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Summary:
In recent few years expressive progress in the theory and practice of Estimation of
Distribution Algorithms (EDA) [1] has appeared, where the classical genetic
recombination operators are replaced by probability estimation and stochastic
sampling techniques. In this paper we identify some disadvantages of present
probabilistic models used in EDAs and propose more general and efficient model
for continuous optimization problems based on the decision trees. The new variant
of EDA is capable to solve mixed continuous-discrete optimization problems.
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1 Introduction

For the discrete optimization problems the Bayesian network [1] and its
decision graph refinement [2] are used in Estimation Distribution Algorithms as
the general models to encode the parameter dependencies.

For continuous domains there are several approaches used to discover and
encode the parameter dependencies – binary encoding [3,4], Gaussian networks
[5], Gaussian kernels and mixtures of Gaussians [6].

In the following chapter we show that all present models used for optimization
of continuous functions are either inaccurate or do not allow proper mixing of
building blocks.

In chapter 3 we proposed the usage of decision trees to remove the
disadvantages of present models. In our Mixed Bayesian Optimization Algorithm
(MBOA) we implemented the trees with mixed decision nodes, so MBOA is
suitable for both continuous and/or discrete optimization problems.



2 Present methods and approaches

In EDA individuals in the population are treated as vectors of instantiations of n
random variables Xi, each random variable represents one parameter of a solution

X = (X1, X2, … , Xn ) (1)

The goal of optimization is to find an optimal soluton X* from domain D such that

X* = arg max  fitness(X),   ∀ X∈D (2)

In case of discrete combinatorial problem all variables Xi are discrete. Each
generation the space of possible solutions is effectively sampled using the
Bayesian network (BN) [1], which encodes the conditional probabilities
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The Bayesian network is constructed in the incremental way - for each variable
Xi a large number of statistical tests is performed to form the set of “parent”
variables Pa(Xi) which significantly affect the value of variable Xi.

In the case of a continuous optimization problem it is possible to transform
each continuous parameter into binary parameters and use the Bayesian network
again. However, with the increasing precision of encoding the complexity of BN
grows exponentially. The other way of solving continuous optimization problem
by EDA is to let the parameters Xi be continuous (like in evolutionary strategies)
and find a proper model for this continuous domain.

The basic model is the Gaussian network [5], where the mean value mi of each
random variable Xi is affected by linear combination of “parent” values Xj. This
simple regression model is able to describe the fitness function with only one local
extreme (the shape of reliable sampling region is elliptical).

Instead of using one probability density function (PDF) it is possible to use
each solution as a source of elementary normal PDF - the Gaussian kernel [6]. It
seems this may improve the sampling accuracy, but in fact no linkage information
necessary for proper mixing of building blocks is provided. The Iterated Density
Estimation Evolutionary Algorithm (IDEA) [6] uses clustering strategy to divide
the samples into linear clusters and for each cluster one Gaussian network is used.
This is more general than usage of the single linear regression for the entire space
of parameters, but no mixing of building blocks between clusters is possible.

3 MBOA algorithm

In our approach we propose and implement the EDA algorithm based on the
decision trees. Binary decision trees have been successfully used in EDA [2] for
discrete optimization problems - with the Bayesian network. In our work we have
extra focused on non-binary problems.



3.1 CART model

From the area of data mining we adopted the idea of CART model [7]
(Classification and Regression Tree), which is usable also for continuous and
categorical splits. For each “target” random variable Xi we build one decision tree.
The split nodes of i-th decision tree are used to cut the domain of parent variables
Pa(Xi) into parts, where the variable Xi is more linear or predictable. We start
building the decision trees from empty trees and we recursively add the splitting
nodes until no splitting is favourable.

Function RecursiveSplitting(Population Pop,
TargetVariable Xi,
ListOfCandidateSplitVariables Pa)
: DecisionTreeNode

Begin
fTemp := EstimateElementaryPDF(Pop,Xi,Pa);
If “model is too detailed” then

return new LeafNode(fTemp);
For Each Variable Xj in Pa do

Ej := Find_optimal_split_on_Xj_with_respect_to_Xi;
ModelGain := Evaluate_the_ split_gain(“Xj≤Ej”, Xi);
Save the Xj and Ej with the highest ModelGain;

End for
Pop1 := SelectIndividuals (Pop,”Xj ≤ Ej”);
Pop2 := SelectIndividuals (Pop,”Xj > Ej”)
return new SplitNode(new SplitCondition(”Xj ≤ Ej”),

RecursiveSplitting(Pop1,Xi, Pa\{Xj}),
RecursiveSplitting(Pop2,Xi, Pa\{Xj}));

End;

The leaf nodes define the elementary models for obtaining the “target” variable
Xi. For continuous variables one-dimensional normal PDF is estimated and used as
the leaf. We are also able to use Gaussian kernels or the linear regression model
known from Gaussian network.

3.2 Metrics for model construction

In the RecursiveSplitting procedure the list of candidate split variables is given
in advance, which allows the future parallelization, see [8]. The step of split
condition finding and evaluation is essential. In the present version we use more
sophisticated metrics to find the optimal split boundary Ej*:
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We derived the equation (5) from the Bayes-Dirichlet metrics (BDe, see [9]),
meaning of symbols nleft,down , nleft,up ,  nright,down , nright,up is shown in Fig. 1.

requested   Ej parent Xj

target Xi

Ei

nleft,down=6 nright,down=2

nleft,up=1 nright,up=5

Fig. 1. All individuals in the population are classified into four groups according to
conditions “Xj ≤ Ej” and “Xi ≤ Ei”. The symbols nleft,down, nleft,up, nright,down, nright,up represent

number of individuals in each quadrant.

The next advantage of decision trees is the backward-compatibility with
discrete domains. For binary split nodes the split condition is straightforward
“Xj≤0”, so we can apply the equation (5) for Ej=0. Each leaf for binary target
determines the frequency of occurrence of value 1 in the part of population, which
fulfills the split-conditions corresponding to the path from the root.

Gaussian kernels

E1

m2,1

m2,2 X2=N(w2,2.X1+m2,2)

X2=N(w2,1.X1+m2,1)

X1 > E1
X2

X1

Fig. 2. The population precisely approximated by decision trees.

We are also able to optimize non-binary discrete problems in their natural
alphabetical encoding. In this case we use hillclimbing algorithm to split the set of



possible Xj values into left and right subset. The variable s in (5) goes through all
possible values of Xi instead of only two categories {up,down}.

The next advantage of MBOA is the utilization of RTR (Restricted Tournament
Replacement) proposed by Martin Pelikan in [10]. In the replacement stage each
new individuals competes with the Euclidean-nearest individual among 20
randomly selected individuals. This ensures better niching. As the next
improvement we utilized the fitness value in the same way as the continuous
parent variable - the population can be split according to certain fitness value into
more-homogenous regions to achieve better divergence and model accuracy.

4 Experimental results

In the experimental part we compared the efficiency of our approach with the
other mentioned EDA algorithms. First of all we proved the backward-
compatibility with the binary domain. We compared the performance of MBOA
with the Pelikan’s original simple BOA algorithm on several deceptive functions.

Table 1. Results for deceptive3 and trap5 function (see [2])- the average number of fitness
evaluations required to reach the global optima in 10 runs, with min. population size N.

Algorithm\Benchmark deceptive3 function, n=90 trap5 function, n=90
MBOA 43530 evaluations, N=3800 53280 evaluations, N=5500
Simple BOA 43510 evaluations, N=3800 54310 evaluations, N=5500

Secondly, we have used some continuous benchmarks to compare MBOA with
the best IDEA algorithms in [6]. IDEA1 uses non-clustered normal mixture of 10
PDFs, IDEA2 and IDEA5 use Euclidean 2-means clustering with normal mixtures
of 10 PDFs, IDEA3 uses Mahalanobis leader 3½ clustering with normal mixtures
of 10 PDFs, IDEA4 uses non-clustered normal mixture of 5 PDFs and IDEA6 uses
Mahalanobis leader 5 clustering with normal mixtures of 5 PDFs.

Table 2. Griewank function, problem size n=5, domain= <-5,5>5.

Algorithm Fitness evaluations to get the global optima
(avg. for 10 runs, 7-digit precision)

MBOA with univariate Gaussian leafs 19790, N=120
IDEA1 51832, N=1100
IDEA2 72552, N=1750
IDEA3 89718, N=2250

Table 3. Michalewicz function, n=5, domain= <0,π>5

Algorithm Fitness evaluations to get the global optima
(avg. for 10 runs, 7-digit precision)

MBOA with univariate Gaussian leafs 7690, N=120
IDEA4 28903, N=1300
IDEA5 16596, N=750
IDEA6 22118, N=1000



Thirdly, we tested the scalability of MBOA on continuous two-deceptive
function, see [3],[4] and we examined how the number of fitness evaluations
grows with the problem size.

Table 4. The scalability for continuous two-deceptive benchmark

Algorithm Two-deceptive function [3], 5-digit precision
MBOA with Gaussian-kernels leafs O(n1.79) (n=10-50, N=300-3500)
Simple BOA with fixed-width histogram
discretization, see [3]

O(n2.1)   (4 bins,  n=10-40, N=1000-7400)

Simple BOA with fixed-height histogram
discretization, see [3]

O(n2.1) (16 bins, n=10-30, N=3500-17000)

Fourthly, we prepared our own mixed continuous-discrete benchmark, where
the chromozome of length n=2l is composed of binary genes bi and continuous
genes ci. This benchmark is very sensitive to correctness of dependency metric –
mixed dependencies have to be discovered to find the global optimum.
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Table 5. The average number of evaluation for mixed benchmark

Problem size n=10 n=20 n=30 n=40 n=50
MBOA with
Gaussian-kernels leafs

23100
N=600

67800
N=1200

126000
N=1800

214800
N=2400

291000
N=3000

5 Conclusion and future work

In this paper we have identified the limitations of present probability models
[5],[6] and proposed more general and efficient model for continuous optimization
problems based on the decision trees. Decision trees are more general model than
Gaussian networks and more useful for building blocks evolution than mixtures of
Gaussians. Moreover, our approach is compatible with discrete domains, so we
introduce the new kind of EDA uniquely capable to solve mixed continuous-
discrete optimization problems.

The empirical results show that in the field of discrete optimization problems
our MBOA is backward-compatible with the original BOA algorithm and provides
similar results. The results for continuous Griewank and Michalewicz function
confirm our assumption that MBOA overcomes the IDEA approach [6].



On the two-deceptive continuous benchmark we showed that the scalability of
MBOA O(n1.79) is better than the scalability O(n2.1) of discretization approach [3]
based on histogram models. The MBOA was also able to solve our mixed
continuous-discrete hard benchmark. The results indicate that the main potential
of our algorithm lies in solving high-dimensional problems with stronger
parameter nonlinearities.
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