
Information Sciences 156 (2003) 147–171

www.elsevier.com/locate/ins
Getting the best of both worlds:
Discrete and continuous genetic

and evolutionary algorithms in concert

Martin Pelikan *, David E. Goldberg, Shigeyoshi Tsutsui

Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign,

104 S. Mathews Avenue, Urbana, IL 61801, USA

Received 15 March 2002; accepted 1 January 2003
Abstract

This paper describes an evolutionary algorithm for optimization of continuous

problems that combines advanced recombination techniques for discrete representations

with advanced mutation techniques for continuous representations. Discretization is

used to transform solutions between the discrete and continuous domains. The pro-

posed algorithm combines the strengths of purely continuous and purely discrete ap-

proaches and eliminates some of their disadvantages. The paper tests the proposed

algorithm with the recombination operator of the Bayesian optimization algorithm, r-
self-adaptive mutation, and three discretization methods. The empirical results on three

problems suggest that the tested variant of the algorithm scales up well on all tested

problems, indicating good scalability over a broad range of continuous problems.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Bayesian optimization algorithm; Evolution strategies; Adaptive mutation;

Linkage learning; Continuous optimization
* Corresponding author. Tel.: +1-217-333-2346; fax: +1-217-244-5705.

E-mail addresses: pelikan@illigal.ge.uiuc.edu (M. Pelikan), deg@illigal.ge.uiuc.edu (D.E.

Goldberg), shige@illigal.ge.uiuc.edu (S. Tsutsui).

0020-0255/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0020-0255(03)00174-9

mail to: pelikan@illigal.ge.uiuc.edu


148 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
1. Introduction

Genetic and evolutionary algorithms [7,16,30] evolve a population of can-

didate solutions to the given optimization problem with two types of operators:
selection and variation. Selection biases the search towards high-quality solu-

tions by making more copies of good solutions at the expense of their inferior

competitors. Variation operators generate new candidate solutions from the set

of promising solutions found so far. Two variation operators are common in

current genetic and evolutionary computation: recombination or crossover,

and mutation. Genetic algorithms (GAs) [7,16] focus primarily on recombi-

nation, which creates new candidate solutions by combining features of

promising solutions. On the other hand, the primary variation operator in
evolution strategies (ES) [30] is mutation, which creates new candidate solutions

by perturbing promising solutions slightly. Over the last few decades, there has

been a lot of progress in the design of powerful mutation and recombina-

tion operators. However, only little has been done to combine the most ad-

vanced results of these two lines of genetic and evolutionary computation

research.

The purpose of this paper is to combine the results of these two lines of

research by proposing a method that combines advanced recombination
techniques, which usually assume discrete representation of candidate solu-

tions, and advanced mutation techniques, which usually assume continuous

representation of candidate solutions. In particular, the Bayesian optimization

algorithm (BOA) based purely on recombination is combined with a mutation-

based ES with adaptive mutation strength. However, since BOA works only on

finite-alphabet strings of fixed-length while ES works directly with vectors of

real numbers, it is not possible to combine the two approaches without an

intermediate step in between. The problem of inconsistent representations is
overcome by using discretization to transform candidate solutions between the

two domains. The resulting approach can be seen both as the BOA with

adaptive discretization or a recombinative ES capable of linkage learning. The

same technique can be used to combine other competent GAs and ES

(sometimes with minor modifications). The approach can also be used to solve

problems that contain both continuous and discrete variables. We performed

experiments on a few simple continuous problems. The results suggest good

scalability and mixing capabilities of the algorithm.
Section 2 starts by introducing basic building blocks of the proposed al-

gorithm––the BOA and adaptive ES. The section continues by discussing the

use of discretization in genetic and evolutionary computation. Section 3 de-

scribes how a competent recombination-based GA for discrete representations

can be combined with a mutation-based approach for continuous representa-

tions. Section 4 describes our experimental methodology and provides empir-

ical results. Finally, Section 5 summarizes and concludes the paper.



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 149
2. Background

A general black-box optimization problem may be defined by specifying a

set of all potential solution to the problem and a procedure (computational or
other) for comparing the quality of alternative solutions. The task is to find the

solution of highest quality. Genetic and evolutionary algorithms approach

black-box optimization by evolving a population of candidate solutions to the

given problem. Using a population has several advantages over using a single

solution; for instance, using a population can eliminate noise in the procedure

for evaluating solution quality and enable simultaneous search of multiple

promising regions in the search space.

The first population of candidate solutions is usually generated at random
with uniform distribution over all potential solutions. Each iteration starts by

selecting a set of promising solutions from the current population of candidate

solutions based on their quality. New candidate solutions are then generated by

applying recombination and mutation to the set of selected solutions. The new

solutions replace some of the old ones (or all of them) and the next iteration is

executed unless the termination criteria are met. For example, the run can be

terminated when the population does not contain enough diversity to continue

effective search or allocated time (number of iterations or computational time)
has been exhausted.

This section starts by introducing two fundamentally different genetic and

evolutionary algorithms. First, it describes the BOA, which assumes that

candidate solutions are represented by fixed-length strings over a finite al-

phabet. BOA uses a powerful recombination method based on graphical

models and combines promising solutions found so far by using important

statistics extracted from the selected set of promising solutions. Next, the

section describes ES, which usually assume that candidate solutions are rep-
resented by fixed-length vectors of real numbers. The section describes several

advanced mutation operators, which are capable of adapting their parameters

based on the history of the search. The section ends by discussing discretization

in the context of genetic and evolutionary computation, which will later be

used to bridge the recombination-based discrete BOA and the mutation-based

continuous ES.
2.1. Bayesian optimization algorithm

There are many ways to use the set of selected solutions to create new

candidate solutions. Recombination-based GAs [7,16] generate new solutions

by combining bits and pieces of promising solutions. A simple GA [7] uses

problem-independent crossover operators for this purpose, such as uniform
crossover and n-point crossover. In GAs, mutation is usually used as only a



150 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
background operator capable of tuning near-optimal solutions at the end of

the run or introducing diversity into the population during the search.

Probabilistic model-building genetic algorithms (PMBGAs) [4,20,21,28] also

try to combine important parts of promising solutions but they approach re-
combination from a different perspective; they view the selected set of prom-

ising solutions as a sample from the region of the search space that we are

interested in. After selection, PMBGAs first estimate the probability distri-

bution of selected solutions and then use this estimate to generate new solu-

tions. The estimated distribution can encode information on both the

interactions among different variables in the problem as well as the superiority

of certain combinations of values of different subsets of variables. PMBGAs

are also called estimation of distribution algorithms (EDAs) [21] and iterated

density estimation algorithms (IDEAs) [4]. It is beyond the scope of this paper

to give an overview of PMBGAs. For a survey of PMBGAs, please see [Pelikan

et al. [28] and Larra~nnaga & Lozano [20]. In this paper, we focus on one of the

PMBGAs, the BOA [25], which recombines promising solutions by first

building a Bayesian network as a model of promising solutions and then

sampling the constructed network to generate new candidate solutions.

BOA evolves a population of candidate solutions and is applicable to

problems with solutions represented by fixed-length strings over a finite al-
phabet. The first population of solutions (strings) is usually generated at ran-

dom with uniform distribution, but the initial population can also be biased

according to some prior problem-specific knowledge [33,34]. From the current

population, promising solutions are selected using any popular selection

method (such as tournament and truncation selection). A Bayesian network

that fits the selected set of solutions is then constructed. Besides the set of good

solutions, prior information about the problem can be used in order to enhance

the estimation and, consequently, improve efficiency. New solutions are
generated according to the joint distribution encoded by the constructed net-

work. The new solutions are incorporated into the original population,

replacing some of the old ones or all of them. The pseudo-code of BOA is

shown in Fig. 1.

A Bayesian network [17,23] is a directed acyclic graph with nodes corre-

sponding to the variables in the modeled data set (in this case, to the positions

in solution strings) and edges corresponding to conditional dependencies. A

Bayesian network encodes a joint probability distribution
pðX Þ ¼
Yn
i¼1

pðXijPXiÞ; ð1Þ
where X ¼ ðX1; . . . ;XnÞ is a vector of all considered variables (string positions);

PXi is the set of parents of Xi in the network (the set of nodes from which there
exists an edge to Xi); and pðXijPXiÞ is the conditional probability of Xi given its



Fig. 1. The pseudo-code of the BOA.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 151
parents PXi . A directed edge relates the variables so that in the encoded dis-

tribution, the variable corresponding to the terminal node will be conditioned

on the variable corresponding to the initial node. More incoming edges into a

node result in a conditional probability of the corresponding variable with a
conjunctional condition containing all its parents. In addition to the structure,

each Bayesian network must also contain the table of conditional probabilities

pðXijPXiÞ for all i. The structure with a set of conditional probabilities ac-

cording to the structure fully specify the joint distribution encoded by the

network.

To construct the Bayesian network given a set of selected solutions, various

methods can be used. Most methods have two basic components: (1) a scoring

metric for evaluating the quality of competing network structures and (2) a
search procedure for searching the space of all network structures to find the

best one [15]. BOA can use any scoring metric and search algorithm. In this

paper, we use decision graphs to represent local distributions for all variables.

A simple greedy algorithm is used which splits a particular leaf in a decision

graph which improves the score of the network the most. Despite that the

greedy algorithm is not guaranteed to find a globally optimal network struc-

ture, it has proven to yield satisfactory structures over a broad range of

problems. A Bayesian–Dirichlet metric with prior probability of networks in-
versely proportional to their complexity is used. For more details, see [27,29].

BOA can solve problems of bounded difficulty––problems that can be de-

composed into subproblems of bounded order––quickly, accurately, and reli-

ably [24,27]. By learning a Bayesian network for the set of promising solutions,

BOA is capable of learning important interactions between the effects of dif-

ferent features of candidate solutions on their quality. Exploiting a problem

decomposition according to the discovered interactions then allows BOA to

simplify the problem and solve it in low-order polynomial time even without
prior problem-specific information about appropriate problem decomposition



152 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
or semantics of candidate solutions. To put it another way, BOA is capable of

learning what partial solutions should remain intact and what partial solutions

should be recombined; this is often called linkage learning [14]. There are other

approaches to linkage learning, see for example [9,13,14,19,22].

2.2. Evolution strategies

ES [30] use mutation as the driving force of the search and usually work on

solutions represented by vectors of real numbers. Therefore, much effort has

been put in developing powerful mutation methods for continuous domains. It
is beyond the scope of this paper to give a complete overview of all research in

this area; we will focus on only what is necessary for understanding this paper.

For more details on adaptive mutation and other aspects of ES, the interested

reader should refer to [1,3,11,30,35]. Along with mutation, the use of recom-

bination in ES has been investigated [1,2,35]. However, in ES recombination is

often seen as only a background operator that may improve the effects of

mutation [2], whereas in GAs recombination is a primary mechanism for the

exploration of the search space.
ES are usually referred to by the type and parameters of selection and other

operators they use. In this paper, we focus on ðlþ kÞ and ðl; kÞ ES. In both

ðlþ kÞ and ðl; kÞ ES, the initial population of size l is generated at random. In

the simplest variant of ES, the offspring population of k solutions is created by

adding a zero-mean normally distributed random number to each variable. We

describe some other mutation operators later in this section. In ðlþ kÞ ES, the
offspring are first added to the original population and l best solutions are

selected from the resulting population to form the population in the next
generation. In ðl; kÞ ES, l best solutions are selected from the offspring pop-

ulation to form the population in the next generation (parents do not partic-

ipate in the subsequent generation other than through their offspring).

A simple example is a (1+1) ES, where the population consists of one so-

lution. In each iteration, a new solution is first obtained by mutating the

parent. The new solution replaces the original one if it is better. The process is

repeated until termination criteria are met.

The standard deviation of the mutation (the mutation strength) can be either
fixed to a small constant or adapted as the search progresses. A fixed mutation

strength results in slower convergence either at the beginning or the end of the

run. Increasing the mutation strength makes the algorithm move to the opti-

mum faster at the beginning of the run but results in slowing down the final

stage––when most solutions are near the optimum––by making too big steps.

Decreasing the mutation strength improves the performance in the final stage

of the algorithm, but it slows down the initial stage by making too little steps

toward the optimum when this is still far away. This tradeoff is exploited by
adaptive mutation, which should ideally learn how big the mutation should be



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 153
to maximize the improvement in the current stage of the algorithm. The 1/5-

success rule [30] and r-self-adaptive ES [36] are examples of such adaptive

mutation strategies.

The 1/5-success rule is designed for (1+1) ES. It records the ratio of the
number of successful mutations (mutations leading to better solutions) to the

total number of mutations (mutations leading to worse solutions). By in-

creasing the mutation strength when the success rate is higher than 1/5 and

decreasing it when the success rate is lower than 1/5, near-optimal performance

for some simple unimodal functions can be achieved.

In r-self-adaptive ES, each candidate solution in the population has a vector

of standard deviations for mutating each variable in the solution attached to it.

Before mutating a solution, its mutation parameters are modified by using the
following rule:
r0 ¼ resNð0;1Þ; ð2Þ

where r is the original vector of standard deviations, r0 is the updated vector of

standard deviations, Nð0; 1Þ is a zero-mean Gaussian random variable with

variance 1, and s is a learning parameter. The above update rule assures that

the mutation strength is always positive, the expected outcome of the modifi-

cation without any selection pressure is neutral, and smaller modifications

occur more often than the larger ones [36]. Good mutations are filtered by a

standard selection mechanism because successful mutation parameters, which
lead to solutions of high quality, are going to participate in reproduction more

often than their inferior competitors. ES are robust to changes in the learning

parameter s. Schwefel [36] suggested that s should be inversely proportional to

the square root of the number of variables:
s / 1ffiffiffi
n

p : ð3Þ
The above equation was further investigated by Beyer [3] who computed an
optimal s for ð1; kÞ ES as
s ¼ c1;kffiffiffi
n

p ; ð4Þ
where c1;k is the so-called progress coefficient. For instance, for the sphere

model where the fitness is a sum of squares of all variables and the task is to

minimize the function, we get

Another example of adaptive mutation strength is a simple linear adaptive rule

[31]

c1;2 c1;5 c1;10 c1;50 c1;100
0.5642 1.1630 1.5388 2.2491 2.5076



154 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
r0
i ¼

rið1þ bÞ if u < 1
2
;

ri=ð1þ bÞ otherwise;

�
ð5Þ
where u is a uniform random number from (0,1), and b is a small constant from

(0,0.3].

In the above methods, mutations for different variables are independent.

This resembles uniform crossover in GAs, where each bit in two parent strings

is exchanged with a certain probability independently of the remaining bits. To

improve recombination by taking into account correlations between different

parameters, much effort has been put in designing recombination techniques
that can adapt to the problem and avoid disruption of correlated chunks of

solutions [6,10,13,14,18,26].

A similar approach can be used for adapting mutations where by extracting

the information from the history of the run one can learn not only how strong

the mutation for each variable should be, but also how the mutations for

different variables should interact. Schwefel [37] proposed to extend solutions

by including rotation angles in addition to standard deviations and to adapt

both the deviations as well as the rotation angles by ES. There are nðn� 1Þ=2
such angles where n is the total number of variables under consideration.

The generating set adaptation (GSA) method proposed by Hansen et al. [12]

is capable of adapting an arbitrary joint normal mutation distribution inde-

pendently of the used coordinate system. Some information about the history

of mutations is stored in the solutions and this is subsequently used to compute

the covariance matrix which determines the promising mutation distribution.

The mutation distribution is a zero-mean multivariate normal distribution.

Independent mutations can thus be seen as a special case of this algorithm
when all non-diagonal elements of the covariance matrix are equal to zero. The

use of covariances allows the algorithm to be invariant to the rotation and any

other linear transformation of the coordinate system. Covariance matrix ad-

aptation (CMA) [11] improved some of the properties of the GSA to adapt

covariance matrix and a global mutation step better.

Even though recombination has been used in ES since the early works in this

area, it has been seen as only a minor operator [2]. For recombination in ES, a

variant of uniform crossover is usually used. For each new solution, a subset of
the selected set of promising solutions is first chosen at random. The size of

the selected subset determines the strength of recombination and can range

from two solutions (weakest recombination) to the entire parent population

(strongest recombination). For the value of each variable in the new solution, a

random solution is then picked from the selected subset and the corresponding

value is copied from that solution.

The final effect of such recombination is very similar to the univariate

marginal distribution algorithm (UMDA) [21] for fixed-length discrete strings
where values at each position are shuffled in the parent population. Similarly as



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 155
in discrete GAs, using such strong recombination can yield to a significant

decrease in performance for multimodal problems with interactions among

variables. It is important to learn what pieces of solutions should be combined

to preserve important partial solutions and combine them effectively.
When using recombination together with adaptive mutation, one must copy

not only the value of each variable but also corresponding mutation strengths

or the histories of past mutations on this variable. Since this information is

associated with each variable, no major modifications are required. One can

also use a separate recombination on the mutation parameters [36]. Using

recombination and selection schemes from GAs in ES has been also investi-

gated [38].

ES with adaptive mutation are adept at local search. However, without
powerful recombination, ES are capable of only local search. So why not in-

corporate advanced recombination-based methods such as BOA into ES with

adaptive mutation? This idea seems tantalizing; however, advanced recombi-

nation techniques capable of linkage learning usually assume discrete repre-

sentation of candidate solutions, whereas ES work primarily on vectors of real

numbers. Section 3 overcomes this problem of inconsistent representations by

using discretization to transform continuous solutions into the discrete domain

and vice versa. But first, the next section discusses the use of discretization in
genetic and evolutionary algorithms.

2.3. Discretization

Discretization is used in many fields of science to transform problems from

the continuous domain into the discrete one in order to simulate complex
systems, solve differential equations, analyze materials, fit probability distri-

butions, and so forth. Discretization often reduces the complexity of a problem

and makes intractable problems tractable.

In genetic and evolutionary computation, discretization has often been used

to first transform continuous solutions into binary strings and then apply the

algorithm working in the discrete domain to the transformed problem. A so-

lution found by solving the discrete problem can then be transformed back

into the continuous domain and either taken as is or further optimized by a
local searcher such as conjugate gradient and simulated annealing. There are

several advantages and disadvantages of discretizing a continuous problem

and solving the resulting discrete problem instead [8]. Discrete solutions im-

prove implicit parallelism of GAs and allow them to process more partial

solutions with the same amount of resources. Moreover, the discrete space is

finite and thus it is easier to guarantee that the optimal solution in this space is

found and that we supply enough information for the optimization to succeed.

On the other hand, locality of the problem landscape [32] might suffer by
discretization and small changes to a continuous solution could lead to large



156 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
changes in its discrete form. Consequently, it would become difficult to

guarantee the effects of mutation and other similarity-based operators of ge-

netic and evolutionary search (including recombination), which manipulate

discrete solutions but attempt to solve the continuous problem. Additionally,
one must know the range of each variable to discretize it and the resulting

binary strings may be prohibitively long for large problems. Finally, the ac-

curacy of discrete algorithms is limited by the resolution of the discretization

used.

A typical way of discretizing continuous solutions in GAs is to divide the

range of each variable into ð2k � 1Þ intervals of equal width [7] and allow the

value of each variable to lie only on one of the boundary points of these in-

tervals. To encode each continuous variable in this case, k bits are needed, and
a string encoding n continuous variables thus contains nk bits. Note that in-

creasing k by 1 refines the discretization by a factor of about 2. For many

problems only a couple of bits (for example, k ¼ 5) are sufficient to get a so-

lution near the optimum. In general, the number of bits that should be allo-

cated to encode each continuous variable depends mainly on the ruggedness of

the problem landscape, because the quality of solutions in each bin should be

similar. Local optimization methods can then be used to refine the final solu-

tions to get a more accurate result.
A different way of using histograms in evolutionary algorithms for contin-

uous domains is to use histograms as a tool for estimating the distribution of

promising points within the PMBGA framework. The created model can then

be used to generate new points. Here the points are allowed to lie within the

intervals and not only on their boundaries, what can lead to further im-

provement of the final solutions. Several continuous PMBGAs that use his-

tograms to estimate a univariate distribution where all variables are processed

independently have been proposed recently [4,5,39]. Using equal-width histo-
grams has been investigated in [4,5,39]. Equal-height histograms have been

investigated in [5,39]. Decision trees and other supervised discretization

methods have been investigated in [5].

A number of different discretization techniques are frequently used in ma-

chine learning, statistics, and other fields. Equal-height histograms, decision

trees, and clustering algorithms are examples of such methods. All these

methods have the same important characteristic––they map a single continuous

variable or a group of variables into a finite set of symbols. We discuss some of
these methods in the following.
2.3.1. Fixed-width histograms

A fixed-width histogram divides the interval for a variable into k equal-

width bins (subintervals). Let us denote the entire interval by ½a; bÞ. Then, the
interval corresponding to the ith bin is given by



f

x(a) x

f

(b)

Fig. 2. A histogram divides the interval into a number of subintervals (bins). In a fixed-width

histogram, the width of all bins is equal, while the number of points in each bin can vary. On the

other hand, in a fixed-height histogram, the bins are located so that the number of points in each

bin is the same, while the width of bins can vary. (a) Fixed-width histogram and (b) fixed-height

histogram.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 157
a
�

þ ði� 1Þðb� aÞ
k

; aþ iðb� aÞ
k

�
;

where i 2 f1; . . . ; kg. An example of a fixed-width histogram is shown in Fig.

2a. A primary disadvantage of fixing the width of each bin is that if points are

concentrated in a couple of small regions, only a couple of bins are nonempty.
The amount of information encoded by a histogram can therefore be much

lower than allowed by the specified number of bins. Fixed-width histograms

are also sensitive to outliers and one or a few points far away from the rest can

significantly decrease the amount of information captured by the histogram.

2.3.2. Fixed-height histograms

A fixed-height histogram divides the interval for a variable into k bins of

equal frequencies; that means, that there are the same number of points in each

bin.

An example of a fixed-height histogram is shown in Fig. 2b. A primary

advantage of using fixed-height histograms as opposed to fixed-width ones is

that in fixed-height histograms the density of bins (and the accuracy of dis-

cretization) is increased in dense regions. If the points are concentrated in a

couple of regions, the density of bins in each of these regions is quite high and
the histogram often preserves more information contained in the original

continuous set of points.

2.3.3. k-means clustering

In k-means clustering, each cluster is specified by its center. Initially, k
centers (where k is given) are generated at random and each point is assigned to

its nearest center. Subsequently, each center is recalculated to be the mean of
the points assigned to it. All points are then again assigned to their nearest



Fig. 3. k-means clustering starts with k random centers (displayed as empty circles). In each iter-

ation, each point (showed as a dot) is assigned to its nearest center, and each center is moved to the

mean of the points assigned to it. The process is repeated until no points change their location after

recalculating the centers and reassigning the points. Final locations of the centers are showed as

filled circles.

158 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
centers and the process of recalculating the centers and reassigning the points is

repeated until no points change their location after updating the centers. The
pseudo-code of k-means clustering algorithm follows:

(1) Generate k centers ci at random.

(2) Assign each point xi to the nearest center.

(3) Assign each center to the centroid of the points assigned to it.

(4) If point locations have changed in step 2, go to 2.

(5) Return the cluster centers and point locations.

An example of k-means clustering in two dimensions is shown in Fig. 3.
3. Adaptive discrete recombination + adaptive continuous mutation

The last section discussed techniques for adaptive recombination in the

discrete domain as well as those that can adapt mutation parameters in the
continuous domain. How can these two classes of adaptive variation operators

be combined to get the best of both worlds and adapt both recombination as

well as mutation? This section describes how to incorporate adaptive recom-

bination techniques from GAs and adaptive mutation techniques from ES into

one population-based optimization algorithm. The proposed algorithm is vi-

sualized in Fig. 4. The remainder of this section provides a detailed description

of the algorithm.

The algorithm evolves a population of continuous solutions. The first
population is generated at random. From the current population, promising



Done?Adaptive Mutation

Initialization

Discretization

Selection

Recombination
BOA

Finish

_

+

Fig. 4. The algorithm.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 159
solutions are first selected. The processing of the promising solutions has four

major phases:

(1) Discretize the selected promising solutions.

(2) Recombine the resulting discrete solutions to create new discrete solutions.
(3) Map the new discrete solutions back in the continuous domain.

(4) Mutate the resulting continuous solutions and update their mutation pa-

rameters.

In the first phase, the promising solutions are discretized by mapping each

variable independently into one out of a finite number of categories. Let us

denote the number of categories (bins) for the ith variable by ci. There are two
bounding approaches to representing the resulting discrete population. The

first approach is to use binary strings and dlog2 cie bits for each variable. The
second approach is to use alphabet of higher cardinality so that only one

symbol is used to represent each variable. The ith letter (symbol) in the discrete

string could then obtain ci values. Of course, there are many ways between the

two extremes. Binary representation results in more possibilities to combine the

strings. On the other hand, higher cardinality alphabets result in shorter so-

lutions. Note that discrete solutions do not contain any information about past

mutations or the current values of mutation parameters; this information will

be extracted from the original set of promising solutions after recombination.
In the second phase, an adaptive discrete recombination technique––such as

Bayesian-network recombination of BOA––is applied to the population of

discrete solutions to generate new candidate discrete solutions. For instance,

recombination of BOA would proceed by first building a Bayesian network

that fits the set of promising discrete solutions and then sampling the built

network to generate new solutions.

In the third phase, the resulting set of discrete solutions (after recombina-

tion) is mapped back into the continuous domain. However, unlike in the
approaches discussed earlier, new points are not generated uniformly within



160 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
the boundaries of categories for each variable or on the boundaries only. In-

stead, the original points within each category are used. How is this done? Note

that each discrete string determines a category (bin) for each variable. To

‘‘undiscretize’’ each variable of a particular string, a random solution in the
original set of promising solutions that is consistent with the encoded category

for the variable is first selected. The value of the considered variable is then

extracted from that solution along with its standard deviation, history of

mutations or other data required by adaptive mutation.

In the fourth phase, the mutation parameters of each solution are updated

using an adaptive strategy of choice, and the solution is mutated. For instance,

r-self-adaptive mutation would proceed by first mutating the vector of stan-

dard deviations according to Eq. (2) and then mutating each variable by adding
a random number generated by a zero-mean normal distribution with the

deviation specified in the attached vector of standard deviations.

As a simple example of mapping discrete solutions back into the continuous

domain, let us assume we use an equal-width histogram with only two cate-

gories for each variable. That means that a binary string determines whether

each variable is in the upper or lower half of its range. Given a binary string, we

look at the value of each of its bits. If the value is 0(1), we randomly pick a

solution from the set of promising continuous solutions whose value of the
considered variable is in the lower (upper) half of the domain. The value of the

considered variable in that solution is then copied to the newly created con-

tinuous solution (along with its past mutations or other information required

for adapting mutation parameters). This is done for each variable indepen-

dently. Finally, the created continuous solution is mutated and its mutation

parameters are updated.

The newly generated solutions then replace the original population or its

part. An elitist replacement, which preserves superior solutions from both the
old and new populations of candidate solutions, can be used to make the runs

more stable. Furthermore, niching can be incorporated to maintain useful

diversity in the population.

Example: Let us use an example to clarify the method for equal-width

histograms with two bins and r-self-adaptive mutation. There are two con-

tinuous variables, both in range [0,10]. The set of promising solutions selected

from the current population with the mutation strengths consists of two so-

lutions: i1 ¼ ððX0 ¼ 1; r ¼ 0:05Þ; ðX1 ¼ 7; r ¼ 0:01ÞÞ and i2 ¼ ððX0 ¼ 8; r ¼
0:02Þ; ðX1 ¼ 6; r ¼ 0:04ÞÞ. Two equal-width bins for each variable correspond

to intervals [0,5], and (5,10]. The strings are thus discretized into binary strings

i�1 ¼ 01 and i�2 ¼ 11. Let us say that recombination results in the same

two strings 01 and 11. The value of X0 in the first offspring solution 01

must thus be copied from a solution that has the value of the first variable

in the lower bin and the value of X1 is picked from a solution which has

the second value in the upper bin. One of the possible outcomes is



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 161
ððX0 ¼ 1; r ¼ 0:05Þ; ðX1 ¼ 6; r ¼ 0:04ÞÞ, where the first variable is picked from

solution i1 and the second variable is picked from the solution i2. Analogously,

one possible outcome of undiscretizing the second new solution 11 is ððX0 ¼
8; r ¼ 0:02Þ; ðX1 ¼ 7; r ¼ 0:01ÞÞ. Next, the mutation strengths in the resulting
solutions are updated using r-self-adaptive rule and the mutation with the

corresponding deviation is applied to both offspring solutions.

Various algorithms can be used for discretization, recombination, and

mutation. Due to our recent successful applications of BOA to many discrete

problems, we use the recombination from BOA in our experiments. To adapt

mutation, we use r-self-adaptive mutation. To discretize continuous solutions,

we use three discretization schemes: (1) equal-height histograms, (2) equal-

width histograms, and (3) k-means clustering, but any other method that maps
real numbers into a finite number of categories can be used. That means that

any popular discretization, classification, and clustering technique can be used.

Using more advanced techniques should further improve the performance. For

a discussion of some interesting alternatives, please see [5].
4. Experiments

This section describes the test functions, discusses the experimental meth-

odology, and presents the empirical results.

4.1. Test problems

We have tested the algorithm on three test functions: (1) the two-peak

function, (2) the deceptive function, and (3) Schwefel’s function [36]. All test

functions are created by concatenating basis functions of a small order and the

overall fitness is equal to the sum of all basis functions.

An n-dimensional two-peak function is given by
two-peaksðx0; . . . ; xn�1Þ ¼
Xn�1

i¼0

ftwo-peaksðxiÞ;
where xi 2 ð0; 1Þ, and ftwo-peaks is defined as
ftwo-peaksðxÞ ¼
0:5ð1þ cosð10pðx� 0:1ÞÞÞ if x < 0:2;
0:45ð1þ cosð2:5pðx� 0:6ÞÞÞ otherwise:

�

The task is to maximize the function. Fig. 5 shows a graph of the two-peak

function in one and two dimensions. Note that each basis function has one

local and one global optimum, yielding 2n optima for an n-dimensional two-
peak function, out of which only one optimum is global. Furthermore, local

optima are much wider than the global one. Two-peak functions are practically



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f tw
o-

pe
ak

s
(x

)

(a)

0

0.5

1

0

0.5

1

0

0.5

1

1.5

2

x
1

x
2

T
w

o-
P

ea
ks

(x
1, x

2)

(b)

Fig. 5. Two-peaks function in one and two dimensions: (a) one dimension and (b) two dimension.

162 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
unsolvable by mutation only, because the chances of hitting the attractor

around the global optimum decrease exponentially with the size of the prob-

lem. On the other hand, recombination allows fast and reliable solution of two-

peak functions by exploiting their decomposition and processing many partial

solutions simultaneously. In this case, simple uniform crossover and basically

any other common recombination operator should be sufficient to achieve low-
order polynomial performance.

The deceptive function is composed of two-dimensional deceptive functions:
deceptiveðx0; . . . ; xn�1Þ ¼
Xn=2
i¼0

fdecðx2i; x2iþ1Þ;
where xi 2 ð0; 1Þ, and fdeceptive is defined as
fdecðx; yÞ ¼
0:8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

2

r
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

2

r
6 0:8;

5� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

2

r
otherwise:

8>>><
>>>:
The task is to maximize the function. Fig. 6 shows a graph of the deceptive

function in two dimensions. The deceptive function has 2n=2 optima, out of

which only one is global. Deceptive functions cannot be efficiently solved by

mutation only; however, an arbitrary recombination operator will not work in
this case either. Here it is necessary that we learn the linkage between pairs of

variables that contribute to the fitness through the same basis function. Re-

combination should prevent disruption of order-two partial solutions corre-

sponding to these pairs of variables. If the variables from each basis function

are treated independently (as in uniform crossover), partial solutions near the

global attractor will vanish and the search will progress toward one of the local

optima. Yet another important feature that makes deceptive functions difficult

is that the global optimum is isolated and the attractor around it is relatively
small.



0

0.5

1 0

0.5

10

0.2

0.4

0.6

0.8

1

x
1x

2

de
ce

pt
iv

e(
x 1, x

2)

Fig. 6. A two-dimensional deceptive function.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 163
Schwefel’s function [36] is defined as
Schwefel ¼ �
Xn�1

i¼0

ððx0 � x2i Þ
2 þ ðxi � 1Þ2Þ; ð6Þ
where xi 2 ð�10; 10Þ. The task is to minimize the function. See Fig. 7 for a

graph of Schwefel’s function in two dimensions. Schwefel’s function contains
one global optimum, where all variables are equal to 1:0. Since Schwefel’s

function is unimodal and the gradient in any point leads toward the optimum,

it should be easy to solve this function using mutation only.

The purpose of selecting the above test functions is to examine the behavior

of the proposed algorithm on three different types of problems. The first two

problems––the two-peak and deceptive functions––necessitate the use of ef-

fective recombination, whereas the last problem––Schwefel’s function––can be
−10
−5

0
5

10

−10

0

10
0

0.5

1

1.5

2

2.5
x 10

4

x
1

x
2

sc
hw

ef
el

(x
1, x

2)

Fig. 7. Two-dimensional Schwefel’s function.



164 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
solved with mutation only. The two-peak function can be solved by using

practically any recombination operator, whereas the deceptive function re-

quires recombination capable of linkage learning. Good scalability for tested

problems should therefore imply good scalability for a wide range of different
problems, from problems that can be solved by mutation only, through

problems that require recombination, to problems that require recombination

capable of linkage learning.
4.2. Experimental methodology

We analyzed the scalability of several variants of the proposed algorithm.

All variants use discrete recombination of BOA with decision graphs and r-
self-adaptive mutation. r-self-adaptive mutation uses s ¼ 4=

ffiffiffi
n

p
; the numerator

of the expression for s was chosen according to our experience, whereas the

denominator was set as suggested by Schwefel [36]. Three techniques were used
for discretization: (1) fixed-width histograms, (2) fixed-height histograms, and

(3) k-means clustering. The total number of categories or bins for each variable

was set to 4, 8, and 16 (corresponding to 2, 3, and 4 bits per continuous

variable).

Binary tournament selection with replacement was used in all experiments.

Binary tournament selection selects each new solution in two steps: select a

random pair of candidate solutions, and pick the winner. The two steps of

tournament selection are repeated until enough promising solutions have been
selected. An elitist replacement scheme was used that replaces the worst half of

the original population by newly generated candidate solutions.

For each problem size, we performed 30 independent runs with an optimal

population size, which was determined empirically for each algorithm and

problem size to find any solution whose Euclidean distance from the optimum

was at most 0.01 in all 30 runs. The performance was measured by an average

number of fitness evaluations to reach such a solution.
4.3. Results

This section presents and discusses empirical results. It starts by discussing

the two-peak function, and continues with the deceptive and Schwefel’s func-
tions.

As mentioned above, the two-peak function is difficult to solve with muta-

tion only. Fig. 8 supports this claim and indicates that the number of evalu-

ations grows exponentially with the problem size. However, the two-peak

function can be solved efficiently if recombination (with or without linkage

learning) is used.



6 8 10 12 14 16

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

σ−self−adaptive ES without recombination

Fig. 8. Performance of a r-self-adaptive strategy without crossover on the two-peak function.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 165
Fig. 9 shows the number of evaluations required for solving the two-max

problem with BOA with decision graphs combined with a r-self-adaptive
mutation using fixed-height histograms, fixed-width histograms, and k-means

clustering for discretization. The number of bins in each case is set to 4 (2 bits

per variable) and 8 (3 bits per variable). In all cases, the results indicate sub-

quadratic growth of the number of evaluations with respect to the problem size

(from Oðn1:34Þ to Oðn1:71Þ).
The deceptive function is also extremely difficult to solve with mutation

only. However, in this case, using crossover without linkage learning is in-

sufficiently powerful to simplify the problem as well. Fig. 10 supports these

claims and indicates that the number of evaluations grows exponentially with

the problem size with both no crossover and uniform crossover (which fre-

quently disrupts linkage).

Fig. 11 shows the number of evaluations required for solving the deceptive

problem with BOA with decision graphs combined with a r-self-adaptive
mutation using fixed-height histograms, fixed-width histograms, and k-means

clustering for discretization. For the discretization using fixed-weight histo-

grams, the number of bins is again set to 4 and 8. However, for the discreti-

zation based on fixed-height histograms, good results are obtained only after

increasing the number of bins to 16. For k-means clustering, the number of

bins is increased as well and 8 clusters were used for each variable. In all cases,

the number of evaluations appears to grow near-quadratically with the prob-

lem size (from Oðn1:81Þ to Oðn2:27Þ).
As mentioned earlier in this paper, Schwefel’s function can be solved by

using mutation only. Nonetheless, using recombination can be beneficial even

when mutation can solve the problem alone [2]. Fig. 12 shows the number of



10 20 30 40 50 60 100

10
4

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FHH, 4 bins)
O(n1.34 )

(a)
10 20 30 40 50 60 100

10
4

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FHH, 8 bins)
O(n1.36 )

(b)

10 20 30 40 50

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FWH, 4 bins)
O(n1.71 )

(c)
10 20 30 40 50

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns
BOA (adapt. mut., FWH, 8 bins)
O(n1.50 )

(d)

10 20 30 40

10
4

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., k means, k=4)
O(n1.58 )

(e)
10 20 30 40 50 60

10
4

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., k means, k=8)
O(n1.61 )

(f )

Fig. 9. Scalability of BOA with decision graphs combined with a r-self-adaptive mutation on the

two-peak function for three different discretization methods: (a) fixed-height histograms, 4 bins; (b)

fixed-height histograms, 8 bins; (c) fixed-width histograms, 4 bins; (d) fixed-width histograms, 8

bins; (e) k-means clustering, 4 clusters; (f) k-means clustering, 8 clusters.

166 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
evaluations required for solving Schwefel’s function for decision-graph BOA
combined with a r-self-adaptive mutation using fixed-height histograms, fixed-

width histograms, and k-means clustering for discretization. The number of



4 6 8 10
10

2

10
3

10
4

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

σ−self−adaptive ES without recombination

(a)
4 6 8 10

10
3

10
4

10
5

10
6

10
7

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

σ−self−adaptive ES with uniform crossover

(b)

Fig. 10. Performance of a r-self-adaptive ES with mutation only and that with uniform crossover

and mutation on the deceptive function: (a) no crossover and (b) uniform crossover.

10 14 20 24 30 40

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FWH, 4 bins)
O(n2.08 )

(a)
10 14 20 24 30 40

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FWH, 8 bins)
O(n2.10 )

(b)

10 20 30 40 50

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FHH, 16 bins)
O(n1.81 )

(c)
10 16 20 26 30 40

10
4

10
5

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., k means, k=8)
O(n2.27 )

(d)

Fig. 11. Scalability of BOA with decision graphs combined with a r-self-adaptive mutation on the

deceptive function for three different discretization methods: (a) fixed-width histograms, 4 bins; (b)

fixed-width histograms, 8 bins; (c) fixed-height histograms, 16 bins; (d) k-means clustering, 8

clusters.

M. Pelikan et al. / Information Sciences 156 (2003) 147–171 167



10 20 30 40 50

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FHH, 4 bins)
O(n2.34 )

(a)
10 20 30 40 50

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FHH, 8 bins)
O(n2.72 )

(b)

10 20 30 40 50

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., FWH, 4 bins)
O(n1.78 )

(c)
10 20 30 40 50

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns
BOA (adapt. mut., FWH, 8 bins)
O(n2.17 )

(d)

10 20 30
10

5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., k means, k=4)
O(n2.00 )

(e)
10 20 30 40

10
5

10
6

Problem Size

N
um

be
r 

of
 E

va
lu

at
io

ns

BOA (adapt. mut., k means, k=8)
O(n2.17 )

(f )

Fig. 12. Scalability of BOA with decision graphs combined with a r-self-adaptive mutation on

Schwefel’s function for three different discretization methods: (a) fixed-height histograms, 4 bins;

(b) fixed-height histograms, 8 bins; (c) fixed-width histograms, 4 bins; (d) fixed-width histograms, 8

bins; (e) k-means clustering, 4 clusters; (f) k-means clustering, 8 clusters.

168 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
bins in each case is set to 4 (2 bits per variable) and 8 (3 bits per variable). In all

cases, the results indicate low-order polynomial growth of the number of

evaluations with respect to the problem size (from Oðn1:78Þ to Oðn2:71Þ).



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 169
5. Summary and conclusions

This paper described an evolutionary algorithm that combined advanced

recombination techniques for discrete representations with advanced mutation
techniques for continuous representations. Discretization was used to trans-

form solutions between the two representations. The paper tested the proposed

algorithm on three problems and the results indicated good scalability of the

algorithm over a broad range of continuous problems.

There are several advantages of the proposed algorithm over homogeneous

approaches that use either purely discrete or purely continuous variation op-

erators. First of all, the accuracy of the proposed algorithm is not limited by

the choice of the discretization technique and its parameters and the search can
proceed even with only one category per variable. As a consequence of this, the

number of bits per continuous variable can be significantly lower than that

used in purely discrete approaches. Finally, the method allows the use of most

advanced techniques for adaptive mutation and adaptive recombination to-

gether.

There are many ways to use the presented method. First, various recombi-

nation operators can be used in place of the operator adopted from BOA.

Second, discretization can be improved by using other supervised or unsu-
pervised classification methods. Finally, more advanced methods for adaptive

mutation can be incorporated in place of r-self-adaptive mutation.
Acknowledgements

The authors would like to thank Kumara Sastry, Erick Cant�uu-Paz, and
Franz Rothlauf for many useful discussions and valuable comments to the

paper.

This work was sponsored by the Air Force Office of Scientific Research, Air

Force Materiel Command, USAF, under grant F49620-00-1-0163. Research

funding for this work was also provided by the National Science Foundation

under grant DMI-9908252. Support was also provided by a grant from the US

Army Research Laboratory under the Federated Laboratory Program, Co-
operative Agreement DAAL01-96-2-0003. Martin Pelikan was partially sup-

ported by grant VEGA 1/7654/20 of the Slovak Grant Agency. The US

Government is authorized to reproduce and distribute reprints for Govern-

ment purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the Air Force Office of Scientific

Research, the National Science Foundation, the US Army, or the US Gov-
ernment.



170 M. Pelikan et al. / Information Sciences 156 (2003) 147–171
References

[1] T. B€aack, Evolutionary algorithms in theory and practice, Oxford University Press, New York,

1996.

[2] H.-G. Beyer, Toward a theory of evolution strategies: On the benefit of sex––the ðl=l; kÞ-
theory, Evolutionary Computation 3 (1) (1995) 81–111.

[3] H.-G. Beyer, Toward a theory of evolution strategies: Self-adaptation, Evolutionary

Computation 3 (3) (1996) 311–347.

[4] P.A. Bosman, D. Thierens, Continuous iterated density estimation evolutionary algorithms

within the IDEA framework. Workshop Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2000), 2000, pp. 197–200.

[5] E. Cant�uu-Paz, Supervised and unsupervised discretization methods for evolutionary algo-

rithms. Workshop Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), 2001, pp. 213–216.

[6] R. Etxeberria, P. Larra~nnaga, Global optimization using Bayesian networks. Second Sympo-

sium on Artificial Intelligence (CIMAF-99), 1999, pp. 332–339.

[7] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-

Wesley, Reading, MA, 1989.

[8] D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking, Complex

Systems 5 (2) (1991) 139–167.

[9] D.E. Goldberg, K. Deb, H. Kargupta, G. Harik, Rapid, accurate optimization of difficult

problems using fast messy genetic algorithms, in: S. Forrest (Ed.), Proceedings of the

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1993,

pp. 56–64.

[10] D.E. Goldberg, K. Deb, B. Korb, Don’t worry, be messy, in: Proceedings of the International

Conference on Genetic Algorithms (ICGA-91), 1991, pp. 24–30.

[11] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution

strategies: the covariance matrix adaptation, in: Proceedings of the International Conference

on Evolutionary Computation (ICEC-96), 1996, pp. 312–317.

[12] N. Hansen, A. Ostermeier, A. Gawelczyk, On the adaptation of arbitrary normal mutation

distributions in evolution strategies: The generating set adaptation, in: Proceedings of the

International Conference on Genetic Algorithms (ICGA-95), 1995, pp. 57–64.

[13] G. Harik, Linkage learning via probabilistic modeling in the ECGA (IlliGAL Report No.

99010), University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory,

Urbana, IL, 1999.

[14] G.R. Harik, D.E. Goldberg, Learning linkage, Foundations of Genetic Algorithms 4 (1996)

247–262.

[15] D. Heckerman, D. Geiger, D.M. Chickering, Learning Bayesian networks: The combination of

knowledge and statistical data (Technical Report MSR-TR-94-09), Microsoft Research,

Redmond, WA, 1994.

[16] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor, MI, 1975.

[17] R.A. Howard, J.E. Matheson, Influence diagrams, in: R.A. Howard, J.E. Matheson (Eds.),

Readings on the principles and applications of decision analysis, vol. II. Strategic Decisions

Group, Menlo Park, CA, 1981, pp. 721–762.

[18] H. Kargupta, SEARCH, polynomial complexity, and the fast messy genetic algorithm.

Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1995.

[19] H. Kargupta, The gene expression messy genetic algorithm, in: Proceedings of the

International Conference on Evolutionary Computation (ICEC-96), 1996, pp. 814–819.

[20] P. Larra~nnaga, J.A. Lozano (Eds.), Estimation of Distribution Algorithms: A New Tool for

Evolutionary Computation, Kluwer, Boston, MA, 2002.



M. Pelikan et al. / Information Sciences 156 (2003) 147–171 171
[21] H. M€uuhlenbein, G. Paaß, From recombination of genes to the estimation of distributions I.

Binary parameters, Parallel Problem Solving from Nature (1996) 178–187.

[22] M. Munetomo, D.E. Goldberg, Linkage identification by non-monotonicity detection for

overlapping functions, Evolutionary Computation 7 (4) (1999) 377–398.

[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

Morgan Kaufmann, San Mateo, CA, 1988.

[24] M. Pelikan, Bayesian optimization algorithm: From single level to hierarchy, Doctoral

dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2002.

[25] M. Pelikan, D.E. Goldberg, E. Cant�uu-Paz, Linkage problem, distribution estimation, and

Bayesian networks (IlliGAL Report No. 98013), University of Illinois at Urbana-Champaign,

Illinois Genetic Algorithms Laboratory, Urbana, IL, 1998.

[26] M. Pelikan, D.E. Goldberg, E. Cant�uu-Paz, BOA: The Bayesian optimization algorithm, in:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I, pp.

525–532 (Also IlliGAL Report No. 99003, 1999).

[27] M. Pelikan, D.E. Goldberg, E. Cant�uu-Paz, Bayesian optimization algorithm, population

sizing, and time to convergence, in: Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2000), pp. 275–282 (Also IlliGAL Report No. 2000001, 2000).

[28] M. Pelikan, D.E. Goldberg, F. Lobo, A survey of optimization by building and using

probabilistic models, Computational Optimization and Applications 21 (1) (2002) 5–20, Also

IlliGAL Report No. 99018.

[29] M. Pelikan, D.E. Goldberg, K. Sastry, Bayesian optimization algorithm, decision graphs, and

Occam’s razor (IlliGAL Report No. 2000020), University of Illinois at Urbana-Champaign,

Illinois Genetic Algorithms Laboratory, Urbana, IL, 2000.

[30] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution, Frommann-Holzboog, Stuttgart, 1973.

[31] I. Rechenberg, Evolutionsstrategie ’94, Frommann-Holzboog Verlag, Stuttgart, 1994.

[32] F. Rothlauf, Towards a theory of representations for genetic and evolutionary algorithms:

Development of basic concepts and their application to binary and tree representations,

Doctoral dissertation, University of Bayreuth, Beyreuth, Germany, 2001.

[33] K. Sastry, Efficient atomic cluster optimization using a hybrid extended compact genetic

algorithm with seeded population (IlliGAL Report No. 2001018), University of Illinois at

Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 2001.

[34] J. Schwarz, J. Ocenasek, A problem-knowledge based evolutionary algorithm KBOA for

hypergraph partitioning, in: Proceedings of the Fourth Joint Conference on Knowledge-Based

Software Engineering, IO Press, Brno, Czech Republic, 2000, pp. 51–58.

[35] H.-P. Schwefel, Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss auf die

Evolutionsgeschwindigkeit (Technical Report of the Working Group of Bionics and Evolution

Techniques at the Institute for Measurement and Control Technology Re 215/3), Technical

University of Berlin, Berlin, July 1974.

[36] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutions-

strategie, in: Interdisciplinary Systems Research, vol. 26, Birkh€aauser, Basle, Switzerland,

1977.

[37] H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley and Sons, New

York, 1981.

[38] H.-P. Schwefel, Contemporary evolution strategies, Advances in Artificial Life, Third

International Conference on Artificial Life, 1995.

[39] S. Tsutsui, M. Pelikan, D.E., Goldberg, Evolutionary algorithm using marginal histogram

models in continuous domain (IlliGAL Report No. 2001019), University of Illinois at Urbana-

Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 2001.


	Getting the best of both worlds: Discrete and continuous genetic and evolutionary algorithms in concert
	Introduction
	Background
	Bayesian optimization algorithm
	Evolution strategies
	Discretization
	Fixed-width histograms
	Fixed-height histograms
	k-means clustering


	Adaptive discrete recombination+adaptive continuous mutation
	Experiments
	Test problems
	Experimental methodology
	Results

	Summary and conclusions
	Acknowledgements
	References


