DEPARTAMENTO DE ENGENHARIA NAVAL E OCEANICA — EPUSP

PNV-2322 Dinamica de Sistemas Il

Lista de Exercicios N2 1

5.1.1  (Ellipses and energy conservation for the harmonic oscillator) Consider

the harmonic oscillator x=v, v =-m’x.

a) Show that the orbits are given by ellipses @’x* +v* = C, where C is any non-
negative constant. (Hint: Divide the x equation by the v equation, separate the
v’s from the x s, and integrate the resulting separable equation.)

b) Show that this condition is equivalent to conservation of energy.

Write the following systems in matrix form.

50'-3 X= _y, .)."= - 5.'.4
51 x=0,y=x+y 5.1.6

3x=2y, y=2y—x

o o

I

X
X=X, y=5x+y

For each of the following systems, decide whether the origin is attracting, Lia-
punov stable, asymptotically stable, or none of the above.

a) x=y, y=-4x, b) x=2y, y=x
¢) x=0,y=x d) x=0, y=-y
e) x=-x,y==5y f) x=x,y=y

Z?l Consider the system x=4x -y, y=2x+y.
a) Write the system as X = Ax. Show that the characteristic polynomial is
A* =54 +6, and find the eigenvalues and eigenvectors of A.
b) Find the general solution of the system.
¢) Classify the fixed point at the origin.
d) Solve the system subject to the initial condition (x,,y,) =(3,4).

5.2.2 (Complex eigenvalues) This exercise leads you through the solution of a



linear system where the eigenvalues are complex. The system is x=x-y,

y=x+y.

a) Find A and show that it has eigenvalues A, =1+i, A4, =1-i, with eigenvectors
v, =(;1), v, = (=i, 1). (Note that the eigenvalues are complex conjugates, and
so are the eigenvectors—this is always the case for real A with complex eigen-

values.)
A

v, +¢,e*'v,. So in one sense we’re done!
But this way of writing x(7) involves complex coefficients and looks unfamil-
iar. Express x(r) purely in terms of real-valued functions. (Hint: Use
e =coswt +isin®r to rewrite x(r) in terms of sines and cosines, and then

separate the terms that have a prefactor of / from those that don’t.)

5.2.12 (LRC circuit) Consider the circuit equation LI+ RI+1/C =0, where

L.C>0and R=0.

a) Rewrite the equation as a two-dimensional linear system.

b) Show that the origin is asymptotically stable if R >0 and neutrally stable if
R=0.

¢) Classify the fixed point at the origin, depending on whether R*C — 4L is posi-
tive, negative, or zero, and sketch the phase portrait in all three cases.

b) The general solution is x(r) =c e

5.2.13 (Damped harmonic oscillator) The motion of a damped harmonic oscilla-

tor is described by mx + bx + kx = 0, where b > 0 is the damping constant.

a) Rewrite the equation as a two-dimensional linear system.

b) Classify the fixed point at the origin and sketch the phase portrait. Be sure to
show all the different cases that can occur, depending on the relative sizes of
the parameters.

¢) How do your results relate to the standard notions of overdamped, critically
damped, and underdamped vibrations?



EXAMPLE 6.5.2:

Consider a particle of mass m=1 moving in a double-well potential
V(x)=-+x*++x* Find and classify all the equilibrium points for the system.
Then plot the phase portrait and interpret the results physically.

Solution: The force is —~dV/dx = x — x’, so the equation of motion is



X=X
This can be rewritten as the vector field

X=Yy

- 3

y=x—-Xx

where y represents the particle’s velocity. Equilibrium points occur where
(x,y)=(0,0). Hence the equilibria are (x*,y*) = (0,0) and (£1,0). To classify
these fixed points we compute the Jacobian:

e 0 |
1-32* 0/

At (0,0), we have A=-1, so the origin is a saddle point. But when (x* y*) =
(£1,0), we find =0, A =2; hence these equilibria are predicted to be centers.

Al this point you should be hearing warning bells—in Section 6.3 we saw that
small nonlinear terms can easily destroy a center predicted by the linear approxi-
mation. But that’s not the case here, because of energy conservation. The trajecto-
ries are closed curves defined by the contours of constant energy, i.e.,

E=1y*—1x*44x" = constant.

Figure 6.5.1 shows the trajectories corresponding to different values of E. To
decide which way the arrows point along the trajectories, we simply compute the
vector (x,y) at a few convenient locations. For example, x>0 and y =0 on the
positive y-axis, so the motion is to the right. The orientation of neighboring trajec-
tories follows by continuity.

As expected. the system has a sad-

y
dle point at (0,0) and centers at (1,0)
and (~1,0). Each of the neutrally sta-
S @ ble centers is surrounded by a family
*  of small closed orbits. There are also
large closed orbits that encircle all

three fixed points.
Thus solutions of the system are
Figure 6.5.1 typically periodic, except for the
equilibrium solutions and two very
special trajectories: these are the tra-
jectories that appear to start and end at the origin, More precisely, these trajectories
approach the origin as ¢ — tee, Trajectories that start and end at the same fixed
point are called homoclinic orbits. They are common in conservative systems, but
are rare otherwise. Notice that a homoclinic orbit does nof correspond to a periodic




solution, because the trajectory takes forever trying to reach the fixed point.
Finally, let’s connect the phase portrait to the motion of an undamped particle in
a double-well potential (Figure 6.5.2).

\J

The neutrally stable equilibria correspond to the particle at rest at the bottom of
one of the wells, and the small closed orbits represent small oscillations about
these equilibria. The large orbits represent more energetic oscillations that repeat-
edly take the particle back and forth over the hump. Do you see what the saddle
point and the homoclinic orbits mean physically? m

Figure 6.5.2

For each of the following systems, find the fixed points, classify them, sketch the
neighboring trajectories, and try to fill in the rest of the phase portrait.

631 x=x—-y,y=x’-4 6.32 x=siny,y=x-x
633 x=l+y-e", y=x'-y 634 i=y+x—-x,y=-y
6.3.5 x=siny, y=cosx 636 xi=xy—1,y=x—y"

Fonte: Strogatz, S. H. “Nonlinear Dynamic and Chaos”, Perseus Books, 1994.



