#### Desenvolvendo AEs

Conceitos e Aplicações

#### Sumário

- Principais aspectos
- Representação e Operadores Clássicos.
- Fitness
- Outras Representações, Operadores e Fitness
- Seleção
- Outros Operadores

#### **Principais aspectos**

- 1. Definir a representação da solução
  - a. Codificação
  - b. Decodificação
- 2. Definindo a função de fitness
  - a. Factibilidade vs Infactibilidade
  - b. Mono objetivo vs Multi-objetivo

#### **Aspectos principais**

- 3. Operadores
  - a. Inicialização
  - b. Seleção para Reprodução
  - c. Crossover
  - d. Mutação
  - e. Seleção para Sobrevivência.
  - f. Migração, genocídio, etc.
- 4. Critério de parada.
- 5. Avaliando o AE implementado
  - a. Avaliando o fitness médio
  - b. Determinando o melhor indivíduo
  - c. Ajustando os parâmetros (Tunning) do AE

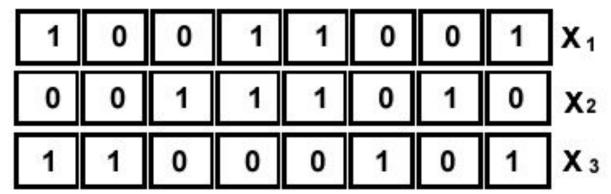
- Representação
  - Definir qual será a representação do indivíduo é uma das primeiras decisões que se deve tomar no desenvolvimento de um AG.
  - Codificação e Decodificação
    - Codificação direta
    - Codificação indireta ⇒ Decodificação

Representação Binária








Representação Binária (32 bits)

Representação Binária

cromossomo com 2 variáveis

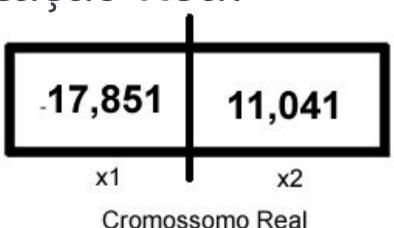
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | X 1        |
|---|---|---|---|---|---|---|---|------------|
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | <b>X</b> 2 |

cromossomo com 3 variáveis



- Representação Binária
  - Duas importantes questões na representação de números reais em binários são:
    - Intervalo de domínio de cada uma das variáveis
    - Precisão desejada

Representação Binária


Exemplo - Decodificação

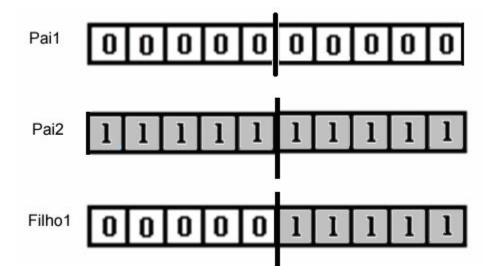
$$f(x) = x \operatorname{sen}(10\pi x) + 1 \qquad -1 \le x \le 2.$$
  
$$s_1 = 1000101110110101000111$$

$$b_{10} = (100010111011011010000111)_2 = 2288967$$

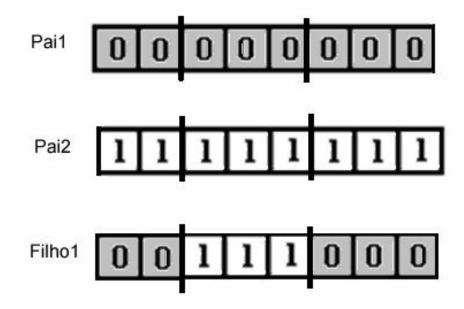
$$x = \min + (\max - \min) \frac{b_{10}}{2^l - 1}$$
  $x_1 = -1 + (2+1) \frac{2.288.967}{(2^{22} - 1)} = 0,637197$ 

Representação Real

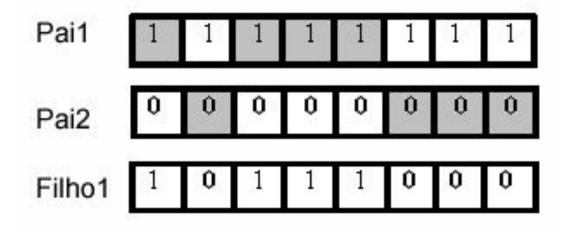



#### Representação Binária x Real

- Binária
  - ↑ Tradicional e fácil de utilizar
  - ↓ Cromossomos longos para representar parâmetros contínuos com boa precisão.
  - ↓ Longas cadeias podem levar a uma convergência lenta do método.
  - ↓ Não uniformidade dos operadores. Por exemplo, mutação nos primeiro bits tem mais impacto que nos últimos.


- Real
  - ↑ Cadeias menores
  - ↑ Compreendida mais naturalmente.
  - † Facilidade para criar novos operadores.

# Operadores Clássicos


#### Crossover de um ponto Representação Binária



#### Crossover de dois pontos Representação Binária



#### Crossover uniforme Representação Binária



Números sorteados (0, 1, 0, 0, 0, 1, 1, 1)

#### Mutação Representação Binária

Mutação

Antes: 0 0 1 0 0

Depois: 1 0 1 0 0 1 1

#### Crossovers Representação Real

#### Pais

Filho

$$\mathbf{p}_{1} = (p_{11}, p_{12}, ..., p_{1l}) \\ \mathbf{p}_{2} = (p_{21}, p_{22}, ..., p_{2l})$$

$$\mathbf{c} = (c_{1}, c_{2}, ..., c_{l}).$$

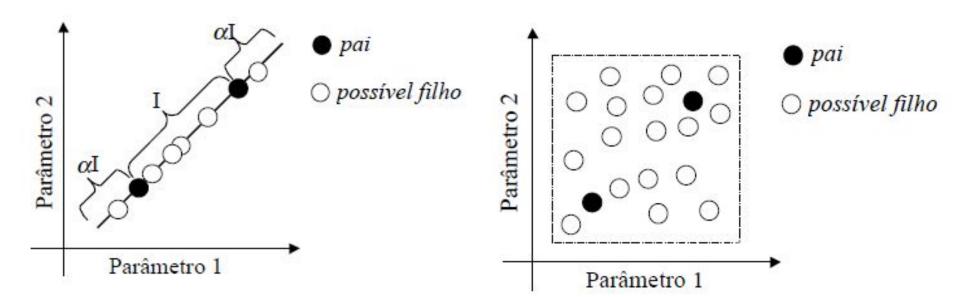
Crossover média (Davis, 1991)  $c = (p_1 + p_2)/2$ 

$$c = (p_1 + p_2)/2$$

Crossover média geométrica,  $c_i = \sqrt{p_{1i} p_{2i}}$ 

$$c_i = \sqrt{p_{1i} p_{2i}}$$

# Crossovers - Representação Real


Crossover BLX-  $\alpha$ 

$$\mathbf{c} = \mathbf{p}_1 + \beta(\mathbf{p}_2 - \mathbf{p}_1)$$
  $\beta \in U(-\alpha, 1 + \alpha).$ 

(Eshelman e Shaffer, 1993)

$$p_1 = (30,173; 85,342)$$
  $c_1 = 30,173 + 1,262(75,989 - 30,173) = 87,993$ 

$$p_2 = (75,989; 10,162)$$
  $c_2 = 85,342 + 1,262(10,162 - 85,342) = -9,535$ 



# Crossovers - Representação Real

$$\mathbf{c}_1 = 0.5\mathbf{p}_1 + 0.5\mathbf{p}_2$$

Crossover linear (Wright, 1991)

$$\mathbf{c}_2 = 1.5\mathbf{p}_1 - 0.5\mathbf{p}_2$$

$$\mathbf{c}_3 = -0.5\mathbf{p}_1 + 1.5\mathbf{p}_2$$

Crossover aritmético (Michalewicz, 1994)

$$\mathbf{c}_1 = \beta \mathbf{p}_1 + (1 - \beta) \mathbf{p}_2$$

$$\beta \in U(0, 1)$$

$$\mathbf{c}_2 = (1 - \beta) \mathbf{p}_1 + \beta \mathbf{p}_2$$

Crossover heurístico (Michalewicz, 1994) 
$$c = \mathbf{p}_1 + r(\mathbf{p}_1 - \mathbf{p}_2)$$
, onde  $f(\mathbf{p}_1) > f(\mathbf{p}_2)$   
 $r \in U(0,1)$ 

#### Mutação Representação Real

$$c_i = \begin{cases} U(a_i, b_i), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

$$c_i = \begin{cases} N(p_i, \sigma), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

Mutação creep:

### Mutação Representação Real

Mutação limite (Michalewicz, 1994) 
$$c_i = \begin{cases} a_i & \text{se } r < 0.5 \text{ e } i = j \\ b_i & \text{se } r \ge 0.5 \text{ e } i = j \end{cases}$$
  $r \in U(0,1)$   $p_i$  caso contrário

Mutação não-uniforme (Michalewicz, 1994):

$$c_{i} = \begin{cases} p_{i} + (b_{i} - p_{i})f(G) & \text{se } r_{1} < 0.5 \text{ e } i = j \\ p_{i} - (p_{i} - a_{i})f(G) & \text{se } r_{1} \ge 0.5 \text{ e } i = j \\ p_{i} & \text{caso contrário} \end{cases}$$

$$f(G) = \left(r_{2}\left(1 - \frac{G}{G_{\text{max}}}\right)\right)^{b}$$

$$r_{1} \text{ e } r_{2} \in U(0, 1)$$

$$b = 6$$

• Medida de performance também conhecida como função objetivo (objective function), função de qualidade (quality function) ou função de avaliação (evaluation function).

• Utilizada como base para seleção (reprodução ou sobrevivência).

- Geralmente, busca-se maximizar o valor do *fitness*, porém pode ser implementada de forma trivial como um valor a ser minimizado:
  - 1/fitness
  - -fitness
  - N-fitness

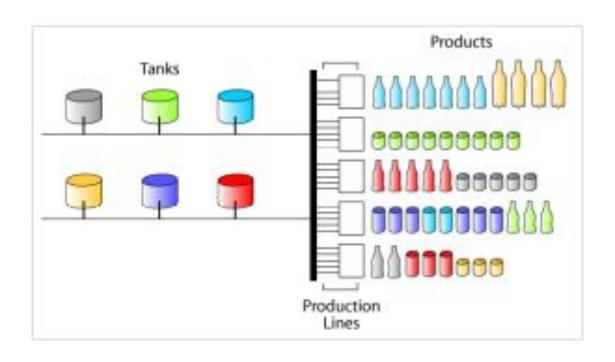
- A determinação de uma função de *fitness* é uma tarefa difícila e muito importante.
- As restrições relacionadas ao problema podem ser incorpordadas na função de fitness via penalização.
  - Penaliza-se as restrições violadas.

- Porém, as restrições podem ser tratadas em AEs de outras formas:
  - Explicitamente com operadores de seleção que descartam codificações (indivíduos) infactíveis.
  - Explicitamente com operadores de reparos que atuam sobre codificações (indivíduos) infactíveis.
  - Implicitamente com codificações que permitem apenas a representação de soluções factíveis.

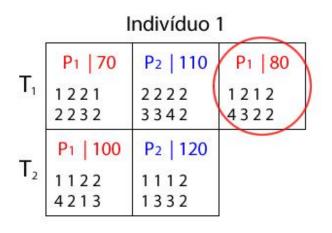
#### Outras Representações e seus Operadores

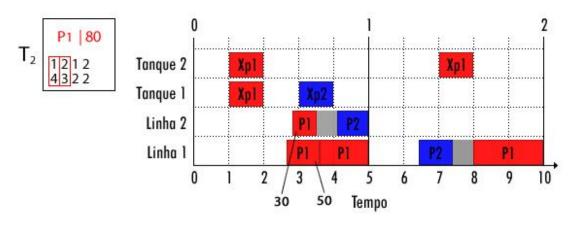
#### Outras Representações e seus Operadores

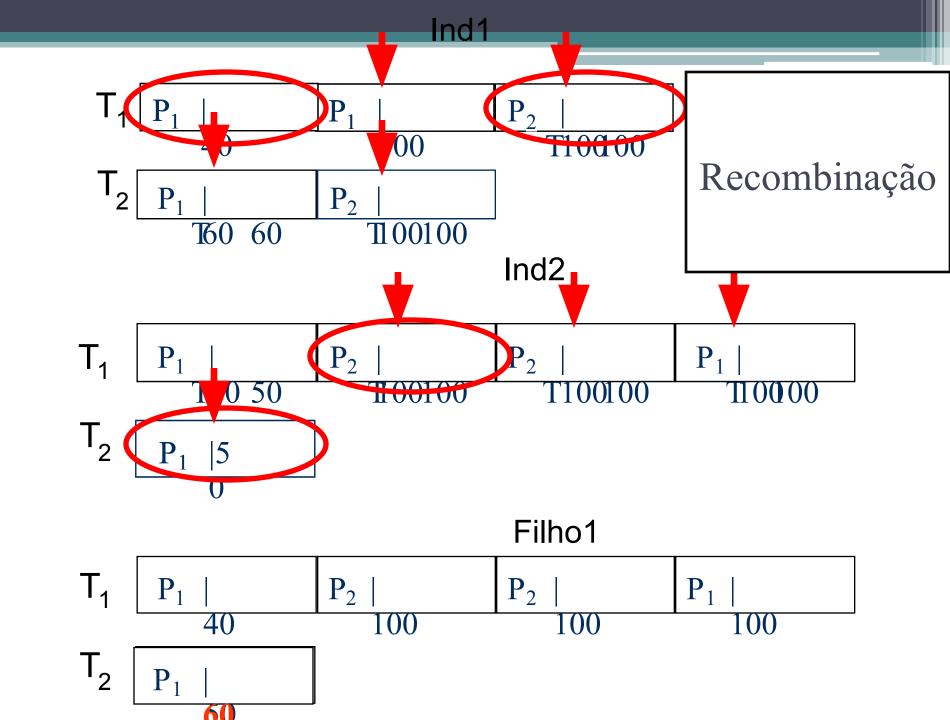
International Journal of Production Research Vol. 47, No. 11, 1 June 2009, 3097–3119

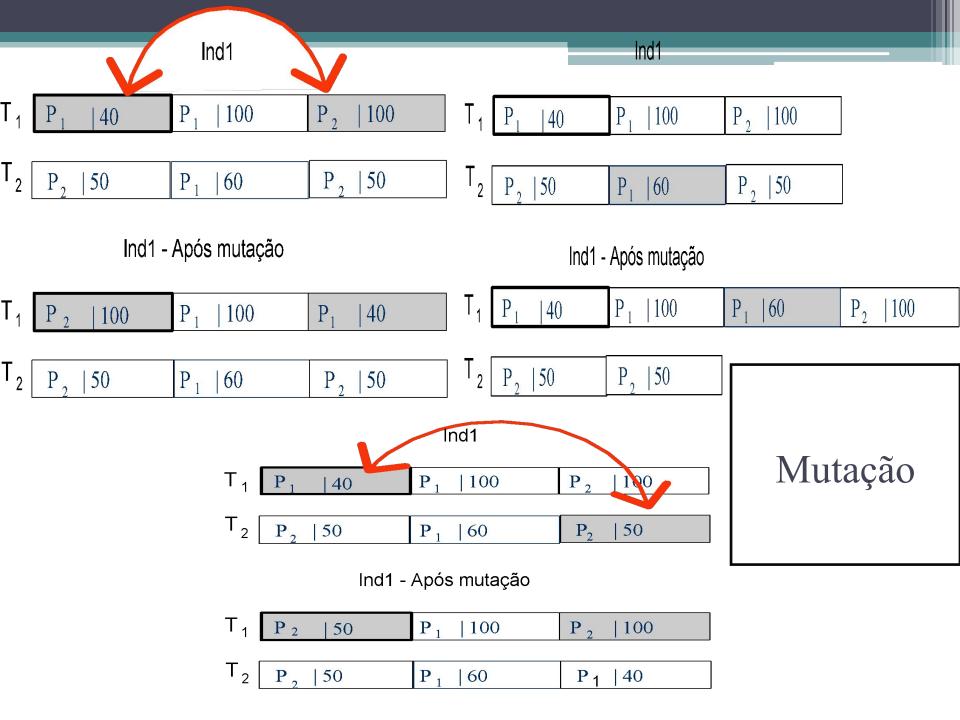



# Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem


C.F.M. Toledo<sup>a</sup>, P.M. França<sup>b</sup>, R. Morabito<sup>c</sup> and A. Kimms<sup>d\*</sup>


<sup>a</sup>Departamento de Ciência da Computação, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil; <sup>b</sup>Departamento de Matemática, Estatística e Computação, Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, Rua Roberto Simonsen, 305 19060-900, Presidente Prudente, SP, Brazil; <sup>c</sup>Departamento de Engenharia de Produção, Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil; <sup>d</sup>Department of Technology and Operations Management, University of Duisburg-Essen, 47048 Duisburg, Germany


# Outras Representações e seus Operadores Problema Industrial




### Codificação e Decodificação









# Fitness - Função Objetivo

$$\sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{l=1}^{L} \sum_{s=1}^{S} s_{ijl} z_{ijl} + \sum_{j=1}^{J} \sum_{t=1}^{T} h_j I_{jt} + \sum_{j=1}^{J} \sum_{l=1}^{L} \sum_{s=1}^{T.S} v_{jl} q_{jls} +$$

$$\sum_{i=1}^{\overline{J}} \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{L}} \sum_{s=1}^{\overline{S}^{(1)}} \frac{1}{Z_{ijl}} + \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{L}} \sum_{t=1}^{\overline{T}} \frac{1}{h_j} \frac{1}{I_{jk,t,T^m}} + \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{L}} \sum_{s=1}^{\overline{T}.\overline{S}} \frac{1}{v_{jl}} \frac{1}{q_{jks}} + \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \frac{1}{v_{jl}} \frac{1}{q_{jks}} + \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \frac{1}{v_{jl}} \frac{1}{q_{jks}} + \sum_{j=1}^{\overline{J}} \sum_{k=1}^{\overline{J}} \sum_{s=1}^{\overline{J}} \sum_{s=1}^{$$

$$M \sum_{j=1}^{J} q_{j}^{0}$$
 (1)

- Variáveis
- • $q_{jls} \ge 0$ : quantidade do produto j produzida em 1 no lote s.
- • $q_{jks} \ge 0$ : quantidade do xarope j armazenada no tanque k e lote s.
- •q<sup>0</sup><sub>i</sub>: demanda não atendida do produto j.

#### Outras Representações e seus Operadores

Computers & Operations Research 40 (2013) 910-919



Contents lists available at SciVerse ScienceDirect

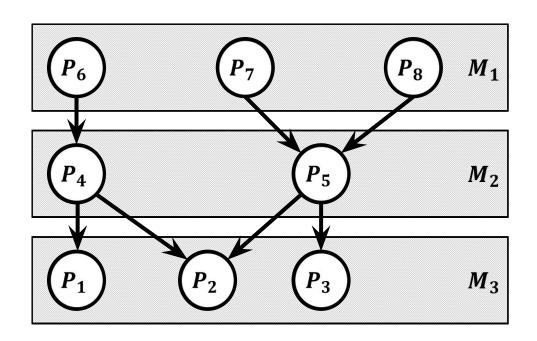
#### Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor



#### A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging




Claudio Fabiano Motta Toledo <sup>a,\*</sup>, Renato Resende Ribeiro de Oliveira <sup>b</sup>, Paulo Morelato França <sup>c</sup>

<sup>&</sup>lt;sup>a</sup> University of São Paulo, Institute of Mathematics and Computer Science, Brazil

<sup>&</sup>lt;sup>b</sup> Federal University of Lavras, Department of Computer Science, Brazil

c UNESP - Department of Mathematics and Computing, Brazil

# The Multi-Level Capacitated Lot Sizing Problem (MLCLSP)



#### Formulação Matemática

$$\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$$
 (1)

$$i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$$
 (2)

$$i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
(3)

$$x_{jt} \le y_{jt} B_{jt} \quad \forall j, t \tag{4}$$

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

$$\sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

$$x_{jt}, i_{jt}, b_{jt} \ge 0 \quad y_{jt}, w_{ft} \in \{0, 1\}$$
 (7)

#### Formulação Matemática

Fitness - Função Objetivo 
$$\blacktriangleright$$
  $\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$  (1)

External demand 
$$\blacktriangleright$$
  $i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$  (2)

$$i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
 (3)

$$x_{jt} \le y_{jt} B_{jt} \quad \forall j, t \tag{4}$$

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

$$\sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

$$x_{jt}, i_{jt}, b_{jt} \ge 0 \quad y_{jt}, w_{ft} \in \{0, 1\}$$
 (7)

Fitness - Função Objetivo 
$$\blacktriangleright$$
  $\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$  (1)

External demand 
$$\blacktriangleright$$
  $i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$  (2)

Internal demand 
$$\triangleright i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
 (3)

$$x_{jt} \le y_{jt} B_{jt} \quad \forall j, t \tag{4}$$

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

$$\sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

$$x_{jt}, i_{jt}, b_{jt} \ge 0 \quad y_{jt}, w_{ft} \in \{0, 1\}$$
 (7)

Fitness - Função Objetivo 
$$\blacktriangleright$$
  $\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$  (1)

External demand 
$$\blacktriangleright$$
  $i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$  (2)

Internal demand 
$$\triangleright i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
 (3)

Production allowance 
$$\triangleright$$
  $x_{jt} \le y_{jt} B_{jt} \ \forall j,t$  (4)

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

$$\sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

$$x_{jt}, i_{jt}, b_{jt} \ge 0 \quad y_{jt}, w_{ft} \in \{0, 1\}$$
 (7)

Fitness - Função Objetivo 
$$\blacktriangleright$$
  $\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$  (1)

External demand 
$$\triangleright$$
  $i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$  (2)

Internal demand 
$$\triangleright i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
 (3)

Production allowance 
$$\triangleright$$
  $x_{jt} \le y_{jt} B_{jt} \ \forall j,t$  (4)

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

Capacity limit 
$$\triangleright \sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

$$x_{jt}, i_{jt}, b_{jt} \ge 0 \quad y_{jt}, w_{ft} \in \{0, 1\}$$
 (7)

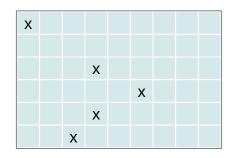
Fitness - Função Objetivo 
$$\blacktriangleright$$
  $\min \sum_{j=1}^{J} \sum_{t=1}^{T} (bc_j b_{jt} + h_j i_{jt})$  (1)

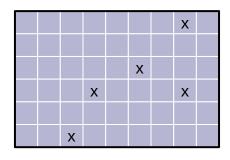
External demand 
$$\triangleright$$
  $i_{j(t-1)} + b_{jt} + x_{jt} = i_{jt} + b_{j(t-1)} + D_{jt} \quad \forall j, t \mid j \in \Delta$  (2)

Internal demand 
$$\triangleright i_{j(t-1)} + x_{jt} = i_{jt} + \sum_{k \in \delta_j} r_{jk} x_{kt} \quad \forall j, t \mid j \notin \Delta$$
 (3)

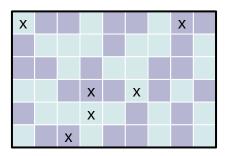
Production allowance 
$$\triangleright$$
  $x_{jt} \leq y_{jt} B_{jt} \forall j,t$  (4)

$$y_{jt} \le w_{ft} \quad \forall j, t, f \mid p_{jf} = 1 \tag{5}$$

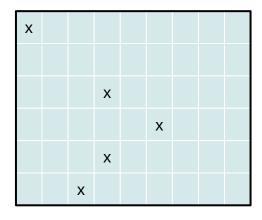

Capacity limit 
$$\triangleright \sum_{j=1}^{J} a_{mj} x_{jt} + \sum_{f=1}^{F} st_{mf} w_{ft} \le C_{mt} \quad \forall m, t$$
 (6)

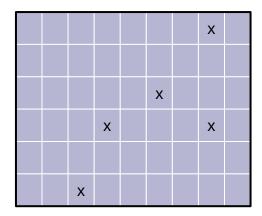

Variable domains 
$$> x_{jt}, i_{jt}, b_{jt} \ge 0$$
  $y_{jt}, w_{ft} \in \{0,1\}$  (7)

## Representação

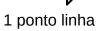

Matriz Binária F x T

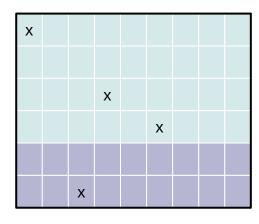
|                       | <b>T</b> <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | T <sub>9</sub> |
|-----------------------|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| F <sub>1</sub>        | [1]                   | 0              | 1              | 0                     | 0                     | 1                     | 0                     | 1              | 0              |
| F <sub>2</sub>        | 1                     | 0              | 1              | 0                     | 1                     | 0                     | 1                     | 0              | 0              |
| F <sub>3</sub>        | 1                     | 1              | 0              | [0]                   | 0                     | 0                     | 0                     | 0              | 1              |
| F <sub>4</sub>        | 1                     | 0              | 0              | 1                     | 0                     | [0]                   | 1                     | 0              | 0              |
| <b>F</b> <sub>5</sub> | 1                     | 0              | 0              | [1]                   | 1                     | 1                     | 0                     | 0              | 1              |
| F <sub>6</sub>        | 1                     | 0              | [0]            | 1                     | 0                     | 0                     | 0                     | 0              | 1              |

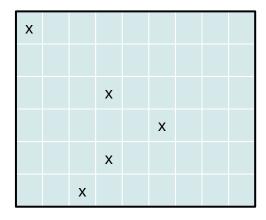


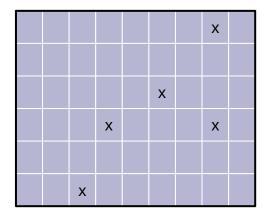



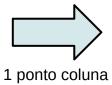


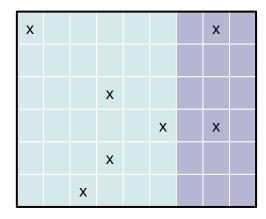





Free variables are marked with "x"

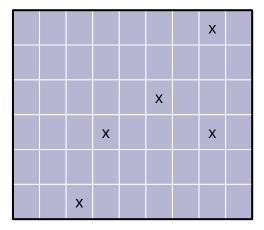


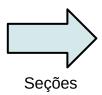



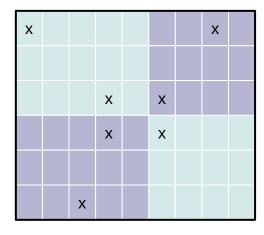
















|                       | <b>T</b> <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | T <sub>9</sub> |
|-----------------------|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| F <sub>1</sub>        | [1]                   | 0              | 1              | 0                     | 0                     | 1                     | 0                     | 1              | 0              |
| F <sub>2</sub>        | 1                     | 0              | 1              | 0                     | 1                     | 0                     | 1                     | 0              | 0              |
| F <sub>3</sub>        | 1                     | 1              | 0              | [0]                   | 0                     | 0                     | 0                     | 0              | 1              |
| F <sub>4</sub>        | 1                     | 0              | 0              | 1                     | 0                     | [0]                   | 1                     | 0              | 0              |
| <b>F</b> <sub>5</sub> | 1                     | 0              | 0              | [1]                   | 1                     | 1                     | 0                     | 0              | 1              |
| F <sub>6</sub>        | 1                     | 0              | [0]            | 1                     | 0                     | 0                     | 0                     | 0              | 1              |



Inversão

|                | T <sub>1</sub> | <b>T</b> <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | <b>T</b> <sub>8</sub> | <b>T</b> <sub>9</sub> |
|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| F <sub>1</sub> | [1]            | 0                     | 1              | 0                     | 0                     | 1                     | 0                     | 1                     | 0                     |
| F <sub>2</sub> | 1              | 0                     | 0              | 0                     | 1                     | 0                     | 1                     | 0                     | 0                     |
| F <sub>3</sub> | 1              | 1                     | 0              | [0]                   | 0                     | 0                     | 0                     | 0                     | 1                     |
| F <sub>4</sub> | 1              | 0                     | 0              | 1                     | 0                     | [0]                   | 1                     | 0                     | 0                     |
| F <sub>5</sub> | 1              | 0                     | 0              | [1]                   | 1                     | 1                     | 0                     | 0                     | 1                     |
| F <sub>6</sub> | 1              | 0                     | [0]            | 1                     | 0                     | 0                     | 0                     | 0                     | 1                     |

|                       | <b>T</b> <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | T <sub>9</sub> |
|-----------------------|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| F <sub>1</sub>        | [1]                   | 0              | 1              |                       |                       | 1                     | 0                     | 1              | 0              |
| F <sub>2</sub>        | 1                     | 0              | 1              | 0                     | 1                     | 0                     | 1                     | 0              | 0              |
| F <sub>3</sub>        | 1                     | 1              | 0              | [0]                   | 0                     | 0                     | 0                     | 0              | 1              |
| F <sub>4</sub>        | 1                     | 0              | 0              | 1                     | 0                     | [0]                   | 1                     | 0              | 0              |
| <b>F</b> <sub>5</sub> | 1                     | 0              | 0              | [1]                   | 1                     | 1                     | 0                     | 0              | 1              |
| F <sub>6</sub>        | 1                     | 0              | [0]            | 1                     | 0                     | 0                     | 0                     | 0              | 1              |



Troca na Coluna

|                       | T <sub>1</sub> | <b>T</b> <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | <b>T</b> <sub>9</sub> |
|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|
| F <sub>1</sub>        | [1]            | 0                     | 1              | 0                     | 0                     | 0                     | 0                     | 1              | 0                     |
| F <sub>2</sub>        | 1              | 0                     | 1              | 0                     | 1                     | 0                     | 1                     | 0              | 0                     |
| F <sub>3</sub>        | 1              | 1                     | 0              | [0]                   | 0                     | 0                     | 0                     | 0              | 1                     |
| <b>F</b> <sub>4</sub> | 1              | 0                     | 0              | 1                     | 0                     | [1]                   | 1                     | 0              | 0                     |
| F <sub>5</sub>        | 1              | 0                     | 0              | [1]                   | 1                     | 1                     | 0                     | 0              | 1                     |
| F <sub>6</sub>        | 1              | 0                     | [0]            | 1                     | 0                     | 0                     | 0                     | 0              | 1                     |

|                | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | <b>T</b> <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|
| F <sub>1</sub> | [1]            | 0              | 1              | 0                     | 0                     | 1                     | 0                     | 1              | 0                     |
| F <sub>2</sub> | 1              | 0              | 1              | 0                     | 1                     | 0                     | 1                     | 0              | 0                     |
| F <sub>3</sub> | 1              | 1              | 0              | [0]                   | 0                     | 0                     | 0                     | 0              | 1                     |
| F <sub>4</sub> | 1              | 0              | 0              | 1                     | 0                     | [0]                   | 1                     | 0              | 0                     |
| F <sub>5</sub> | 1              | 0              | 0              | [1]                   | 1                     | 1                     | 0                     | 0              | 1                     |
| F <sub>6</sub> | 1              | 0              | [0]            | 1                     | 0                     | 0                     | 0                     | 0              | 1                     |



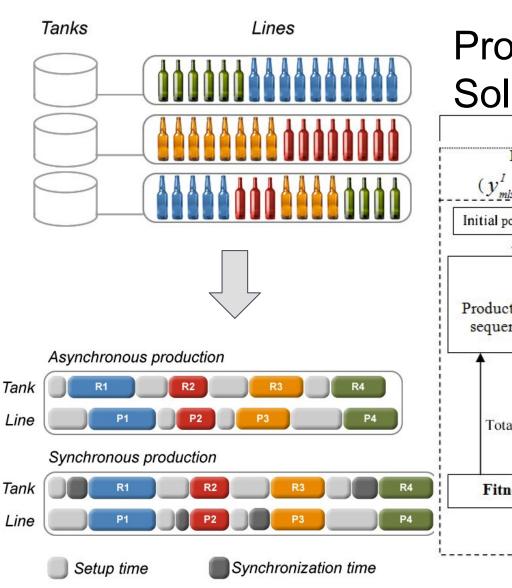
Troca na linha

| ĺ |                       | <b>T</b> <sub>1</sub> | T <sub>2</sub> | <b>T</b> <sub>3</sub> | <b>T</b> <sub>4</sub> | <b>T</b> <sub>5</sub> | <b>T</b> <sub>6</sub> | <b>T</b> <sub>7</sub> | T <sub>8</sub> | T <sub>9</sub> |
|---|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
|   | F <sub>1</sub>        |                       |                | 1                     | 0                     | 0                     | 1                     | 0                     | 1              | 0              |
| l | F <sub>2</sub>        | 1                     | 0              | 1                     | 0                     | 1                     | 0                     | 1                     | 0              | 0              |
|   | F <sub>3</sub>        | 1                     | 1              | 0                     | [0]                   | 0                     | 0                     | 0                     | 0              | 1              |
|   | F <sub>4</sub>        | 1                     | 1              | 0                     | 1                     | 0                     | [0]                   | 0                     | 0              | 0              |
|   | <b>F</b> <sub>5</sub> | 1                     | 0              | 0                     | [1]                   | 1                     | 1                     | 0                     | 0              | 1              |
|   | F <sub>6</sub>        | 1                     | 0              | [0]                   | 1                     | 0                     | 0                     | 0                     | 0              | 1              |

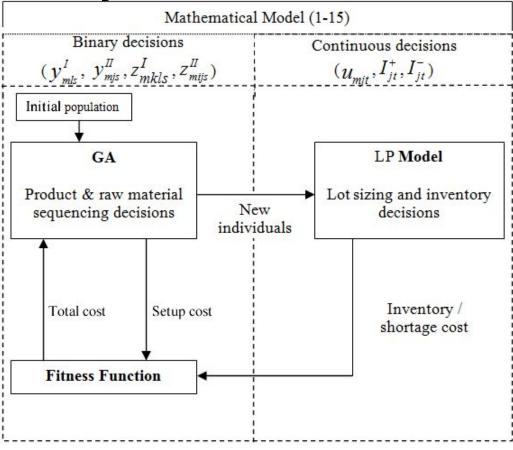
### Outras Representações e seus Operadores



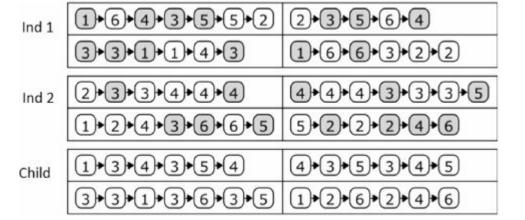
#### Computers & Operations Research


Volume 48, August 2014, Pages 40-52




A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem

https://doi.org/10.1016/j.cor.2014.02.012


Get rights and content



# Problema Industrial e Solução Híbrida



### Codificação, Decodificação e Fitness



```
evaluateFitness(Individual)
begin

//Decoding procedure
totalSetupCosts = calculateSetupCosts(Individual).

updatedParameters(Individual, ns mjt , Wmt ).

//LP Model is solved using Cplex

totalInventoryPlusShortageCosts = solveLPModel(ns mjt , Wmt )
fitnessValue = totalSetupCosts + totalInventoryPlusShortageCosts
return fitnessValue.
end
```

### Codificação, Decodificação e Fitness

Calculado solucionando modelo PL

Minimize

$$\sum_{j=1}^{J} \sum_{t=1}^{T} (h_{j}I_{jt}^{+} + g_{j}I_{jt}^{-}) + \sum_{s=1}^{N} \sum_{m=1}^{M} \sum_{k \in \beta_{m}} \sum_{l \in \beta_{m}} \sum_{s \in \beta_{m}} s_{kl}^{I} z_{mkls}^{I}$$

$$+ \sum_{s=1}^{N} \sum_{m=1}^{M} \sum_{i \in \alpha_{m}} \sum_{j \in \alpha_{m}} s_{ij}^{II} z_{mijs}^{II}$$

## Crossover e Mutação

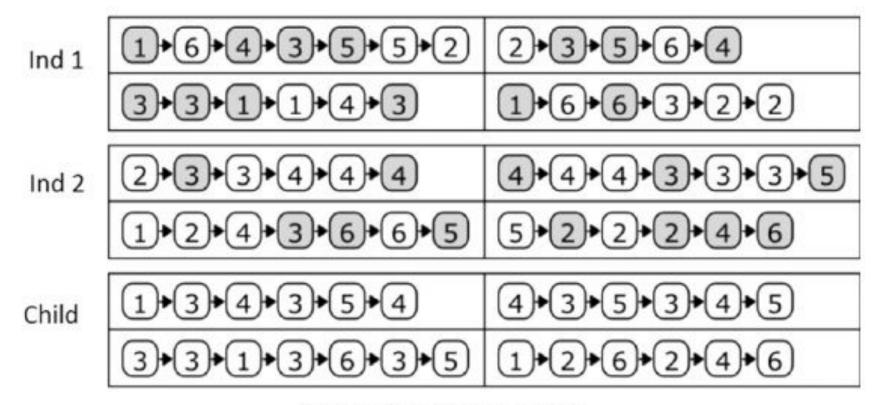



Fig. 8. Uniform crossover operator.

#### Outras Representações e seus Operadores



PDF (2,454 KB) | PDF Plus (1,583 KB)

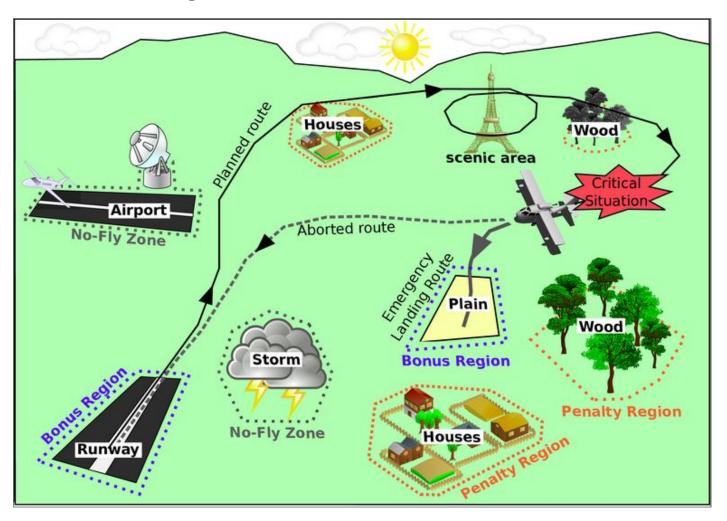
Jesimar da Silva Arantes et al, Int. J. Artif. Intell. Tools 26, 1760008 (2017) [30 pages] https://doi.org/10.1142/S0218213017600089

#### Heuristic and Genetic Algorithm Approaches for UAV Path Planning under Critical Situation

Jesimar da Silva Arantes<sup>1</sup>

Márcio da Silva Arantes1

Claudio Fabiano Motta Toledo1,†


Onofre Trindade Júnior<sup>1</sup>

Brian Charles Williams<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>University of São Paulo, USP, São Carlos, São Paulo, Brazil

<sup>&</sup>lt;sup>2</sup>Massachusetts Institute of Technology, MIT, Cambridge, USA

# Planejamento de Rota para Pouso de Emergência com Alocação de Risco



Codificação e Decodificação

### Operadores

- Crossovers:
  - Média aritmética
  - Média geométrica
  - BLX-α were applied.
- Mutação:
  - Uniforme
  - Limite
  - Creep

$$fitness = f_{Landing_{\phi_b}} + f_{Landing_{\phi_p}} + f_{Flight_{\phi_n}} + f_{Curves} + f_{DistUAV_{\phi_b}} + f_{Violated_T} + f_{\psi_b}$$

$$f_{Landing_{\phi_b}} = -C_{\phi_b} \cdot \sum_{i=1}^{|\phi_b|} (P(x_K \in Z_{\phi_b}^i))$$
 Pouso em região bonificadora

$$f_{Landing_{\phi_p}} = C_{\phi_p} \cdot \sum_{i=1}^{|\varphi_p|} (P(x_K \in Z_{\phi_p}^i))$$
 Pouso em região penalizadora

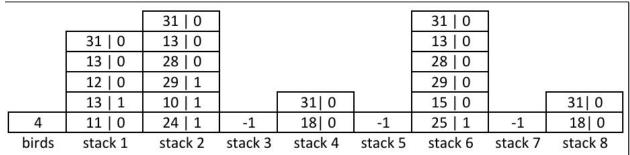
Pouso em região NFZ 
$$f_{Flight_{\phi_n}} = C_{\phi_n} \cdot max(0, 1 - \Delta - P\left(\bigwedge_{t=0}^K \bigwedge_{i=1}^{|\phi_n|} x_t \notin Z_{\phi_n}^i\right))$$
 
$$f_{Curves} = \frac{1}{|\varepsilon_{max}|} \cdot \sum_{t=0}^K \|u_t\| \cdot |\varepsilon_t| \quad \text{Curvas abruptas}$$
 
$$f_{DistUAV_{\phi_b}} = shortestDist(\overline{x}_K, Z_{\phi_b}) \quad \text{Distâncias longas}$$

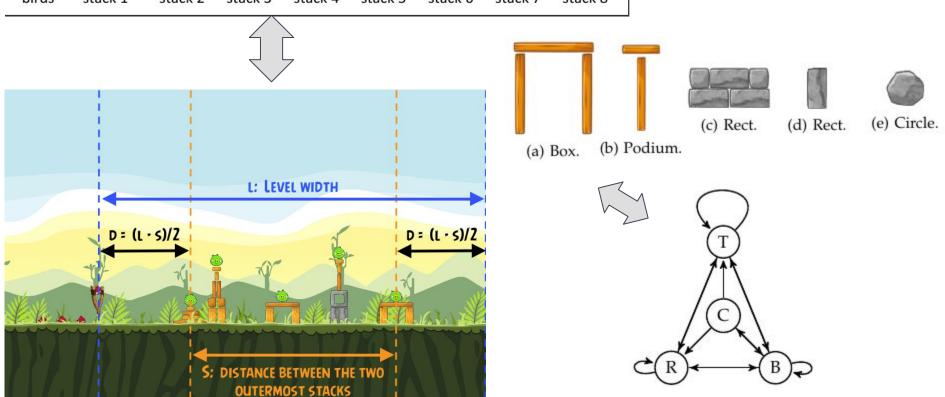
$$f_{Violated_T} = \left\{ \begin{array}{c} C_{\phi_b} \;, \, v_K - v_{min} > 0 \\ 0 \;, \, \text{otherwise} \end{array} \right. \; \; \text{Alcança região bonifcadora sem pousar}$$

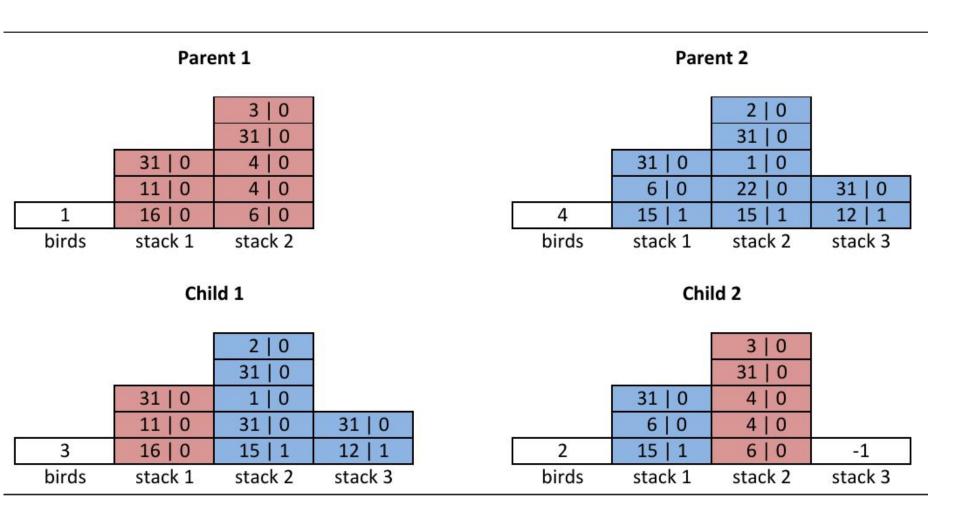
$$f_{\psi} = \left\{ \begin{array}{ll} C_{\phi_b} \cdot 2^{\frac{(K-T)}{10}} \;, \; \psi = \psi_b \\ 0 \;, \; \text{otherwise} \end{array} \right. \quad \text{Privilegia rotas com reduzido número de waypoints (falhas na bateria)}$$

## Outras Representações e seus Operadores

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2017.2766218, IEEE Transactions on Computational Intelligence and AI in Games


IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 14, NO. 8, JULY 2016


#### Tanager: A Generator of Feasible and Engaging Levels for Angry Birds


Lucas N. Ferreira and Claudio Fabiano Motta Toledo



## Codificação e Decodificação







Child 1

31 | 0 11 | 0 31 | 0 31 | 0 5 16 | 0 31 | 0 12 | 1 birds stack 1 stack 2 stack 3 Child 2

|       |         | 3   0   |         |
|-------|---------|---------|---------|
|       |         | 31   0  | 31   0  |
|       | 31   0  | 4   0   | 1   0   |
|       | 6   0   | 4   0   | 19   0  |
| 2     | 15   1  | 6   0   | 19   0  |
| birds | stack 1 | stack 2 | stack 3 |

$$fitness(x) = |\lfloor b_n * B \rfloor - B_u| + |\lfloor l_n * L \rfloor - L_b| + p_f + s$$

- B: quantidade máxima de pássaros definida pelo game designer.
- B<sub>"</sub>: quantidade de pássaros utilizada durante simulação.
- 0≤b<sub>n</sub>≤1: valor definido pelo AE.
- L:quantidade máxima de blocos definida pelo game designer.
- L<sub>b</sub>: quantidade de blocos no início da simulação.
- p<sub>f</sub>: número de porcos ao final da simulação.
- s: estabilidade dos blocos.

### Outras Representações e seus Operadores



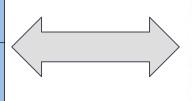
#### Applied Soft Computing

Volume 46, September 2016, Pages 778-791



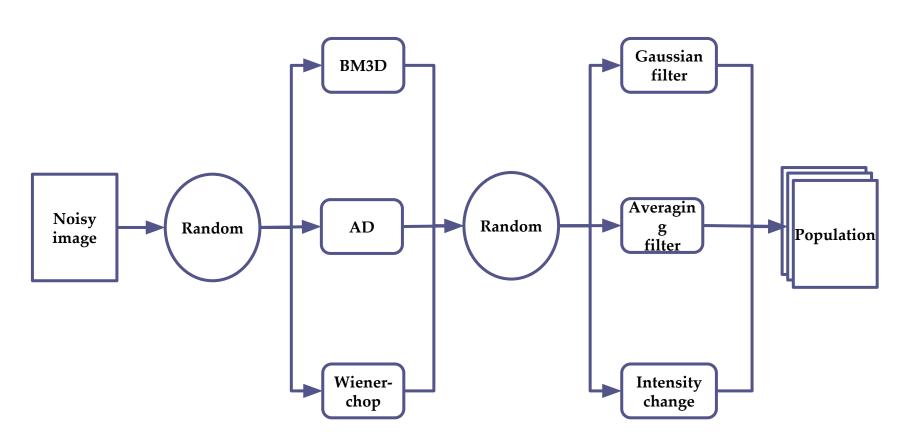
#### An approach based on hybrid genetic algorithm applied to image denoising problem

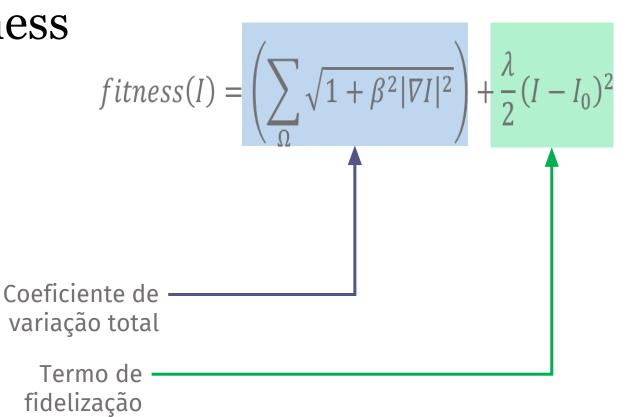
Jonatas Lopes de Paiva<sup>a, ™</sup>, Claudio F.M. Toledo<sup>a, ♣, ™</sup>, Helio Pedrini<sup>b, ™</sup>

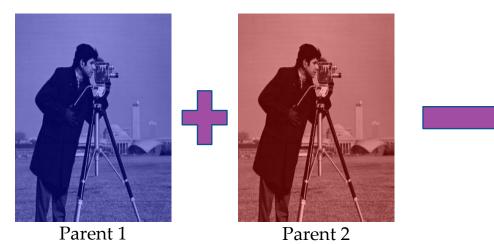

Show more

https://doi.org/10.1016/j.asoc.2015.09.013

Get rights and content


# Codificação

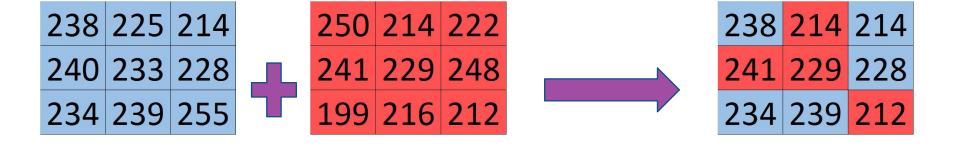

| 238 | 225 | 214 |
|-----|-----|-----|
| 240 | 233 | 228 |
| 234 | 239 | 255 |





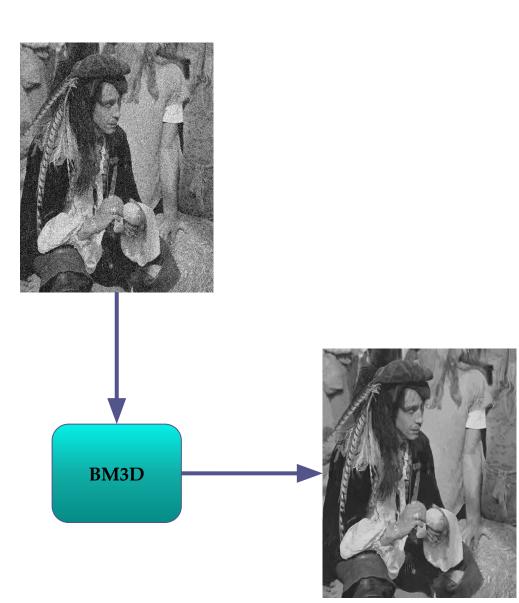

## Inicialização










row One-point column



Parent 1 Parent 2 Child

- Um entre três métodos de recuperação de ruídos é escolhido aleatoriamente cada vez que o operador de mutação é aplicado
  - AD
  - Wiener-chop
  - BM3D



## Seleção

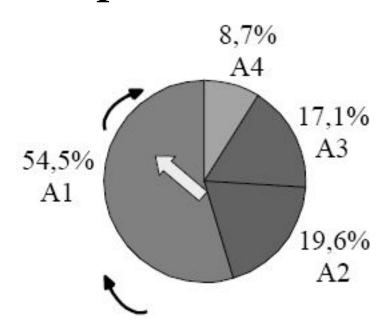
#### Torneio

- Proposto por Goldberg e Deb em Goldberg and Deb (1991).
- Seleciona aleatoriamente um número fixo de indivíduos Q e o melhor entre esses indivíduos é escolhido para cruzamento.

#### Truncamento

- Truncamento foi proposto por Mühlenbein e Schlierkamp-Voose em Mühlenbein and Schlierkamp-Voosen (1993).
- Um número M ≥ N de indivíduos é gerado e os melhores N indivíduos são selecionados para formar a próxima população.

# Seleção - Torneio


| disputa | indivíduo | cromossomo | fitness | vencedor |  |
|---------|-----------|------------|---------|----------|--|
| -       | 1         | 1 110111   |         | 1        |  |
| 1       | 4         | 011001     | 3       | 1        |  |
| 9       | 6         | 010100 2   |         | 0        |  |
| 2       | 8         | 111011     | 5       | O        |  |
| 9       | 9         | 101101     | 4       | 0        |  |
| 3       | 11        | 010001     | 2       | 9        |  |
| 1       | 13        | 111000     | 3       | 19       |  |
| 4       | 15        | 000001     | 1       | 13       |  |

## Seleção - Torneio

- Exemplo de Algoritmo para Torneio usando Mating-Pool
- 1. indAtual=i=1
- 2. Enquanto ( indAtual≤μ) faça
  - a. Selecione k indivíduos aleatóriamente, com ou sem repetições
  - Selecione o indivíduo com melhor valor de fitness
  - c. i recebe o índice do melhor indivíduo selecionado
  - d. mating-pool[indAtual]=parents[i]
  - e. indAtual = indAtual + 1
- 3. fimEnquanto

## Seleção - Roleta

# •Mais chance para os mais aptos



# •Problemas com valores negativos

$$f_i = 2(N-i)/(N-1)$$

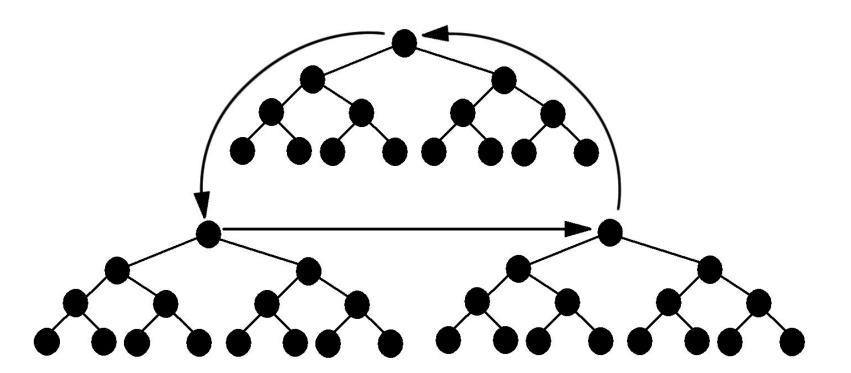
## Seleção -Roleta

 Exemplo de Algoritmo para Roleta usando Mating-Pool

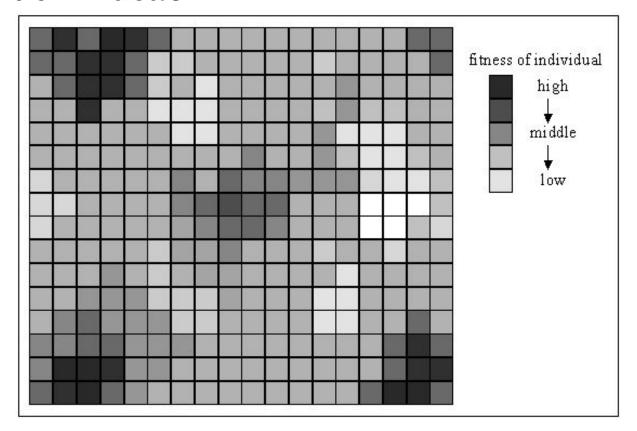
```
indAtual=1
total=\sum_{i=1}^{\mu} f(i)
Enquanto (indAtual \leq \mu) faça
 i=1
 subTotal = o
 selecione r∈[o,total]
 Enquanto (subTotal < r ) faça
    i=1
    subTotal = subTotal + f(i);
 fimEnquanto
 matingPool[indAtual] = parents[i];
 ind_atual = indAtual +1;
fimEnquanto
```

## Seleção-Roleta

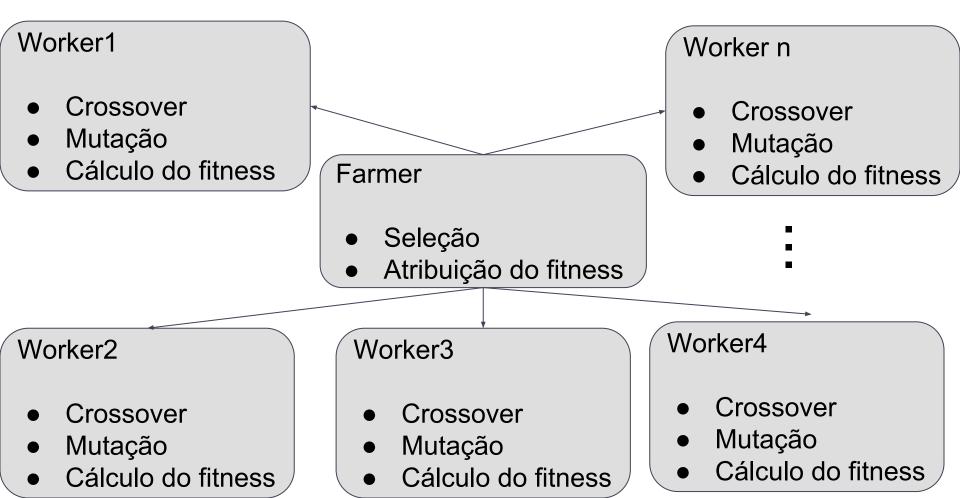
#### Algoritmo 2


```
indAtual=1
Para todo i=1 até μ faça
        \alpha[i] = \sum_{j=1}^{i} Psel(j)
Enquanto (indAtual ≤ µ ) faça
         selecione r \in [0,1]
   i=1
   Enquanto (\alpha[i] < r) faça
                 i = i+1;
    fimEnquanto
    matingPool[indAtual] = parents[i];
    ind_atual = indAtual +1;
fimEnquanto
```

## Universal Sampling Algorithm


```
Para todo i=1 até μ faça
        \alpha[i] = \sum_{j=1}^{i} Psel(j)
indAtual=i=1
selecione r \in [0,1/\mu]
Enquanto (indAtual ≤ μ ) faça
  Enquanto (r<a[i]) faça
    matingPool[indAtual] = parents[i];
   r = r + 1/\mu
    indAtual = indAtual + 1
  fimEnquanto
  i = i + 1;
fimEnquanto
```

- Migração
- Difusão
- Modelo farmer/worker


Migração



Modelo de Difusão



Modelo worker/farmer

