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Abstract

In this paper� an algorithm based on the
concepts of genetic algorithms that uses an
estimation of a probability distribution of
promising solutions in order to generate new
candidate solutions is proposed� To esti�
mate the distribution� techniques for model�
ing multivariate data by Bayesian networks
are used� The proposed algorithm identi�es�
reproduces and mixes building blocks up to
a speci�ed order� It is independent of the
ordering of the variables in the strings rep�
resenting the solutions� Moreover� prior in�
formation about the problem can be incor�
porated into the algorithm� However� prior
information is not essential� Preliminary ex�
periments show that the BOA outperforms
the simple genetic algorithm even on decom�
posable functions with tight building blocks
as a problem size grows�

� INTRODUCTION

Recently� there has been a growing interest in opti�
mization methods that explicitly model the good so�
lutions found so far and use the constructed model to
guide the further search �Baluja� �		
� Harik et al��
�		�� Muhlenbein � Paa�� �		�� Muhlenbein et al��
�		�� Pelikan � Muhlenbein� �			�� This line of re�
search in stochastic optimization was strongly moti�
vated by results achieved in the �eld of evolutionary
computation� However� the connection between these
two areas has sometimes been obscured� Moreover� the
capabilities of model building have often been insu��
ciently powerful to solve hard optimization problems�

The purpose of this paper is to introduce an algorithm
that uses techniques for estimating the joint distribu�

tion of multinomial data by Bayesian networks in or�
der to generate new solutions� The proposed algorithm
extends existing methods in order to solve more di��
cult classes of problems more e�ciently and reliably�
By covering interactions of higher order� the disrup�
tion of identi�ed partial solutions is prevented� Prior
information from various sources can be used� The
combination of information from the set of good so�
lutions and the prior information about a problem is
used to estimate the distribution� Preliminary experi�
ments with uniformly�scaled additively decomposable
problems with non�overlapping building blocks indi�
cate that the proposed algorithm is able to solve all
tested problems in close to linear time with respect to
the number of �tness evaluations until convergence�

In Section �� the background needed to understand
the motivation and basic principles of the discussed
methods is provided� In Section �� the Bayesian op�
timization algorithm �BOA� is introduced� In subse�
quent sections� the structure of Bayesian networks and
the techniques used in the BOA to construct the net�
work for a given data set and to use the constructed
network to generate new instances are described� The
results of the experiments are presented in Section ��
The conclusions are provided in Section ��

� BACKGROUND

Genetic algorithms �GAs� are optimization methods
loosely based on the mechanics of arti�cial selection
and genetic recombination operators� Most of the the�
ory of genetic algorithms deals with the so�called build�

ing blocks �BBs� �Goldberg� �	�	�� By building blocks�
partial solutions of a problem are meant� The ge�
netic algorithm implicitly manipulates a large number
of building blocks by mechanisms of selection and re�
combination� It reproduces and mixes building blocks�
However� a �xed mapping from the space of solutions
into the internal representation of solutions in the al�



gorithm and simple two�parent recombination opera�
tors soon showed to be insu�ciently powerful even for
problems that are composed of simpler partial sub�
problems� General� �xed� problem�independent re�
combination operators often break partial solutions
what can sometimes lead to losing these and converg�
ing to a local optimum� Two crucial factors of the GA
success�a proper growth and mixing of good building
blocks�are often not achieved �Thierens� �		��� Var�
ious attempts to prevent the disruption of important
building blocks have been done recently and are brie�y
discussed in the remainder of this section�

There are two major approaches to resolve the prob�
lem of building�block disruption� The �rst approach
is based on manipulating the representation of solu�
tions in the algorithm in order to make the interact�
ing components of partial solutions less likely to be
broken by recombination operators� Various reorder�
ing and mapping operators were used� However� re�
ordering operators are often too slow and lose the race
against selection� resulting in premature convergence
to low�quality solutions� Reordering is not su�ciently
powerful in order to ensure a proper mixing of partial
solutions before these are lost� This line of research
has resulted in algorithms which evolve the represen�
tation of a problem among individual solutions� e�g�
the messy genetic algorithm �mGA� �Goldberg et al��
�	�	�� the gene expression messy genetic algorithm
�GEMGA� �Kargupta� �		��� the linkage learning ge�
netic algorithm �LLGA� �Harik � Goldberg� �		��� or
the linkage identi�cation by non�linearity checking ge�
netic algorithm �LINC�GA� �Munetomo � Goldberg�
�		���

A di�erent way to cope with the disruption of partial
solutions is to change the basic principle of recombina�
tion� In the second approach� instead of implicit repro�
duction of important building blocks and their mixing
by selection and two�parent recombination operators�
new solutions are generated by using the information
extracted from the entire set of promising solutions�

Global information about the set of promising solu�
tions can be used to estimate their distribution and
new candidate solutions can be generated according
to this estimate� A general scheme of the algorithms
based on this principle is called the estimation of distri�
bution algorithm �EDA� �Muhlenbein � Paa�� �		���
In EDAs� better solutions are selected from an ini�
tially randomly generated population of solutions like
in the simple GA� The distribution of the selected set
of solutions is estimated� New solutions are generated
according to this estimate� The new solutions are then
added into the original population� replacing some of

the old ones� The process is repeated until the ter�
mination criteria are met� However� estimating the
distribution is not an easy task� There is a trade o�
between the accuracy of the estimation and its com�
putational cost�

The simplest way to estimate the distribution of
good solutions is to consider each variable in a
problem independently and generate new solutions
by only preserving the proportions of the values of
all variables independently of the remaining solu�
tions� This is the basic principle of the population
based incremental learning �PBIL� algorithm �Baluja�
�		
�� the compact genetic algorithm �cGA� �Harik
et al�� �		��� and the univariate marginal distribu�
tion algorithm �UMDA� �Muhlenbein � Paa�� �		���
There is theoretical evidence that the UMDA ap�
proximates the behavior of the simple GA with uni�
form crossover �Muhlenbein� �		��� It reproduces and
mixes the building blocks of order one very e�ciently�
The theory of UMDA based on the techniques of quan�
titative genetics can be found in Muhlenbein ��		���
Some analyses of PBIL can be found in Kvasnicka et al�
��		���

The PBIL� cGA� and UMDA algorithms work very well
for problems with no signi�cant interactions among
variables �Muhlenbein� �		�� Harik et al�� �		�� Pe�
likan � Muhlenbein� �			�� However� partial solu�
tions of order more than one are disrupted and there�
fore these algorithms experience a great di�culty to
solve problems with interactions among the variables�
First attempts to solve this problem were based on
covering some pairwise interactions� e�g� the incre�
mental algorithm using the so�called dependency trees
as a distribution estimate �Baluja � Davies� �		���
the population�based MIMIC algorithm using simple
chain distributions �De Bonet et al�� �		��� or the bi�
variate marginal distribution algorithm �BMDA� �Pe�
likan � Muhlenbein� �			�� In the algorithms based
on covering pairwise interactions� the reproduction of
building blocks of order one is guaranteed� Moreover�
the disruption of some important building blocks of
order two is prevented� Important building blocks of
order two are identi�ed using various statistical meth�
ods� Mixing of building blocks of order one and two is
guaranteed assuming the independence of the remain�
ing groups of variables�

However� covering only pairwise interactions has been
shown to be insu�cient to solve problems with interac�
tions of higher order e�ciently �Pelikan � Muhlenbein�
�			�� Covering pairwise interactions still does not
preserve higher order partial solutions� Moreover� in�
teractions of higher order do not necessarily imply



pairwise interactions that can be detected at the level
of partial solutions of order two�

In the factorized distribution algorithm �FDA�
�Muhlenbein et al�� �		��� a factorization of the distri�
bution is used for generating new solutions� The distri�
bution factorization is a conditional distribution con�
structed by analyzing the problem decomposition� The
FDA is capable of covering the interactions of higher
order and combining important partial solutions e�ec�
tively� It works very well on additively decomposable
problems� The theory of UMDA can be used in order
to estimate the time to convergence in the FDA�

However� the FDA requires the prior information
about the problem in the form of a problem decompo�
sition and its factorization� As an input� this algorithm
gets a complete or approximate information about the
structure of a problem� Unfortunately� the exact dis�
tribution factorization is often not available without
computationally expensive problem analysis� More�
over� the use of an approximate distribution according
to the current state of information represented by the
set of promising solutions can be very e�ective even if
it is not a valid distribution factorization� However�
by providing su�cient conditions for the distribution
estimate that ensure a fast and reliable convergence
on decomposable problems� the FDA is of great the�
oretical value� Moreover� for problems of which the
factorization of the distribution is known� the FDA is
a very powerful optimization tool�

The algorithm proposed in this paper is also capable of
covering higher order interactions� It uses techniques
from the �eld of modeling data by Bayesian networks
in order to estimate the joint distribution of promising
solutions� The class of distributions that are consid�
ered is identical to the class of conditional distribu�
tions used in the FDA� Therefore� the theory of the
FDA can be used in order to demonstrate the power
of the proposed algorithm to solve decomposable prob�
lems� However� unlike the FDA� our algorithm does
not require any prior information about the problem�
It discovers the structure of a problem on the �y� It
identi�es� reproduces and mixes building blocks up to
a speci�ed order very e�ciently�

In this paper� the solutions will be represented by bi�
nary strings of �xed length� However� the described
techniques can be easily extended for strings over any
�nite alphabet� String positions will be numbered se�
quentially from left to right� starting with the posi�
tion ��

� BAYESIAN OPTIMIZATION

ALGORITHM

This section introduces an algorithm that uses tech�
niques for modeling data by Bayesian networks to es�
timate the joint distribution of promising solutions
�strings�� This estimate is used to generate new can�
didate solutions� The proposed algorithm is called the
Bayesian optimization algorithm �BOA�� The BOA
covers both the UMDA as well as BMDA and extends
them to cover the interactions of higher order� The or�
der of interactions that will be taken into account can
be given as input to the algorithm� The combination
of prior information and the set of promising solutions
is used to estimate the distribution� Prior information
about the structure of a problem as well as the infor�
mation represented by the set of high�quality solutions
can be incorporated into the algorithm� The ratio be�
tween the prior information and the information ac�
quired during the run used to generate new solutions
can be controlled� The BOA �lls the gap between the
fully informed FDA and totally uninformed black�box
optimization methods� Prior information is not essen�
tial�

In the BOA� the �rst population of strings is gener�
ated at random� From the current population� the
better strings are selected� Any selection method can
be used� A Bayesian network that �ts the selected
set of strings is constructed� Any metric as a mea�
sure for quality of networks and any search algorithm
can be used to search over the networks in order to
maximize the value of the used metric� New strings
are generated using the joint distribution encoded by
the constructed network� The new strings are added
into the old population� replacing some of the old ones�
The pseudo�code of the BOA follows�

The Bayesian Optimization Algorithm �BOA�

��� set t� �

randomly generate initial population P ���

��� select a set of promising strings S�t� from P �t�

��� construct the network B using a chosen metric and
constraints

�
� generate a set of new strings O�t� according to the
joint distribution encoded by B

��� create a new population P �t��� by replacing some
strings from P �t� with O�t�

set t� t � �

��� if the termination criteria are not met� go to ���

In the following section� Bayesian networks and the



techniques for their construction and use will be de�
scribed�

� BAYESIAN NETWORKS

Bayesian networks �Howard � Matheson� �	��� Pearl�
�	��� are often used for modeling multinomial data
with both discrete and continuous variables� A
Bayesian network encodes the relationships between
the variables contained in the modeled data� It repre�
sents the structure of a problem� Bayesian networks
can be used to describe the data as well as to generate
new instances of the variables with similar properties
as those of given data� Each node in the network cor�
responds to one variable� By Xi� both the variable and
the node corresponding to this variable will be denoted
in this text� Each variable corresponds to one position
in strings representing the solutions �Xi corresponds
to the ith position in a string�� The relationship be�
tween two variables is represented by an edge between
the two corresponding nodes� The edges in Bayesian
networks can be either directed or undirected� In this
paper� only Bayesian networks represented by directed
acyclic graphs will be considered� The modeled data
sets will be de�ned within discrete domains�

Mathematically� an acyclic Bayesian network with di�
rected edges encodes a joint probability distribution�
This can be written as

p�X� �

n��Y
i��

p�Xij�Xi
�� ���

where X � �X�� � � � � Xn��� is a vector of variables�
�Xi

is the set of parents of Xi in the network �the set
of nodes from which there exists an edge to Xi� and
p�Xij�Xi

� is the conditional probability of Xi condi�
tioned on the variables �Xi

� This distribution can be
used to generate new instances using the marginal and
conditional probabilities in a modeled data set�

The following sections discuss how to learn the network
structure if this is not given by the user� and how to
use the network to generate new candidate solutions�

��	 CONSTRUCTING THE NETWORK

There are two basic components of the algorithms
for learning the network structure �Heckerman et al��
�		
�� The �rst one is a scoring metric and the sec�
ond one is a search procedure� A scoring metric is
a measure of how well the network models the data�
Prior knowledge about the problem can be incorpo�
rated into the metric as well� A search procedure is
used to explore the space of all possible networks in

order to �nd the one �or a set of networks� with the
value of a scoring metric as high as possible� The space
of networks can be reduced by constraint operators�
Commonly used constraints restrict the networks to
have at most k incoming edges into each node� This
number directly in�uences the complexity of both the
network construction as well as its use for generation
of new instances and the order of interactions that can
be covered by the class of networks restricted in this
way�

��	�	 Bayesian Dirichlet metric

As a measure of the quality of networks� the so�called
Bayesian Dirichlet �BD� metric �Heckerman et al��
�		
� can be used� This metric combines the prior
knowledge about the problem and the statistical data
from a given data set� The BD metric for a network
B given a data set D of size N � and the background
information �� denoted by p�D�Bj��� is de�ned as

p�D�Bj�� � p�Bj��
n��Y
i��

Y
�Xi

m���Xi
��

�m���Xi
� � m��Xi

���
�

Y
xi

�m��xi� �Xi
� � m�xi� �Xi

���

m��xi� �Xi
��

�

where p�Bj�� is the prior probability of the network
B� the product over �Xi

runs over all instances of the
parents of Xi and the product over xi runs over all
instances of Xi� By m��Xi

�� the number of instances in
D with variables �Xi

�the parents of Xi� instantiated
to �Xi

is denoted� When the set �Xi
is empty� there

is one instance of �Xi
and the number of instances

with �Xi
instantiated to this instance is set to N � By

m�xi� �Xi
�� we denote the number of instances in D

that have both Xi set to xi as well as �Xi
set to �Xi

�

By numbers m��xi� �Xi
� and p�Bj��� prior informa�

tion about the problem is incorporated into the metric�
The m��xi� �Xi

� stands for prior information about the
number of instances that have Xi set to xi and the set
of variables �Xi

is instantiated to �Xi
� The prior prob�

ability p�Bj�� of the network re�ects how the measured
network resembles the prior network� By using a prior
network� the prior information about the structure of
a problem is incorporated into the metric� The prior
network can be set to an empty network� when there
is no such information� In our implementation� we
set p�Bj�� � � for all networks� i�e� all networks are
treated equally�

The numbers m��xi� �Xi
� can be set in various ways�

They can be set according to the prior information the
user has about the problem� When there is no prior in�



formation� uninformative assignments can be used� In
the so�called K� metric� for instance� the m��xi� �Xi

�
coe�cients are all simply set to � �Heckerman et al��
�		
�� This assignment corresponds to having no prior
information about the problem� In the empirical part
of this paper we will use the K� metric�

Since the factorials in Equation � can grow to huge
numbers� usually a logarithm of the scoring metric is
used� The contribution of one node to the logarithm
of the metric can be computed in O��kN� steps where
k is the maximal number of incoming edges into each
node in the network and N is the size of the data
set �the number of instances�� The computation of an
increase of the logarithm of the value of the BD metric
for an edge addition� edge reversal� or an edge removal�
respectively� can be computed in time O��kN� since
the total sum contribution corresponding to the nodes
of which the set of parents has not changed remains
unchanged as well� Assuming that k is constant� we
get linear time complexity of the computation of both
the contribution of one node as well as the increase in
the metric for an edge addition O�N� with respect to
the size of the data set�

��	�
 Searching for a Good Network

In this section� the basic principles of algorithms that
can be used for searching over the networks in order to
maximize the value of a scoring metric are described�
Only the classes of networks with restricted number of
incoming edges denoted by k will be considered�

a� k � �

This case is trivial� An empty network is the best one
�and the only one possible��

b� k � 	

For k � �� there exists a polynomial algorithm for the
network construction �Heckerman et al�� �		
�� The
problem can be easily reduced to a special case of the
so�called maximal branching problem for which there
exists a polynomial algorithm �Edmonds� �	����

c� k � 	

For k � � the problem gets much more complicated�
Although for k � � there exists a polynomial algo�
rithm for �nding the best network� for k � � the prob�
lem of determining the best network with respect to
a given metric is NP�complete for most Bayesian and
non�Bayesian metrics �Heckerman et al�� �		
��

Various algorithms can be used in order to �nd a
good network� from a total enumeration to a blind
random search� Usually� due to their e�ectiveness in
this context� simple local search based methods are

used �Heckerman et al�� �		
�� A simple greedy algo�
rithm� local hill�climbing� or simulated annealing can
be used� Simple operations that can be performed on
a network include edge additions� edge reversals� and
edge removals� Each iteration� an operation that in�
creases the network the most is applied� Only opera�
tions that keep the network acyclic and with at most k
incoming edges into each of the nodes are allowed �i�e��
the operations that do not violate the constraints��
The algorithms can start with an empty network� the
best network with one incoming edge into each node
at maximum� or a randomly generated network�

In our implementation� we have used a simple greedy
algorithm with only edge additions allowed� The algo�
rithm starts with an empty network� The time com�
plexity of this algorithm can be computed using the
time complexity of a simple edge addition and the
number of edges that have to be processed at most�
With the BD metric� the overall time to construct
the network using the described greedy algorithm is
O�k�kn�N � kn��� Assuming that k is constant� we
get the overall time complexity O�n�N � n���

��
 GENERATING NEW INSTANCES

In this section� the generation of new instances using
a network B and the marginal frequencies for few sets
of variables in the modeled data set will be described�
New instances are generated using the joint distribu�
tion encoded by the network �see Equation ���

First� the conditional probabilities of each possible in�
stance of each variable given all possible instances of
its parents in a given data set are computed� The con�
ditional probabilities are used to generate each new
instance� Each iteration� the nodes whose parents are
already �xed are generated using the corresponding
conditional probabilities� This is repeated until the
values of all variables are generated� Since the net�
work is acyclic� it is easy to see that the algorithm is
de�ned well�

The time complexity of generating an instance of all
variables is bounded by O�kn� where n is the number
of variables� Assuming that k is constant� the overall
time complexity is O�n��

� DECOMPOSABLE FUNCTIONS

A function is additively decomposable of a certain or�
der if it can be written as the sum of simpler functions
de�ned over the subsets of variables� each of cardi�
nality less or equal than the order of the decomposi�
tion �Muhlenbein et al�� �		�� Pelikan � Muhlenbein�



�			�� The problems de�ned by this class of functions
can be decomposed into smaller subproblems� How�
ever� simple GAs experience a great di�culty to solve
these decomposable problems with deceptive building
blocks when these are not mapped tightly onto the
strings representing the solutions �Thierens� �		���

In general� the BOA with k � � can cover interac�
tions or order k � �� This actually does not mean
that all interactions in a problem that is order��k� ��
decomposable can be covered �e�g�� �D spin�glass sys�
tems �Muhlenbein et al�� �		���� There is no straight�
forward way to relate general decomposable prob�
lems and what are the necessary interactions to be
taken into account �or� what is the order of building
blocks�� By introducing overlapping among the sets
from the decomposition along with scaling of the con�
tributions of each of these sets according to some func�
tion of problem size� the problem becomes very com�
plex� Nevertheless� the class of distributions the BOA
uses is very powerful the decomposable problems with
either overlapping or non�overlapping building blocks
or a bounded order� This has been con�rmed by a
number of experiments with various test functions�

� EXPERIMENTS

The experiments were designed in order to show the
behavior of the proposed algorithm only on non�
overlapping decomposable problems with uniformly
scaled deceptive building blocks� For all problems� the
scalability of the proposed algorithm is investigated�
In the following sections� the functions of unitation
used in the experiments will be described and the re�
sults of the experiments will be presented�

�	 FUNCTIONS OF UNITATION

A function of unitation is a function whose value de�
pends only on the number of ones in a binary input
string� The function values for the strings with the
same number of ones are equal� Several functions of
unitation can be additively composed in order to form
a more complex function� Let us have a function of
unitation fk de�ned for strings of length k� Then� the
function additively composed of l functions fk is de�
�ned as

f�X� �
l��X
i��

fk�Si�� ���

where X is the set of n variables and Si for i �
f�� � � � � l � �g are subsets of k variables from X � Sets
Si can be either overlapping or non�overlapping and

they can be mapped onto a string �the inner repre�
sentation of a solution� so that the variables from one
set are either mapped close to each other or spread
throughout the whole string� Each variable will be re�
quired to contribute to the function through some of
the subfunction� A function composed in this fashion
is clearly additively decomposable of the order of the
subfunctions it was composed with�

A deceptive function of order �� denoted by
��deceptive� is de�ned as

f�deceptive�u� �

����
���

��	 if u � �
��� if u � �
� if u � �
� otherwise

���

where u is the number of one s in an input string�

A trap function of order �� denoted by trap��� is de�
�ned as

ftrap��u� �

�

� u if u � �
� otherwise

�
�

A bipolar deceptive function of order �� denoted by
��bipolar� is de�ned with the use of the ��deceptive
function as follows

f�bipolar�u� � f�deceptive�j�� uj� ���

�
 RESULTS OF THE EXPERIMENTS

For all problems� the average number of �tness eval�
uations until convergence in �� independent runs is
shown� For the ��deceptive and trap�� functions� the
population is said to have converged when the propor�
tion of some value on each position reaches 	�!� This
criterion of convergence is applicable only for prob�
lems with at most one global optimum and selection
schemes that do not force the algorithm to preserve
the diversity in a population �e�g� niching methods��
For the ��bipolar function� the population is said to
have converged when it contains over a half of opti�
mal solutions� For all algorithms� the population sizes
for all problem instances have been determined empiri�
cally as a minimal size so that the algorithms converge
to the optimum in all of �� independent runs� In all
runs� the truncation selection with � � ��! has been
used �the better half of the solutions is selected�� O��
spring replace the worse half of the old population�
The crossover rate for the simple GA has been empir�
ically determined for each problem with one problem
instance� In the simple GA� the best results have been
achieved with the probability of crossover ���!� The
probability of �ipping a single bit by mutation has
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been set to �!� In the BOA� no prior information but
the maximal order of interactions to be considered has
been incorporated into the algorithm�

In Figure �� the results for the ��deceptive function
are presented� In this function� the deceptive building
blocks are of order �� The building blocks are non�
overlapping and mapped tightly onto strings� There�
fore� one�point crossover is not likely to disrupt them�
The looser the building blocks would be� the worse the
simple GA would perform� Since the building blocks
are deceptive� the computational requirements of the
simple GA with uniform crossover and the BOA with
k � � �i�e�� the UMDA� grow exponentially and there�
fore we do not present the results for these algorithms�
Some results for BMDA can be found in Pelikan and
Muhlenbein ��			�� The BOA with k � � and the K�
metric performs the best of the compared algorithms
in terms of the number of functions evaluations until
successful convergence� The simple GA with one�point
crossover performs worse than the BOA with k � � as
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the problem size grows� For loose building blocks� the
simple GA with one�point crossover would require the
number of �tness evaluations growing exponentially
with the size of a problem �Thierens� �		��� On the
other hand� the BOA would perform the same since
it is independent of the variable ordering in a string�
The population sizes for the GA ranged from N � 
��
for n � �� to N � ���� for n � ���� The population
sizes for the BOA ranged from N � ���� for n � ��
to N � ���� for n � ����

In Figure �� the results for the trap�� function are
presented� The building blocks are non�overlapping
and they are again mapped tightly onto a string� The
results for this function are similar to those for the
��deceptive function� The population sizes for the GA
ranged from N � ��� for n � �� to N � ���� for
n � ���� The population sizes for the BOA ranged
from N � ���� for n � �� to N � ����� for n � ����

In Figure �� the results for the ��bipolar function are
presented� The results for this function are similar
to those for the ��deceptive function� In addition to
the faster convergence� the BOA discovers a number of
solutions out of totally �

n

� global optima of ��bipolar
function instead of converging into a single solution�
This e�ect could be further magni�ed by using niching
methods� The population sizes for the GA ranged from
N � ��� for n � �� to N � 
��� for n � ���� The
population sizes for the BOA ranged from N � 	��
for n � �� to N � ���� for n � ����

� CONCLUSIONS

The experiments have shown that the proposed algo�
rithm outperforms the simple GA even on decompos�
able problems with tight building blocks as the prob�



lem size grows� The gap between the proposed al�
gorithm and the simple GA would signi�cantly en�
large for problems with loose building blocks� For
loose mapping the time requirements of the simple
GA grow exponentially with the problem size� On
the other hand� the BOA is independent of the order�
ing of the variables in a string and therefore changing
this would not a�ect the performance of the algorithm�
The proposed algorithm works very well also for other
problems with highly overlapping building blocks� e�g�
spin�glasses� that are not discussed in this paper�
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