Rockwell Automation representative.

New product satisfaction return
Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility.
However, if your product is not functioning and needs to be returned, follow these procedures.

United States Contact your distributor. You must provide a Customer Support case number (call the
phone number above to obtain one) to your distributor to complete the return process.

Outside United States Please contact your local Rockwell Automation representative for the return procedure.

Documentation feedback
Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this
document, complete the feedback form, publication RA-DU002.

http://www.rockwellautomation.com/support
https://rockwellautomation.custhelp.com/
http://www.rockwellautomation.com/services/online-phone
http://www.rockwellautomation.com/locations
http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf

	Logix 5000 Controllers Structured Text Programming Manual
	Important user information
	Table of contents
	Preface
	1 - Program Structured Text
	Introduction
	Assignments
	Specify a non-retentive assignment
	Assign an ASCII character to a string data member

	Expressions
	Use Arithmetic Operators and Functions
	Use Relational Operators
	How Strings Are Evaluated
	Use Logical Operators
	Use Bitwise Operators
	Determine the order of execution

	Instructions
	Constructs
	Some Key Words Are Reserved for Future Use

	IF...THEN
	CASE...OF
	FOR...DO
	WHILE...DO
	REPEAT...UNTIL
	Comments

	Index
	Back cover

