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Abstract— This paper presents a simple real-coded estimation

of distribution algorithm (EDA) design using χ-ary extended

compact genetic algorithm (χECGA) and discretization meth-

ods. Specifically, the real-valued decision variables are mapped

to discrete symbols of user-specified cardinality using discretiza-

tion methods. The χECGA is then used to build the probabilistic

model and to sample a new population based on the probabilis-

tic model. The effect of alphabet cardinality and the selection

pressure on the scalability of the real-coded ECGA (rECGA)

method is investigated. The results show that the population size

required by rECGA—to successfully solve a class of additively-

separable problems—scales sub-quadratically with problem size

and the number of function evaluations scales sub-cubically

with problem size. The proposed rECGA is simple, making

it amenable for further empirical and theoretical analysis.

Moreover, the probabilistic models built in the proposed real-

coded ECGA are readily interpretable and can be easily

visualized. The proposed algorithm and the results presented

in this paper are first step towards conducting a systematic

analysis of real-coded EDAs and towards developing a design

theory for development of scalable and robust real-coded EDAs.

I. INTRODUCTION

Over the last two decades significant progress has been

made in the design and the development of scalable genetic

algorithms that solve hard problems quickly, reliably, and

accurately [1], [2]. One such class of scalable genetic algo-

rithms are the so called estimation of distribution algorithms

(EDAs) [3], [4], [5], [6], which replace the traditional vari-

ation operators of genetic algorithms by building and sam-

pling probabilistic models. EDAs have successfully solved

boundedly-difficult single-level and hierarchal problems, of-

tentimes requiring only sub-quadratic number of function

evaluations [4]. Despite their demonstrated scalability, most

EDAs operate on binary variables, and their success has not

been extensively carried over to other encodings such as per-

mutation, program and real-codes. Moreover, existing real-

coded EDAs are fairly complex, rendering them intractable

for theoretical, analytical, or even semi-empirical analysis.

Therefore, the purpose of this paper is to develop a simple

real-coded estimation of distribution algorithm that can be

used to investigate—both theoretically and empirically—

the strengths and weaknesses of different design decisions.

We extend one of the simpler binary-coded EDAs called

extended compact genetic algorithm (ECGA) [7]. Specifi-

cally, we map the real-coded variables into symbols of user-
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specified cardinalities using discretization methods. Then

we use χECGA [8] to build and sample the models. The

sampled population of discrete symbols is mapped back

into real-valued decision variables. Unlike other real-coded

EDAs, with the proposed real-coded ECGA, the probabilistic

model—which is a partition of the decision variables into

non-overlapping clusters—can be easily visualized and ana-

lyzed. Moreover, similar to the binary ECGA the probability

model yields a direct mapping of linkage groups and also

readily identifies key variable interactions. In this paper, we

investigate the effects of alphabet cardinality and selection

pressure on the scalability of the proposed real-coded ECGA.

The proposed work is a first step towards systematically

analyzing the strengths and weaknesses of existing different

design decisions that can potentially lead to a design theory

for the development of successful real-coded EDAs.

This paper is organized as follows. In the following

section, we briefly discus related real-coded EDA designs.

Section III gives an outline of the extended compact genetic

algorithm followed by implementation details of the pro-

posed real-coded ECGA in section IV. The population-sizing

and scalability results are discussed in section V followed by

summary and conclusions.

II. RELATED WORK

We now provide a brief overview of the works that are

relevant to this paper; for more references, we refer the

reader to the two recent books [5], [6]. In [9], Pelikan et

al. introduced a real-coded PMBGA working in the con-

tinuous domain; they used marginal histograms to model

promising solutions. Both the marginal models used, fixed

width and fixed height histograms, performed fairly well

on test functions with no or weak interaction among the

variables, but failed to recognize linkage among variables

in functions with a medium level of linkage. An evolution

of this approach is presented in [10] where the focus is on the

linkage identification in real-coded GAs. In [10], the authors

applied the SPX operator [11] as recombination operator

and tried to identify linkage information by observing the

distribution of the individuals in the population; in particular

they examined the correlation coefficient matrix of parameter

values of the individuals in the population.

Pelikan et al. [12], [13] combined the Bayesian Optimiza-

tion Algorithm for recombination with evolutionary strategies

(ES) for mutation. In [12], [13], a real population is first dis-

cretized, then BOA is applied to recombine individuals in the

discrete population and the new population is mapped back

to the real domain so that adaptive mutation from ES can be

applied to obtain the next real population. Three discretiza-

tion strategies were presented: Fixed-Width Histograms,
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Fixed-Height Histograms and k-Means Clustering. The ap-

proach was tested on three functions and the reported results

showed good scalability. Ahn [14] developed a real-coded

Bayesian Optimization Algorithm, rBOA, which constructs

the Bayesian factorization graph using finite mixture models.

All the relevant substructures are extracted from the graph

and each substructure is fit and sampled independently.

Recently, Chen et al. [15] developed a real-valued version

of the ECGA (rECGA) by combining a binary version of

ECGA together with Split-On-Demand (SoD) discretization

strategies. This is an adaptive discretization technique that

takes into account the distribution of the current population

in creating discrete intervals. rECGA was tested on several

problems and the accuracy of the computed solutions was

shown.

III. EXTENDED COMPACT GENETIC ALGORITHM

(ECGA)

The extended compact genetic algorithm (ECGA) [16],

[17] is an estimation of distribution algorithm (EDA) that

replaces traditional variation operators of genetic and evo-

lutionary algorithms by building a probabilistic model of

promising solutions and sampling the model to generate new

candidate solutions. χ-ary ECGA is an extension of the

ECGA to handle integer variables with differing cardinali-

ties [18], [19]. The typical steps of χECGA can be outlined

as follows:

1) Initialization: The population is usually initialized with

random individuals. However, other initialization pro-

cedures can also be used in a straightforward manner.

2) Evaluation: The fitness or the quality-measure of the

individuals are computed.

3) Selection: Like traditional genetic algorithms, EDAs

are selectionist schemes, because only a subset of bet-

ter individuals is permitted to influence the subsequent

generation of candidate solutions. Different selection

schemes used elsewhere in genetic and evolution-

ary algorithms—tournament selection, truncation se-

lection, proportionate selection, etc.—may be adopted

for this purpose, but a key idea is that a “survival-of-

the-fittest” mechanism is used to bias the generation of

new individuals.

4) Probabilistic model estimation: Unlike traditional GAs,

however, EDAs assume a particular probabilistic model

of the data, or a class of allowable models. A

class-selection metric and a class-search mechanism is

used to search for an optimum probabilistic model that

represents the selected individuals.

Model representation: The probability distribution

used in ECGA is a class of probability models known

as marginal product models (MPMs). MPMs partition

genes into mutually independent groups and specifies

marginal probabilities for each linkage group. For

example, the following MPM, [1,3][2][4], for a

four-bit problem represents that the 1st and 3rd genes

are linked and 2nd and 4th genes are independent. An

MPM must also specify probabilities for each sub-

structure. For the above example, the MPM consists of

the marginal probabilities: {p(x1 = 0, x3 = 0), p(x1 =
0, x3 = 1), p(x1 = 1, x3 = 0), p(x1 = 1, x3 = 1),
p(x2 = 0), p(x2 = 1), p(x4 = 0), p(x4 = 1)}, where

xi is the value of the ith gene.

Class-Selection metric: To distinguish between better

model instances from worse ones, ECGA uses a min-

imum description length (MDL) metric [20]. The key

concept behind MDL models is that all things being

equal, simpler models are better than more complex

ones. The MDL metric used in ECGA is a sum of two

components:

• Model complexity which quantifies the model

representation size in terms of number of bits

required to store all the marginal probabilities.

Let, a given problem of size � with alphabet

cardinality χ, have m partitions with ki genes in

the ith partition, such that
∑m

i=1
ki = �. Then each

partition i requires χk−1 independent frequencies

to completely define its marginal distribution. Fur-

thermore, each frequency is of size log2(n), where

n is the population size. Therefore, the model

complexity (or the model representation size), Cm,

is given by

Cm = log2(n)

m∑
i=1

(
χki − 1

)
. (1)

• Compressed population complexity, which

quantifies the data compression in terms of the

entropy of the marginal distribution over all parti-

tions.

Cp = n

m∑
i=1

χki∑
j=1

−pij log2 (pij) , (2)

where pij is the frequency of the jth gene se-

quence of the genes belonging to the ith partition.

In other words, pij = Nij/n, where Nij is the

number of chromosomes in the population (after

selection) possessing bit-sequence j ∈ [1, χki ] 1

for ith partition.

Class-Search method: In ECGA, both the structure

and the parameters of the model are searched and

optimized to best fit the data. While the probabilities

are learned based on the variable instantiations in

the population of selected individuals, a greedy-search

heuristic is used to find an optimal or near-optimal

probabilistic model. The search method starts by treat-

ing each decision variable as independent. The model-

search method continues by merging two partitions

that yields greatest improvement in the model-metric

score. The subset merges are continued until no more

improvement in the metric value is possible.

1Note that a BB of length k has χk possible sequences where the first
sequence denotes be 00· · · 0 and the last sequence (χ−1)(χ−1) · · · (χ−1)
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5) Offspring creation: In ECGA, new individuals are cre-

ated by sampling the probabilistic model. The offspring

population is generated by randomly generating subsets

from the current individuals according to the probabil-

ities of the subsets as calculated in the probabilistic

model.

6) Replacement: Many replacement schemes generally

used in genetic and evolutionary computation—

generational replacement, elitist replacement, niching,

etc.—can be used in EDAs, but the key idea is to

replace some or all the parents with some or all the

offspring.

7) Repeat steps 2–6 until one or more termination criteria

are met.

Analytical models have been developed for predicting the

population-sizing and the scalability of ECGA [21]. The

models predict that the population size required to solve a

problem with m building blocks of size k with a failure rate

of α = 1/m is given by

n ∝ χk
(σBB

d

)
m log m, (3)

and the number of function evaluations is given by

nfe ∝
(σBB

d

)√
k · χkm1.5 log m. (4)

IV. REAL-CODED ECGA

Real-coded estimation of distribution algorithms (EDAs)

are complex and difficult to analyze. Our goal was to develop

the simplest real-coded EDA possible. For this reason, we

considered the most elementary discretization algorithm (i.e.,

equal-width discretization) and χECGA [8], possibly one of

the simplest non-binary EDA, we combined them together

so as to obtain a very simple real-coded ECGA.

Our rECGA works as follows, at each generation, given

a population of n real-coded individuals of length l, tour-

nament selection is applied with a rate S. The values of

each gene j in the selected population are discretized into k
intervals Ij,k, 1 ≤ j ≤ l. Each discretization basically maps

the gene j into a virtual alphabet [22] Σj = {sj,1 . . . sj,k}
whose symbols identify the intervals Ij,1, . . . Ij,k. To keep the

approach simple, among the many discretization algorithms

available [23], we chose the simplest one, that is equal-width

discretization. This partitions a range [a, b] into k intervals

of the same size [23]. The χECGA steps are applied on the

discrete population: first the population model is built using

a greedy MPM search; then a new discrete population is

generated. The discrete population generated by the χECGA

is mapped back into a real population by replacing, for each

gene j, a symbol sj,i with a real value uniformly generated

in the interval Ij,i. Finally, Restrict Tournament Replace-

ment (RTR) [4], [24] is applied between the original real

population (i.e., before tournament selection was applied)

and the new real population obtained by “undiscretizing”

the population obtained by the χ-ary ECGA. The process

stops either when a certain number of generations have been

reached or when the χECGA model has converged. The

Algorithm 1 Real-Coded ECGA

1: procedure RECGA(k)

2: var k is the number of intervals

3: var rp is the real population

4: var dp is the discrete population

5: var Ii,j is the j-th interval for gene i

6: rp ← random();

7: Generate a random population rp
8: Evaluate the fitness in rp
9: while stop criterion not true do

10: Undergo tournament selection at a rate S
11: Discretize rp into dp using k and generate Ii,j

12: Model dp using a greedy MPM search

13: If the model has converged, stop

14: Generate a new dp+1 using the model

15: Generate a new rp+1 from dp+1 using Ii,j

16: rp← ApplyRTR(rp+1,rp)

17: Evaluate the fitness in rp
18: end while

19: end procedure

pseudo-code of our rECGA is shown as Algorithm IV. The

algorithm is very simple and it basically adds only three

steps to the typical χECGA: the discretization step (11), the

undiscretization step (15), the restricted tournament selection

step (16).

V. EXPERIMENTAL RESULTS

We tested our simple real-coded ECGA on the real

deceptive function fRDP ,

fRDP (y) =

m−1∑
i=0

ftrap (y2i, y2i+1)

where yi ∈ [0, 1], m is the subproblem size, and ftrap(·, ·)
is the two-dimensional trap (Figure 1),

ftrap (yj, yj+1) =

{
1 if yj , yi+1 ≥ 0.8

0.8−
√

y2
j
+y2

j+1

2
otherwise

We performed a scalability analysis by applying the typical

bisection procedure used in [25], [4] to determine the small-

est population size and the smallest number of evaluations

which guarantee the convergence.

At first, we analyzed our rECGA using the basic equal-

width discretization with different number of intervals. Fig-

ure 2 reports (a) the number of evaluations and (b) the

population size as functions of the problem size. The dis-

cretization based on four intervals is the more demanding in

terms of number of evaluations and in population size. As the

number of intervals increases, the number of evaluations and

the population size decrease. The best results are obtained

for a discretization with 5 intervals. Then, as the number

of intervals increases, the number of evaluations and the

population size required increase. These results show a clear

trade-off between the number of intervals used and the
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Fig. 1. Bidimensional description of the basis function of the real trap
deceptive function.

number of evaluations required to converge. With fewer

intervals, when the discretization is coarser, the alphabet

used by χECGA is smaller so that the problem is potentially

simpler for χECGA. However, since fewer intervals convey

less information about the domain, overall rECGA needs

more evaluations and more individuals to converge. As the

number of interval increases, the identification of interesting

areas in the problem domain is easier. The best partitioning is

the one with five intervals. Five is in fact the smaller number

of partitions that separates the interval [0.8-1.0] where the

trap reach the optimum. Then, as the number of interval

increases the problem becomes more demanding since the

alphabet used by the underlying χECGA is larger. When we

analyze the data in Figure 2 fitting them with a polynomial

we find that the number of function evaluations (Figure 2a)

grows sub-cubically while the population size grows sub-

quadratically.

The trade-off between number of intervals and problem

difficulty is more evident when we plot the same data as a

function of the number of intervals (Figure 3). As Figure 3a

shows, the number of evaluations decreases as the number

of interval increases until five intervals are considered. With

five intervals, when one interval actually coincides with the

area of the trap function where the maximum is located,

rECGA requires the least amount of computational resources

possible. As we use a discretization with more than five

intervals, the problem becomes more difficult since the

number of symbols that χECGA has to deal with, becomes

higher and higher.

In the second experiment, we analyzed how the perfor-

mance of our simple rECGA is influenced by the tournament

size. For this purpose, we considered the discretization with

four intervals and applied rECGA with a tournament size of

16, 8, 4, and 2. Figure 4 reports (a) the number of evaluations

and (b) the population size as a function of the problem

size for different values of the tournament size S. As the

tournament size increases, it becomes easier and easier for

(a)

(b)

Fig. 2. Real-Coded ECGA applied to the real deceptive function using
equal-width discretization with different number of intervals: (a) number of
evaluations, (b) population size.

rECGA to converge. As it should be expected, the difference

in the number of evaluations and in the population size,

is smaller in simpler problems and larger in more difficult

problems. We repeated the same set of experiments for the

5 intervals discretization (the most favorable discretization

for this problem) and for the 10 intervals discretization. The

results are shown in Figure 5 and Figure 6 respectively.

VI. SUMMARY AND CONCLUSIONS

In this paper we present the design of a simple estimation

of distribution algorithm that operate on real-coded variables.

The proposed algorithm, called real-coded extended compact

genetic algorithm (rECGA), uses discretization methods and

χ-ary extended compact genetic algorithm. In rECGA, we

map the real-coded variables into integer symbols of user-

specified cardinalities using discretization methods. Then we

use χECGA [8] to build and sample a probabilistic model

of promising candidate solutions.

The sampled population of discrete symbols is mapped

back into real-valued decision variables. As a first-step to-
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(a)

(b)

Fig. 3. Real-Coded ECGA applied to the real deceptive function using
equal-width discretization with different number of intervals: (a) number of
evaluations and (b) population size as a function of the number of intervals.

wards the analysis of the proposed algorithm, we investigated

the effects of alphabet cardinality and selection pressure

on the scalability of rECGA. The empirical results show

that for a class of boundedly-difficult, additively-separable

problems, the population size required by rECGA scales

sub-quadratically with the number of decision variables. The

results also show that the number of function evaluations

scales sub-cubically with the problem size.

The proposed rECGA is simple, making it amenable for

further empirical and theoretical analysis. Unlike other real-

coded EDAs, the probabilistic model of rECGA—which is

a partition of the decision variables into non-overlapping

clusters—can be easily visualized and analyzed. Moreover,

similar to the binary ECGA the probability model yields a

direct mapping of linkage groups and also readily identifies

key variable interactions. The proposed work is a first step to-

wards systematically analyzing the strengths and weaknesses

of existing different design decisions and towards developing

a design theory for the development of scalable and robust

real-coded EDAs.

(a)

(b)

Fig. 4. Real-Coded ECGA applied to the real deceptive function using
4 intervals and different values of tournament size S: (a) number of
evaluations and (b) population size as a function of the problem size.
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