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Abstract: Over the last few decades, genetic and evolutionary algorithms (GEAs) have been
successfully applied to many problems of business, engineering, and science. This paper dis-
cusses probabilistic model-building genetic algorithms (PMBGAs), which are among the most
important directions of current GEA research. PMBGASs replace traditional variation operators of
GEAs by learning and sampling a probabilistic model of promising solutions. The paper describes
two advanced PMBGAs: The Bayesian optimization algorithm (BOA), and the hierarchical BOA
(hBOA). The paper argues that BOA and hBOA can solve an important class of nearly decom-
posable and hierarchical problems in a quadratic or subquadratic number of function evaluations
with respect to the number of decision variables.
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1. Introduction

A general black-box optimization problem may be seen
as the task of finding the best solution or the optimum
given (1) the set of all potential solutions to the prob-
lem, and (2) a procedure that can evaluate quality of
competing candidate solutions. Since many real-world
problems can be formulated in this fashion, black-box
optimization has become one of the most important
lines of research in computational optimization.

Genetic and evolutionary algorithms (GEAs)™ 2 3 4)
solve black-box optimization problems by evolving a
population of candidate solutions using operators in-
spired by natural evolution and genetics. Over the
last few decades, GEAs have been successfully applied
to many problems of business, engineering, and sci-
ence. Nonetheless, researchers and practitioners have
also identified limitations of conventional GEAs. One
of the most important limitations is that traditional
GEA variation operators—such as one-point crossover
and bit-flip mutation—approach every problem in the
same way; consequently, these operators often yield in-
ferior performance. That is why practitioners are often
forced to modify the representation of candidate solu-
tions or variation operators to ensure efficient search
for the optimum. This leads to an important challenge:
How to design GEAs capable of automatic discovery and
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exploitation of problem regularities to provide robust and
scalable solution to broad classes of important real-world
problems?

This paper discusses one of the most promising ap-
proaches to facing this challenge that incorporates ad-
vanced machine learning techniques into GEAs. More
specifically, the paper focuses on probabilistic model-
building genetic algorithms (PMBGAs)®), which replace
traditional variation operators of GEAs by building
and sampling a probabilistic model of promising solu-
tions found so far. The paper describes two advanced
PMBGAs: (1) The Bayesian optimization algorithm
(BOA) % 7 and (2) the hierarchical BOA (hBOA) & 9.
The paper argues that BOA and hBOA can solve nearly
decomposable and hierarchical problems quickly, accu-
rately, and reliably. hBOA can solve even such enor-
mously difficult problems that cannot be solved by any
other optimization method, such as simulated anneal-
ing, hill climbing, and conventional GEAs. The paper
describes one class of such problems, and presents em-
pirical results that indicate that hBOA is capable of
solving this class of problems in less than a quadratic
number of function evaluations with respect to the num-
ber of decision variables in the problem.

The paper starts by introducing the basic BOA pro-
cedure. Section 3 discusses the differences between ex-
ploitation of single-level and hierarchical decomposition
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and describes how hBOA extends the basic BOA. Fi-
nally, Section 4 provides the most important conse-
quences of the work presented in this paper for both
practitioners as well as researchers.

The methods presented in this paper are applicable to
problems where candidate solutions can be represented
by fixed-length strings over a finite alphabet (e.g., n-
bit binary strings); it is thus assumed that there are a
fixed number of problem variables and each variable can
obtain one out of a finite set of values.

2. Bayesian optimization algo-

rithm (BOA)

The Bayesian optimization algorithm (BOA)% 7)
evolves a population of candidate solutions by build-
ing and sampling Bayesian networks. The initial pop-
ulation of candidate solutions is usually generated at
random with a uniform distribution over all possible
solutions. BOA updates the population for a number of
iterations (generations), each consisting of four steps.
First, promising solutions are selected from the current
population using any common GEA selection method,
such as tournament and truncation selection. Second, a
Bayesian network that fits the population of promising
solutions is constructed. Third, new candidate solutions
are generated by sampling the built Bayesian network.
Fourth, the new candidate solutions are incorporated
into the original population, replacing some of the old
candidate solutions or all of them.

The remainder of this section provides basic back-
ground on Bayesian networks and discusses the class of
problems that BOA can solve in a robust and scalable
manner.

2.1 Bayesian network basics

Bayesian networks 0 112 belong to the family of
graphical models, which combine statistics, modular-
ity, and graph theory in a practical tool for estimation
of probability distributions and inference. A Bayesian
network is defined by two components:

(1) Structure. The structure is encoded by a directed
acyclic graph with the nodes corresponding to the
variables in the modeled data set (in this case, to
the positions in solution strings) and the edges cor-
responding to conditional dependencies.

Parameters. The parameters are represented by a
set of conditional probability tables specifying con-
ditional probabilities for each variable given any in-
stance of the variables that the variable depends
on.

Mathematically, a Bayesian network encodes a joint
probability distribution given by

n

p(X) = [ [ p(X:[THy),

i=1

(1)
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where X = (Xo,...,Xp—_1) is a vector of all the vari-
ables in the problem; II; is the set of parents of X; in
the network (the set of nodes from which there exists an
edge to X;); and p(X;|II;) is the conditional probability
of X; given its parents II;.

A directed edge relates the variables so that in the
encoded distribution, the variable corresponding to the
terminal node is conditioned on the variable correspond-
ing to the initial node. More incoming edges into a node
result in a conditional probability of the variable with
a condition containing all its parents. In addition to
encoding dependencies, each Bayesian network encodes
a set of independence assumptions. Independence as-
sumptions state that each variable is independent of
any of its antecedents in the ancestral ordering, given
the values of the variable’s parents.

It is important to understand the semantics of
Bayesian networks in the framework of PMBGAs. Con-
ditional dependencies will cause the involved variables
to remain in the configurations seen in the selected pop-
ulation of promising solutions. On the other hand, con-
ditional independencies lead to the mixing of bits and
pieces of promising solutions in some contexts (the con-
texts are determined by the variables in the condition of
the independency). The complexity of a proper model
is directly related to the statistics that must be con-
sidered to lead the search toward the optimum '3 14,
If the problem was linear, a good network would be
the one with no edges. More complex problems lead
to more complex models, although many problems can
be solved with quite simple networks despite the pres-
ence of nonlinear interactions of high order. Bayesian
networks provide BOA with a general enough tool to
express a wide variety of ways to decompose problems;
coupling this expressive representation with methods for
learning and sampling Bayesian networks will comprise
a powerful tool for the exploration of new candidate
solutions in GEAs.

2.2 Learning Bayesian networks

The problem of learning Bayesian networks can be bro-
ken up into two subproblems: (1) learn the structure,
and (2) learn the parameters for a specific structure.

It is common practice to define the learning of the
structure as a black-box optimization problem, where a
procedure (a scoring metric) is defined that computes
a score for each candidate structure and an optimizer
is executed to find the best structure with respect to
the specific measure. The score assigned to a network
can be computed in different ways, but in all cases it
depends on both the structure of the network as well as
the data that are to be modeled by the structure. The
score can often also incorporate prior knowledge about
the problem domain. Two classes of scoring metrics are
common: Bayesian metrics and minimum description
length (MDL) metrics.

A simple greedy search algorithm is usually used to
construct the network that maximizes the scoring met-
ric. The greedy algorithm starts with an empty network



and in each iteration it applies a primitive graph oper-
ator to the current network that improves the network
score the most compared to other applicable primitive
operators. As primitive operators, edge additions, re-
movals, and reversals are usually considered. Of course,
the network must remain acyclic after applying each
primitive operator, and the search is stopped whenever
the current network cannot be improved anymore. In
some cases, it is necessary to restrict the complexity of
the network to contain dependencies of at most a speci-
fied order ' ©). In BOA the network from the previous
generation can be used as a starting point for building
the model in each generation as suggested by Etxeberria
and Larranaga (1999)'6).

Once the structure has been constructed, one must
compute the conditional probabilities for every variable
given its parents. These can be computed from the se-
lected population of solutions in a straightforward man-
ner.

2.3 Sampling Bayesian networks

The sampling of a Bayesian network can be done us-
ing probabilistic logic sampling (PLS) 7. In PLS the
variables are first ordered topologically so that every
variable is preceded by its parents. The values in each
position of a new solution are then generated according
to the topological ordering using the conditional prob-
ability table for the variable corresponding to the po-
sition. As a result, once one is to generate the value
of a variable, its parents would have been generated al-
ready, and the probabilities of different values of this
variable can be directly extracted from the conditional
probability table for the variable using the values of its
parents.

2.4 BOA solves decomposable problems

Theoretical and empirical evidence exists that BOA
can solve problems decomposable into subproblems of
bounded order in quadratic or subquadratic number of
evaluations '8 1913, 20) " More specifically, BOA needs
O(n'-5%) evaluations to solve decomposable problems
with uniform scaling, whereas it needs O(n?) evalua-
tions to solve decomposable problems with exponen-
tial scaling. That means that if there exist statistics
of bounded order that lead toward the optimum, BOA
should be able to find these statistics and use them to
find the optimum quickly, accurately, and reliably.
How does BOA compare to conventional GAs and
other optimization algorithms? Using only local oper-
ators, such as mutation, will lead to O(n* Inn) evalua-
tions until convergence to the optimum 2V, where k is
the minimum order of subproblems in a proper prob-
lem decomposition. That means that the order of the
number of evaluations required by local operators to
solve decomposable problems grows with the order of
subproblems, yielding a very inefficient search already
for subproblems of order as low as £k = 4 or k = 5.
This complexity increase will not be eliminated by other
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common extensions of local search, such as simulated
annealing and tabu search.

The situation gets even worse for selectorecombina-
tive GAs with commonly used crossover operators. It
can be easily shown that with one-point or uniform
crossover, there exist many decomposable problems that
will require exponential population sizes with respect to
the size of the problem 22 23). That makes even mod-
erately sized problems intractable.

3. Hierarchical BOA (hBOA)

BOA can solve the class of nearly decomposable prob-
lems quickly, accurately, and reliably. But can we go
beyond the class of boundedly difficult decomposable
problems and solve problems that cannot be broken up
into subproblems of bounded order?

This section describes the hierarchical BOA
(hBOA)® 9, which extends the class of problems
that can be solved quickly, accurately, and reliably by
exploiting hierarchical decomposition as opposed to
decomposition on a single level. The section starts by a
brief discussion of hierarchical decomposition. The sec-
tion then continues by discussing the three important
keys to hierarchy success that must be considered to
successfully solve hierarchically decomposable problems
using GEAs. Finally, the section explains how the
hierarchical BOA extends BOA to incorporate the keys
to hierarchy success and discusses the class of problems
that can be scalably solved by hBOA.

3.1 Hierarchical decomposition for com-
plexity reduction

Many complex systems and processes in business, engi-
neering, science, as well as nature, are hierarchical 24).
By hierarchy, we mean a system composed of subsys-
tems each of which is a hierarchy by itself until we reach
some bottom level 24, Interactions within each subsys-
tem are of much higher magnitude than the interactions
between the subsystems.

Single-level decomposition used by BOA simplifies
the problem by allowing the solver to focus on mul-
tiple simpler problems instead of one large problem.
However, not every problem can be decomposed into
tractable subproblems; such decomposition may be ob-
structed due to the rich interaction structure of the
problem or the lack of feedback for discriminating alter-
native solutions to the different subproblems in a fine
enough decomposition. Hierarchical decomposition—or
decomposition over multiple levels of difficulty—adds a
new level of complexity reduction by allowing decompo-
sition to go down a number of levels until we finally get
to a tractable problem on the bottom level. Of course,
as discussed above, the subproblems in the decomposi-
tion on each level are allowed to interact, but the inter-
actions within each subproblem must be of much higher
magnitude than those between the subproblems.

This section continues by discussing the three keys
to hierarchy success, which must be considered for ef-



fective exploitation of hierarchical decomposition. The
section then describes hBOA, which extends BOA to
solve hierarchically decomposable problems.

3.2 Three keys to hierarchy success

There are three important features that must be incor-
porated into GEAs to enable robust and scalable solu-
tion of hierarchically decomposable problems®: 25):

Proper decomposition. The optimizer must be ca-
pable of decomposing the problem properly on
each level. In black-box optimization, decomposi-
tion should be identified automatically without any
need for interaction with the user or any problem-
specific knowledge in addition to the set of all po-
tential solutions and the evaluation procedure.

Chunking. Solutions to the subproblems from the
lower level can be seen as chunks of solutions or ba-
sic building blocks used for constructing solutions
on the current level. The hierarchical black-box
optimizer must be capable of representing these
chunks of solutions in a compact way so that only
relevant features are considered.

Preservation of alternative candidate solutions.
The hierarchical optimizer must be capable of
preserving multiple alternative solutions to every
subproblem. There are two reasons for doing this:

(1) On the current level there may not be a suffi-
cient feedback to discriminate among a few
best alternative solutions to the considered
subproblem.

Although the subproblems on the current level
are considered independent, interactions on
some higher level or levels may lead to new
information that favors some of the alterna-
tives over others.

(2)

3.3 hBOA procedure

How to incorporate the keys to hierarchy success into
BOA? There is no need for an additional mechanism
for incorporating the first key—proper decomposition—
because BOA is capable of decomposing the problem on
each level by itself. The hierarchical BOA (hBOA) ex-
tends BOA to ensure the remaining two keys to hierar-
chy success: (1) hBOA uses local structures for chunk-
ing and (2) hBOA introduces a niching technique for
preservation of alternative candidate solutions. The re-
mainder of this section discusses the two ways in which
hBOA differs from BOA—Ilocal structures in Bayesian
networks and the restricted tournament replacement—
in somewhat more detail.

Local structures in Bayesian networks: Typi-
cally, conditional probability tables (CPTs) are used
to represent local conditional probability distributions
for each variable (string position). However, using
full CPTs causes exponential complexity of learning
Bayesian networks. Since on top levels, the size of
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the subproblems for hierarchical problems might be lin-
ear in the problem size, this would lead to exponential
complexity of model building in hBOA. Exponential
complexity of CPTs can be eliminated by using more
compact structures to represent conditional probability
tables; these structures are usually referred to as lo-
cal structures 25 27 Various compact representations
can be used for local structures in hBOA, but decision
graphs 26 27 28) appear to be most practical because of
both simplicity of implementation as well as effective-
ness.

Restricted tournament replacement: One of the
advantages of using population-based search is that
populations can store a diverse sample of candidate so-
lutions spanning across the entire search space. In com-
bination with Bayesian networks, this enables BOA and
hBOA to maintain a sample corresponding to a proba-
bility distribution over the entire search space without
having to focus on a specific region or regions as is com-
mon in other optimization methods such as simulated
annealing or gradient search. However, as noted above,
for a successful hierarchical optimizer it is necessary to
add an additional mechanism to ensure that useful di-
versity is preserved in a robust manner.

To preserve diversity, hBOA uses Harik’s restricted
tournament replacement (RTR) 2% 9). In RTR, for each
new candidate solution a subset of the original popula-
tion before selection is first selected. The new candidate
then replaces the most similar candidate solution in this
subset if it is better than this most similar candidate;
otherwise, the new solution is discarded. The size of
the subset used to incorporate each new candidate is
called window size. A good heuristic to set the window
size is to make the window size linearly proportional to
the size of the problem; this enables strongest diversity
preservation without increasing asymptotic complexity
for boundedly difficult decomposable problems as ar-
gued by Pelikan and Goldberg (2001) 9.

3.4 hBOA solves hierarchically decom-
posable problems

hBOA can solve problems that can be decomposed on
a single or multiple levels of difficulty. That means that
hBOA is capable of solving all problems that can be
efficiently solved by BOA, but it can also solve problems
for which BOA alone fails. An example hierarchical
problem that cannot be efficiently solved using single-
level decomposition are hierarchical traps '), created
by combining trap functions of order 3 over multiple
levels of difficulty. On the lowest level, groups of 3 bits
contribute to the overall fitness using 3-bit traps. Each
group of 3 bits corresponding to one of the traps is then
mapped to a single bit on the next level; a 000 is mapped
to a 0, a 111 is mapped to a 1, and everything else is
mapped to the null symbol ’-’. The bits on the next level
again contribute to the overall fitness using 3-bit traps,
and the groups are mapped to an even higher level. This
continues until the top level is evaluated that contains
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Figure 1: The performance of hBOA on hierarchical
traps. The graph was obtained from Pelikan (2002).

3 bits total. That is why the string length should be an
integer power of 3. Any group of bits containing the null
symbol does not contribute to the overall fitness. The
contributions of traps on each level are multiplied to
make every level contribute the same. For more details
on hierarchical traps, please see Pelikan (2002) %),

The number of evaluations until convergence to the
optimum of hierarchical traps is shown in Figure 1. The
results indicate that hierarchical traps can be solved
in a subquadratic number of evaluations. How would
other algorithms perform on this class of problems? All
algorithms that have failed on single-level traps because
of exponential complexity, will fail on hierarchical traps
as well. That is why conventional GAs with one-point
or uniform crossover are definitely not going to scale up
well on hierarchical traps.

How about local search? Recall that boundedly dif-
ficult single-level decomposable problems can be solved
by local search in approximately O(n*logn) evalua-
tions, where k is the order of appropriate problem de-
composition. For hierarchical traps, local search will
perform even worse and it will require exponential num-
ber of evaluations, because hierarchical traps cannot be
decomposed into boundedly difficult subproblems on a
single level. That is why local search is no longer able to
retain polynomial convergence. We performed a num-
ber of experiments on hierarchical traps using various
black-box optimizers—including a (1+1)-ES, simulated
annealing, and hill climbing—and in all cases the algo-
rithms were not able to solve any but smallest problems
of n =9 or n = 27 bits even after days of computation,
providing additional evidence for their highly inefficient
and non-scalable performance. For more details, see Pe-
likan (2002)').

The results on traps and hierarchical traps together
with the population-sizing and convergence theory!% 13)
provide evidence that BOA and hBOA can solve bound-
edly difficult decomposable and hierarchically decom-
posable problems. Since many complex real-world sys-
tems can be significantly simplified using hierarchical
decomposition®¥ | it can be hypothesized that many op-
timization problems originating in these systems will
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also be hierarchical. Our past work confirms that hy-
pothesis, and indicates that exploiting hierarchical de-
composition is a powerful tool for solving real-world op-
timization problems. In fact, hBOA was shown to solve
problems that could not be solved before and still pro-
vide competitive performance on problems for which
there exist efficient problem-specific optimizers. For
example, hBOA can solve two-dimensional Ising spin
glasses in time competitive with optimization methods
designed specifically to solve this class of problems and
it is applicable even to the three-dimensional case %),

4. Conclusions

For optimization practitioners—whose primary goal is
to solve difficult optimization problems in the area of
their expertise—the success in designing a competent
hierarchical optimizer has four important consequences.
First, many complex real-world systems can be decom-
posed into a hierarchy, so we can expect hBOA to pro-
vide robust and scalable solution to many real-world
problems. Second, many difficult hierarchical problems
are intractable by any other algorithm and thus hBOA
should allow us to solve problems that could not be
solved before. Third, despite that BOA and hBOA
do not require much problem-specific knowledge in ad-
vance, BOA and hBOA allow the use of prior knowledge
of various forms, which can often be necessary for solv-
ing large-scale real-world problems. Finally, BOA and
hBOA do not require any parameters, so they can be
easily used in practice without the need for understand-
ing their actual mechanics.

The work presented in this paper also provides several
important lessons for optimization researchers in and
outside genetic and evolutionary computation. First
of all, the paper outlines a principled approach to the
design of competent optimizers, where the focus is on
(1) scalability, (2) robustness, and (3) solution to well-
defined classes of problems. The paper shows that it is
possible to design optimizers that are robust and scal-
able, but still can solve broad classes of problems that
are likely to occur in the real world. Finally, the pa-
per presents optimization algorithms and optimization
problems that can be used to challenge newly designed
algorithms.
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