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Abstract. Theoretical and empirical evidence exists that the hierar-
chical Bayesian optimization algorithm (hBOA) can solve challenging
hierarchical problems and anything easier. This paper applies hBOA to
two important classes of real-world problems: Ising spin-glass systems
and maximum satisfiability (MAXSAT). The paper shows how easy it
is to apply hBOA to real-world optimization problems—in most cases
hBOA can be applied without any prior problem analysis, it can acquire
enough problem-specific knowledge automatically. The results indicate
that hBOA is capable of solving enormously difficult problems that can-
not be solved by other optimizers and still provide competitive or better
performance than problem-specific approaches on other problems. The
results thus confirm that hBOA is a practical, robust, and scalable tech-
nique for solving challenging real-world problems.

1 Introduction

Recently, the hierarchical Bayesian optimization algorithm (hBOA) has been
proposed to solve hierarchical and nearly decomposable problems [12]3]. The
success in designing a competent hierarchical optimizer has two important con-
sequences. First, many complex real-world systems can be decomposed into a
hierarchy [], so we can expect hBOA to provide robust and scalable solution
to many real-world problems. Second, many difficult hierarchical problems are
intractable by any other algorithm [2] and thus hBOA should allow us to solve
problems that could not be solved before.

This paper applies hBOA to two important classes of real-world problems to
confirm that hierarchical decomposition is a useful concept in solving real-world
problems. More specifically, two classes of problems are considered: (1) two-
and three-dimensional Ising spin glass systems with periodic boundary condi-
tions, and (2) maximum satisfiability of predicate calculus formulas in conjunc-
tive normal form (MAXSAT). The paper shows how easy it is to apply hBOA
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1272 M. Pelikan and D.E. Goldberg

to combinatorial problems and achieve competitive or better performance than
problem-specific approaches without the need for much problem-specific knowl-
edge in advance.

The paper starts with a brief description of hBOA. Section [3 defines the
problem of finding ground states of an Ising spin glass system and presents the
results of applying hBOA with and without local search to this class of problems.
Section [4] defines MAXSAT and discusses its difficulty. hBOA is again combined
with local search and applied to several benchmark instances of MAXSAT. For
both problem classes, the performance of hBOA is compared to that of problem-
specific approaches. Finally, Sect. Blsummarizes and concludes the paper.

2 Hierarchical Bayesian Optimization Algorithm (hBOA)

Probabilistic model-building genetic algorithms (PMBGAs) [§] replace tra-
ditional variation operators of genetic and evolutionary algorithms—such as
crossover and mutation—by building and sampling a probabilistic model of
promising solutions. PMBGAs are sometimes referred to as estimation of dis-
tribution algorithms (EDAs) [6], or iterated density estimation algorithms
(IDEAs) [7]. For an overview of PMBGAS, see [258].

One of the most advanced PMBGAs for discrete representations is the hier-
archical Bayesian optimization algorithm (hBOA) [1/2/3]. hBOA evolves a pop-
ulation of candidate solutions to the given optimization problem starting with a
random population. In each iteration, hBOA updates the population in the fol-
lowing four steps. hBOA first selects a population of promising solutions from the
current population using one of the popular selection operators, such as tourna-
ment or truncation selection. Next, hBOA builds a Bayesian network with local
structures as a probabilistic model of promising solutions. New candidate so-
lutions are then generated by sampling the learned network. Finally, restricted
tournament replacement (RTR) [9l1] is used to incorporate the new solutions
into the current population.

hBOA can learn and exploit hierarchical problem decomposition, which sim-
plifies the problem via decomposition over one or more levels. Exploitation of
hierarchical decomposition enables exploration of the space of candidate solu-
tions by juxtaposing high-quality partial solutions, starting with short-order
partial solutions and ending with those of high order. This enables hBOA to
solve challenging hierarchical problems that are practically unsolvable by tradi-
tional black-box optimizers such as simulated annealing or traditional genetic
algorithms (GAs). Of course, hBOA can solve anything easier. It is beyond the
scope of this paper to provide a detailed description of hBOA; please see [I]
and [2] for more information.

3 Ising Spin Glasses

The task of finding ground states of Ising spin-glass systems is a well known
problem of statistical physics. In context of GAs, Ising spin-glass systems are
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usually studied because of their interesting properties, such as symmetry and a
large number of plateaus [LOJ11I12/[13l14].

The physical state of an Ising spin-glass system is defined by (1) a set of spins
(00,01,-..,0n-1), where each spin o; can obtain a value from {+1, -1}, and (2) a
set of coupling constants J;; relating pairs of spins o; and ;. A Hamiltonian
specifies the energy of the system as H(o) = — ZZ]’:O 0;Jij0;. The task is to
find a state of spins called the ground state for given coupling constants J;; that
manimizes the energy of the system. There are at least two ground states of each
Ising spin-glass system (the energy of a system doesn’t change if one inverts all
the spins). In practice the number of ground states is even greater.

The problem of finding any ground state of an Ising spin glass is equivalent
to a well known combinatorial problem called minimum-weight cut (MIN-CUT).
Since MIN-CUT is NP-complete [I5], the task of finding a ground state of an
unconstrained Ising spin-glass system is NP-complete—that means that there
exists no algorithm for solving general Ising spin glasses in polynomial time and
it is believed that it’s impossible to do this.

Here we consider a special case, where the spins are arranged on a two- or
three-dimensional grid and each spin interacts with only its nearest neighbors in
the grid. Periodic boundary conditions are used to approximate the behavior of a
large-scale system. Therefore, spins are arranged on a two- or three-dimensional
toroid. Additionally, we constrain coupling constants to contain only two values,
Jij € {+1,—1}. In the two-dimensional case, several algorithms exist that can
solve the restricted class of spin glasses in polynomial time. We will compare the
best known algorithms to hBOA later in this section. However, none of these
methods is applicable in the three-dimensional case.

3.1 Methodology

In hBOA each state of the system is represented by an n-bit binary string,
where n is the total number of spins. Each bit in a solution string determines
the state of the corresponding spin: 0 denotes the state —1, 1 denotes the state
+1. To estimate the scalability of hBOA on two-dimensional spin-glass systems,
we tested the algorithm on a number of two-dimensional spin-glass systems of
size from n = 10 x 10 = 100 spins to n = 16 x 16 = 256 spins. For each prob-
lem size, we generated 8 random problem instances with uniform distribution
over all problem instances. To ensure that a correct ground state was found for
each system, we verified the results using the Spin Glass Ground State Server
provided by the group of Prof. Michael Jinger (http://www.informatik.uni-
koeln.de/ls_juenger/projects/sgs.html).

For each problem instance, 30 independent runs are performed and hBOA
is required to find the optimum in all the 30 runs. The performance of hBOA
is measured by the average number of evaluations until the optimum is found.
The population size for each problem instance is determined empirically as the
minimal population size for the algorithm to find the optimum in all the runs.
A parameter-less population sizing scheme [I6] could be used to eliminate the
need for specifying the population size in advance, which could increase the total
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Fig. 1. hBOA on 2D and 3D Ising spin glasses

number of evaluations by at most a logarithmic factor [17]. Binary tournament
selection with replacement is used in all experiments and the window size for
RTR is set to the number of bits (spins) in a problem. Bayesian networks with
decision graphs are used and K2 metric with the term penalizing complex models
is used to measure the quality of each candidate model as described in [1§].

The performance of hBOA is compared to that of hBOA combined with lo-
cal search referred to as the discrete hill climber (DHC). DHC is applied prior
to evaluation of each solution by flipping a bit that improves the solution the
most; this is repeated until no more improvement is possible. For most constraint
satisfaction problems including Ising spin glasses, DHC increases the computa-
tional cost of each evaluation at most nlogn times; in practice, the increase in
computational complexity is still significantly lower because only a few bits are
flipped on average.

Using local search often improves the performance of selectorecombinative
search, because the search can focus on local optima, which reveal more in-
formation about the problem than randomly generated solutions do. Further-
more, selectorecombinative search can focus its exploration on basins of attrac-
tion (peaks around each local optimum) as opposed to individual solutions. On
the other hand, in some cases local search may cause premature convergence;
nonetheless, we believe that this is rarely going to be the case with advanced
algorithms such as BOA and hBOA. hBOA with DHC was applied to systems
of size up to n = 20 x 20 = 400.

3.2 Results

Figure [[h shows the average number of evaluations for both hBOA alone and
hBOA with DHC. The number of evaluations is averaged over all runs for prob-
lem instances of the same size. Note that each data point in the plot corresponds
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to 8 x 30 = 240 runs. Additionally, the figure shows the best-fit polynomial ap-
proximating the growth of the number of evaluations until the optimum has
been found. The total number of evaluations appears to grow polynomially as
O(n??%) for hBOA, whereas it is O(n*73) for hBOA with DHC. Despite that
the asymptotic complexity grows a little faster for hBOA with DHC, the popu-
lation sizes and the running times decrease significantly (approximately tenfold)
with DHC—for instance, hBOA with DHC can solve a 400-bit problem in less
evaluations than hBOA needs to solve only a 225-bit problem.

3.3 Discussion

The results presented in Fig. [k indicate that hBOA is capable of solving Ising
spin-glasses in low order polynomial time. This is good news, but how does the
performance of hBOA compare to that of other algorithms for solving the same
subclass of spin glasses?

To answer the above question, let us first compute the overall computational
complexity of hBOA without DHC. Each evaluation of a spin-glass state can be
bounded by O(n) trivial operations, so the overall time spent in fitness evaluation
grows as O(n32°). However, in this case the computational complexity of model
building dominates other factors. Using an asymptotic complexity bound com-
puted by Pelikan et al. [I0] and the empirical results, the overall time complexity
of hBOA can be bounded by O(n*2%). If the model was updated incrementally
in each generation, the time complexity can be expected to decrease to some-
where between O(n32%) and O(n*25). The complexity of hBOA with DHC can
be computed analogically to the case with hBOA alone, yielding a conservative
bound of O(n*73).

There are several problem-specific algorithms that attempt to solve the above
special case of two-dimensional spin glasses (e.g., [L9120l21l22]). Most recently,
Galluccio and Loebl [21122] proposed an algorithm for solving spin glasses in
O(n??) for all graphs with bounded genus (two-dimensional toroids are a special
case of graphs with bounded genus). So, the overall time complexity of the best
currently known algorithm for the considered class of spin glasses is O(n??).

The above results indicate that the asymptotic complexity of hBOA is slightly
worse than that of the best problem-specific algorithm; in particular, hBOA re-
quires O(n*25) steps without DHC and O(n*73) steps with DHC, whereas the
algorithm of Galluccio and Loebl requires only O(n3®) steps. However, hBOA
does not use any problem-specific knowledge except for the evaluation of sug-
gested states of the system, whereas the method of Galluccio and Loebl fully
relies on the knowledge of the problem structure and its properties. Even with-
out requiring any problem-specific information in advance, hBOA is capable of
competing with the state-of-the-art methods in the field. Using DHC leads to
a speed up that results in running times that are better than those reported
by Galluccio and Loebl. For instance, using hBOA with DHC to solve 400-bit
instances took on average 9.7 minutes per instance on a Pentium I1/400MHz
(the worst case took about 21 minutes, the best case about 2.92 minutes), while
Galluccio and Loebl reported times of about 25 minutes on an Athlon/500MHz.
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Therefore, hBOA+DHC is capable of finding the optimum significantly faster
despite that hBOA+DHC does not assume any particular structure of the prob-
lem. Nonetheless, it can be expected that the situation will change for larger
systems and the algorithm of Galluccio and Loebl will become superior.

Another important point in favor of hBOA is that hBOA does not explicitly
restrict the interaction structure of a problem; consequently, hBOA is applicable
to spin glasses in more than two dimensions and other spin glasses that fall
outside the scope of the method of Galluccio and Loebl.

3.4 From 2D to 3D

Despite that competent methods exist for solving two-dimensional spin glasses,
none of these methods is directly applicable in the three-dimensional case. In fact,
finding a ground state of three-dimensional spin glasses is NP-complete even for
coupling constants restricted to {—1,0,+1} [23]. Since in our case zero coupling
constants are not allowed, instances studied here might be solvable in polynomial
time although there is no algorithm that is proven to do that. Nonetheless, since
hBOA does not explicitly use the dimensionality of the underlying spin-glass
problem, it is straightforward to apply hBOA+DHC to three-dimensional spin
glasses.

To test the scalability of hBOA with DHC, eight random spin-glass systems
on a three-dimensional cube with periodic boundary conditions were generated
for systems of size fromn =4 x4 x4 =64 ton =7 x 7 x 7= 343 spins. Since
no other method exists to verify whether the found state actually represents the
ground state, hBOA with DHC was first run on each instance with an extremely
large population of orders of magnitude larger than the expected one. After a
number of generations, the best solution found was assumed to represent the
ground state.

Figure [Ib shows the number of evaluations until hBOA with DHC found
the ground state of the tested three-dimensional Ising spin-glass instances. The
overall number of evaluations appears to grow polynomially as O(n35%). That
means that increasing the dimensionality of spin-glass systems increases the
complexity of solving these systems; however, efficient performance is retained
even in three dimensions.

4 MAXSAT

The task of finding an interpretation of predicates that maximizes the number
of satisfied clauses of a given predicate logic formula expressed in conjunctive
normal form (MAXSAT) is an important problem of complexity theory and
artificial intelligence. Since MAXSAT is NP-complete in its general form, there
is no known algorithm that can solve MAXSAT in worst-case polynomial time.

In the context of GAs MAXSAT is usually used as an example class of prob-
lems that cannot be efficiently solved using selectorecombinative search [24], al-
though some positive results were reported with adaptive fitness [25]. The reason
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for poor GA performance appears to be that short-order partial solutions lead
away from the optimum (sometimes in as many as 30% of predicate variables)
as hypothesized by Rana and Whitley [24]. We know that hBOA outperforms
traditional GAs on challenging hierarchical problems; will hBOA do better in
the MAXSAT domain as well?

Here we consider the case where each formula is given in conjunctive normal
form with clauses of length at most k; formulas in this form are called k-CNFs.
A CNF formula is a logical and of clauses, where each clause is a logical or of
k or less literals. Each literal is either a predicate or a negation of a predicate.
An example 3-CNF formula over predicates (variables) X; to X5 is (X5 V X1 V
ﬁXg) AN (X2 \Y Xl) A\ (ﬁX4 VXV X5)

An interpretation of predicates assigns each predicate either true or false;
for example, (X = true, Xo = true, X3 = false, Xy = false, X; = true) is an
interpretation of X; to X5. The task in MAXSAT is to find an interpretation that
maximizes the number of satisfied clauses in the given formula. For example, the
assignment (X; = true, Xo = true, X5 = true, X4 = true, X5 = true) satisfies
all the clauses in the above formula, and is therefore one of the optima of the
corresponding MAXSAT problem. MAXSAT is NP complete for k-CNF if k > 2.

4.1 Methodology

In hBOA each candidate solution represents an interpretation of predicates in
the problem. Each bit in a solution string corresponds to one predicate; true is
represented by 1, false is represented by 0. The fitness of a solution is equal to
the number of satisfied clauses given the interpretation encoded by the solution.
Similarly as earlier, DHC is incorporated into hBOA to improve its performance.
DHC for MAXSAT is often called GSAT in the machine learning community [26].
Similarly as for spin glasses, GSAT enhances the efficiency of hBOA, although
GSAT alone is incapable of solving most tested instances. All other parameters
except for the population size are the same as for spin glasses (see Sect. [3.1]).
For each problem instance, a minimal population size required for reliable con-
vergence to the optimum in 30 independent runs was used.

hBOA with GSAT is compared to two methods for solving MAXSAT: GSAT,
and WalkSAT. GSAT [26] starts with a random solution. In each iteration, GSAT
applies a 1-bit flip that improves the current solution the most until no more im-
provement is possible. WalkSAT extends GSAT to incorporate random changes.
In each iteration, WalkSAT performs the greedy step of GSAT with the prob-
ability p; otherwise, one of the predicates that are included in some unsatisfied
clause is randomly selected and its interpretation is changed. Best results have
been obtained with p = 0.5, although the optimal choice of p changes from
application to application.

4.2 Tested Instances

Two types of MAXSAT instances are tested: (1) random satisfiable 3-CNF for-
mulas, and (2) instances of combined-graph coloring translated into MAXSAT.
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All tested instances have been downloaded from the Satisfiability Library
SATLIB (http://www.satlib.org/).

Instances of the first type are randomly generated satisfiable 3-CNF formulas.
All instances belong to the phase transition region [27], where the number of
clauses is equal to 4.3n (n is the number of predicates). Random problems in
the phase transition are known to be the most difficult ones for most MAXSAT
heuristics [27]. Satisfiability of randomly generated formulas is not forced by
restricting the generation procedure itself, but a complete algorithm for verifying
satisfiability such as Satz [28] is used to filter out unsatisfied instances. This
results in generation of more difficult problems.

Instances of the second type were generated by translating graph-coloring
instances to MAXSAT. In graph coloring, the task is to color the vertices of a
given graph using a specified number of colors so that no connected vertices share
the same color. Every graph-coloring instance can be mapped into a MAXSAT
instance by introducing one predicate for each pair (color, vertex), and creating
a formula that is satisfiable if and only if exactly one color is chosen for each
vertex, and the colors of the vertices corresponding to each edge are different.

Here graph-coloring instances are generated by combining regular ring lat-
tices and random graphs with a fixed number of neighbors [29]. Combining two
graphs consists of selecting (1) all edges that overlap in the two graphs, (2) a
random fraction (1 — p) of the remaining edges from the first graph, and (3) a
random fraction p of the remaining edges from the second graph. By combining
regular graphs with random ones, the amount of structure in the resulting graph
can be controlled; the smaller the p, the more regular the graphs are. For small
values of p (from about 0.003 to 0.03), MAXSAT instances of the second type
are extremely difficult for WalkSAT and other methods based on local search.
Here all instances are created from graphs of 100 vertices and 400 edges that are
colorable using 5 colors, and each coloring is encoded using 500 binary variables
(predicates).

4.3 Results on Random 3-CNF's

Figure Bl compares the performance of hBOA with GSAT, GSAT alone, and
WalkSAT. Ten instances are tested for each problem size. More specifically, the
first ten instances from the archives downloaded from SATLIB are used.

How does the performance of hBOA+GSAT compare to that of GSAT alone
and WalkSAT? GSAT is capable of solving only the simplest instances of up to
n = 75 variables, because the computational time requirements of GSAT grow
extremely fast. Already for instances of n = 100 variables, GSAT could not find
the optimal interpretation even after days of computation. This leads us to a
conclusion that GSAT alone cannot solve the problem efficiently, although it
improves the efficiency of hBOA when used in the hybrid hBOA+GSAT. The
results also indicate that the performance of WalkSAT is slightly better than that
of hBOA+GSAT, although performance of the two approaches is comparable.
Thus, both selectorecombinative search and randomized local search can tackle
random 3-CNF's quite efficiently.
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Fig. 2. hBOA+GSAT, GSAT, and WalkSAT on random 3-CNF from phase transition

Table 1. hBOA with GSAT on WalkSAT-hard MAXSAT instances. WalkSAT could
not solve any of these instances even with more than 40,000,000 evaluations

Instance p | hBOA Instance p | hBOA

Evals. Evals.

SW100-8-5/sw100-1.cnf|27°(1,262,018|[SW100-8-7/sw100-2.cnf|2~7|1,558,891
SW100-8-5/sw100-2.cnf|27°[1,099,761|[SW100-8-7/sw100-6 . cnf |2~ 7|1,966,648
SW100-8-5/sw100-3.cnf|27°[1,123,012|[SW100-8-7/sw100-7.cnf|277|1,222,615
SW100-8-6/sw100-1.cnf|27°[1,183,518|[SW100-8-8/sw100-1.cnf |27 5(1,219,675
SW100-8-6/sw100-2. cnf|27°%]1,324,857([SW100-8-8/sw100-2. cnf |2~ °[1,537,094
SW100-8-6/sw100-3.cnf|27°|1,629,295|[SW100-8-8/sw100-6. cnf |2~ °|1,650,568
SW100-8-7/sw100-1.cnf|277|1,732,697|[SW100-8-8/sw100-7 . cnf |2~ 5[1,287,180

4.4 Results on Graph Coloring MAXSAT

We've seen that both hBOA with GSAT and WalkSAT performed relatively
well on randomly generated 3-CNF instances. Nonetheless, real-world problems
are not random, most real-world problems contain a considerable amount of
regularities. Combined-graph coloring described in Sect. [£.2] provides a class of
problems that combines regularity with randomness. By controlling the relative
amounts of structure and randomness, interesting classes of problems can be
generated.

Although regular ring lattices (p = 0) can be solved by WalkSAT effi-
ciently [29], introducing even a slight perturbation to the regular graph by com-
bining it with a random graph severely affects WalkSAT’s performance. More
specifically, WalkSAT is practically unable to solve any instances with p < 275,
It’s no surprise that for these problem instances GSAT is also intractable. On
the other hand, hBOA+GSAT is capable of solving all these instances. Table [I]
shows the performance of hBOA on several instances that are practically un-
solvable by WalkSAT. WalkSAT is not able to solve any of these instances even
when allowed to check over 40 million interpretations!
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4.5 Discussion

hBOA+GSAT outperformed GSAT alone on all problem instances; not surpris-
ingly, hBOA is capable of supplying much better starting points for GSAT than
random restarts do. However, on the class of randomly generated 3-CNF, the
hybrid hBOA+GSAT is outperformed by a randomized GSAT called WalkSAT.
Nonetheless, the performance of hBOA+GSAT is competitive with that of Walk-
SAT.

On the other hand, for those problem instances that are practically unsolv-
able using local search (WalkSAT and GSAT), hBOA+GSAT retains efficient
performance. In particular, MAXSAT instances obtained by translating graph
coloring of graphs with a large amount of structure and a little amount of ran-
domness cannot be solved by GSAT or WalkSAT even after tens of millions of
evaluations, whereas hBOA+GSAT is capable of solving all these problems in
fewer than two million evaluations. Therefore, hBOA+GSAT can solve those
instances that are easy for local search (random 3-CNF), but it is not limited
to those instances—it can solve also problems that are practically unsolvable by
local search alone.

To summarize, hBOA is able to provide robust solution to two different
classes of MAXSAT instances—instances that are completely random and in-
stances that contain a significant amount of regularities and little randomness.
This result is made even more important by the fact that hBOA is not given
any problem specific knowledge in advance and learns how to solve the problem
automatically using only the evaluation procedure.

5 Summary and Conclusions

The results presented in this paper confirmed the assumption that decompo-
sition and hierarchical decomposition is an inherent part of many real-world
problems, and that effective discovery and exploitation of single-level and hier-
archical decomposition enable robust and scalable solution to a broad range of
optimization problems. hBOA was capable of solving randomly generated Ising
spin glass problem instances and two types of MAXSAT problems with compet-
itive or better performance than problem specific approaches.

hBOA was told nothing about the semantics of the problem; initially it didn’t
know whether it was trying to solve a spin glass, MAXSAT, or any other prob-
lem. All problem-specific knowledge was acquired automatically without any
interaction with the user. Recently, hBOA was successfully applied to other
classes of problems also without any knowledge of the semantics of the problem;
these problems included onemax, composed traps, exponentially scaled decep-
tive problems, and hierarchical traps. Despite the lack of prior problem-specific
knowledge, hBOA was capable of automatic discovery and exploitation of prob-
lem regularities that was effective enough to solve the broad range of challenging
problems in a robust and scalable manner. This adds a new piece of evidence
that hBOA is indeed a robust and scalable optimization technique that should
certainly make a difference in current computational optimization practice.
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