
The Bivariate Marginal Distribution AlgorithmMartin Pelikan1, Heinz Muehlenbein21Dept. of Mathematis, Slovak Tehnial University,81237 Bratislava, Slovakia, email: pelikan�svf.stuba.sk2GMD Forshungszentrum Informationstehnik,D-53754 Sankt Augustin, Germany, email: muehlenbein�gmd.deKeywords: evolutionary algorithm, marginal distribution, dependenygraph, deomposable problemsAbstratThe paper deals with the Bivariate Marginal Distribution Algorithm (BMDA).BMDA is an extension of the Univariate Marginal Distribution Algorithm(UMDA). It uses the pair gene dependenies in order to improve algorithmsthat use simple univariate marginal distributions. BMDA is a speial ase ofthe Fatorization Distribution Algorithm, but without any problem spei�knowledge in the initial stage. The dependenies are being disovered duringthe optimization proess itself. In this paper BMDA is desribed in detail.BMDA is ompared to di�erent algorithms inluding the simple geneti algo-rithm with di�erent rossover methods and UMDA. For some �tness funtionsthe relation between problem size and the number of �tness evaluations untilonvergene is shown.1. IntrodutionGeneti algorithms work with populations of strings of �xed length. In this pa-per binary strings will be onsidered. From urrent population better stringsare seleted at the expense of worse ones. New strings are generated using thereombination/rossover operator and mutation. The reombination operatorombines the information ontained in two strings. Mutation performs a smallperturbation to these strings in order to keep the population diverse and tointrodue new information. The theory behind these operators is based on theshema theorem [1℄. It is known that the operators often ause the disrup-tion of shemata of large de�ning length. This may ause bad performane ofgeneti algorithms on problems where these shemata are needed to obtainthe optimum. This has lead to new approahes for doing reombination. The�rst line of researh uses di�erent reordering methods and other methods thatderease the de�ning length of important shemata. In these methods, the val-ues of bits on di�erent positions are not the only thing that is optimized as

2it was with lassial geneti algorithm. The order of bits and other featuresare optimized as well. The methods work quite well for deomposable prob-lems although they require some prior knowledge about the problem and theyare usually very memory and time onsuming. This diretion has lead to theGEMGA (Gene Expression Messy Geneti Algorithm) [2℄.The seond line of researh is based on the estimation of probability distribu-tion. The simplest way is to estimate the distribution using univariate marginalfrequenies in the set of seleted parents. This is what UMDA (UnivariateMarginal Distribution Algorithm) [3℄ is based on. This algorithm works per-fet for linear problems as is shown in [3℄. But it also works very well forproblems that don't ontain signi�ant dependenies. Performane of UMDAan be estimated with the use of the variane deomposition [3℄. In general,the greater the rate of additive variane to the sum of higher order varianes,the better UMDA performs.For problems with dependenies among di�erent genes this approah is notsuÆient. The theory of UMDA has been extended to problems where theprobability model is known. In FDA (Fatorization Distribution Algorithm) itis assumed that the probability an be written as some produt of marginal fre-quenies [4℄. This is an ideal shema algorithm, beause no important shemataan be disrupted. A more pragmati way to extend UMDA is to use bivariatemarginal distributions.In the MIMIC algorithm [5℄ the distribution is assumed to be a simple hain-like produt. All bits are ordered into a hain using a simple greedy algorithm�rst taking as input the univariate and bivariate marginal frequenies in theset of seleted parents. For eah new individual, the �rst bit is generated us-ing its univariate marginal frequeny. All other bits are generated using theonditional probability given the previous bit. Another approah, presentedin [6℄, uses a tree struture for the probability model. The tree is onstrutedto maximize the sum of the so-alled mutual information of genes that areonneted. The value for the bit orresponding to the root of this tree is gen-erated using its univariate frequeny. The remaining bits are generated usingonditional probability given the value of their parent in the dependeny tree.Both univariate and bivariate frequenies are alulated inrementally. In ourapproah we ombine these two methods. The mutual information dependenymeasure is replaed by Pearson's hi-square statistis, in order to be able toidentify pairs that are independent with a ertain probability. These pairs aremapped into a dependeny graph. The algorithm will be preisely desribedin the next setions. Even though the algorithm and all terms are de�ned forhromosomes de�ned as binary strings of �xed length, these an be easily re-formulated for any �nite alphabet. The �rst position in a string is referred asthe 0th position in this paper. This makes the equations simpler.

32. Marginal Frequenies and Pearson's statistisLet us denote the length of hromosome as n. Let P be a set of binary stringsof length n (the population). The size of P will be denoted as N . For eahposition i 2 f0; : : : ; n� 1g and eah possible value on this position xi 2 f0; 1g,we de�ne the univariate marginal frequeny pi(xi) for set P as the frequenyof strings that have xi on ith position in set P . Similarly, for any two positionsi 6= j 2 f0; : : : ; n�1g and any possible values on these positions xi; xj 2 f0; 1g,we de�ne the bivariate marginal frequeny pi;j(xi; xj) for set P as the frequenyof strings that have xi and xj on positions i and j, respetively. Sometimes theterm of probability will be used instead of frequeny. With the use of univariateand bivariate marginal frequenies, the onditional probability of appearaneof the value xi on ith position having given the value xj on jth position anbe alulated as pi;j(xijxj) = pi;j(xi; xj)pj(xj) (1)Pearson's hi-square statistis [7℄ is de�ned byX2 =X (observed� expeted)2expeted (2)Here, for eah pair of positions, the observed quantity is the number of possiblepairs of values on these positions. If these two positions were independent,the number for eah of these pairs of values ould be easily alulated usingthe basi probability theory. This is the expeted quantity. Then, in terms ofunivariate and bivariate frequenies and the total number of points taken intoaount, for positions i 6= j, we get [7℄X2i;j = Xxi;xj (Npi;j(xi; xj)�Npi(xi)pj(xj))2Npi(xi)pj(xj) (3)If positions i and j are independent for 95%, then for Pearson's hi-squarestatistis following inequality holds [7℄X2i;j < 3:84 (4)3. The Constrution of a Dependeny GraphIn this setion the onstrution of a dependeny graph will be desribed. Thegraph will be de�ned by three sets, V , E, and R, i.e. G = (V;E;R). V isthe set of verties, E � V � V is the set of edges and R is a set ontainingone vertex from eah of the onneted omponents of G. In a dependenygraph eah node orresponds to a position in a string. There is one to oneorrespondene between the verties and positions in a string. Thus, we anuse the set of verties V = f0; : : : ; n � 1g, where vertex i orresponds to the

4ith position. As it will be lear from the onstrution of a dependeny graph,the graph does not have be onneted. That means that it does not have toform a tree. The dependeny graph is always ayli. It an be seen as the setof trees that are not mutually onneted. The generation of new strings doesnot depend on the number of onneted omponents of the dependeny graph.When talking about frequenies in this setion, we always mean the set whihis used for reation of a dependeny graph. In the desription of the algorithmit is always said whih one is meant.Let us denote A the set of verties that have not been proessed yet. At thestart of the algorithm A is set to V . Then, suessively, as edges are beingadded into E, A gets smaller. The algorithm ends up with A equal to anempty set what means that all verties have been proessed. Another set isdenoted D. It is the set of all pairs from V � V that are not independent for95% (see Equations 3 and 4), i.e.D = �(i; j)ji 6= j 2 f0; : : : ; n� 1g ^X2i;j � 3:84	 (5)Then, the algorithm for the onstrution of a dependeny tree is de�ned asfollowsAlgorithm for the Constrution of a Dependeny Graph1. set V f0; : : : ; n� 1gset A Vset E ;2. v any vertex from Aadd v into R3. remove v from A4. if there are no more verties in set A, �nish5. if in D there are no more dependenies of any v and v0 where v 2 A andv0 2 V nA, go to 26. set v to the vertex from A that maximizes X2v;v0 over all v 2 A andv0 2 V nA7. add edge (v; v0) into the set of edges E8. go to 3The basi idea of the algorithm is very simple. It is similar to the well-knownalgorithm for obtaining the largest spanning tree. First, an arbitrary vertex isadded to the graph. Then, the vertex with the greatest dependeny with someof previously added verties and the edge orresponding to this dependenyare added to the graph. The last step is repeated until there is no dependenybetween already added verties and the rest. If this is the ase, an arbitraryvertex is added into graph and the proess repeats. The whole proess repeatsuntil all verties are added into the graph. The e�et is that an ayli graphwith a maximal sum of hi-square statistis values over the onneted vertiesis onstruted. Resulting graph does not have to be onneted, as it was alreadymentioned above. As the �rst vertex from eah omponent (that is suessively

5reated by adding verties aording to the dependenies) is added into thegraph, it is added also into the set R (i.e., to the set of speial verties, onefor eah omponent of the resulting graph).Sine the set A is initialized to a �nite set of verties and in eah yle at leastone vertex is removed from it, the algorithm does always �nish and thereforeit is well-de�ned. The time omplexity of the desribed algorithm is O(n3).4. Generation of New IndividualsTo generate new individuals, a previously desribed dependeny graph G =(V;E;R) is used. For eah individual the values for positions ontained inR are generated by the univariate marginal frequenies. Then, if there exista position v that is yet not generated and it is onneted to some alreadygenerated position v0 (aording to the set of edges E), it is generated usingthe onditional probability (see Equation 1) for a position v having given thevalue on a position v0. The last step is repeated until values for all positionsare generated.In the following desription of the algorithm for the generation of a new indi-vidual, one important set, among sets de�ning graph G, appears. It is denotedasK and it stands for the set of all positions that have been already generated.The individual is a string of length n and will be denoted by x. Its ith bit willbe denoted as xi.Algorithm for the Generation of a New Individual1. set K V2. generate xr for all r 2 R using univariate frequenies, i.e. set it to thevalue a with probability pr(a)set K K nR3. if K is already empty, �nish4. hoose k from K suh that there exist k0 from V nK onneted to k inthe graph G5. generate xk using onditional probability having given value for xk0 , i.e.set it to value a with probability pk;k0(ajxk0)6. remove k from the set K7. go to 4The set K is initialized as a �nite set and in eah yle one vertex is removedfrom it. For eah onneted omponent, at least one vertex is generated �rst.The algorithm is therefore well-de�ned. The generation of one individual anbe done in O(n) steps. The generation of di�erent individuals is independent.The algorithm for generation of new individuals is therefore well suited forparallelization.

65. Bivariate Marginal Distribution AlgorithmHaving de�ned the algorithms for the onstrution of a dependeny graphand the generation of new individuals, the bivariate marginal distribution al-gorithm (BMDA) an be desribed. In BMDA, the population is randomlygenerated �rst. From this population, the better individuals are seleted. Uni-variate and bivariate marginal frequenies for these individuals are then al-ulated. Using these frequenies, a dependeny graph is onstruted as it isdesribed in Setion 3. Having given the dependeny graph, new individualsare generated as desribed in Setion 4. New individuals are then added intothe old population from whih the individuals were originally seleted. Theyreplae some of the old ones, usually the worst of them, so that the numberof individuals in the population remains onstant. From the new population,individuals are seleted again. The proess, starting o� with the seletion ofbetter individuals and ending with adding the new individuals into the oldpopulation, repeats until the termination riteria are met. The terminationriteria an ause the algorithm to stop if it has already found the optimum orthe diversity of population is too low. The value of the optimum is usually un-known by the breeder. That is why the seond ondition is the more importantone. When the diversity is too low almost all individuals in the population arethe same. That means that there is not enough information in the populationto reate new individuals that would �t the problem better than already foundones.Bivariate Marginal Distribution Algorithm1. set t 0randomly generate initial population P (0)2. selet parents S(t) from P (t)alulate univariate frequenies pi and bivariate frequenies pi;j for theseleted set S(t)3. reate dependeny graph G = (V;E;R) using the frequenies pi and pi;j4. generate the set of new individuals O(t) using dependeny graph G andfrequenies pi and pi;j5. replae some of individuals from P (t) with new individuals O(t)set t t+ 16. if termination riteria are not met, go to 2The termination riterion due to the lak of diversity is de�ned as follows:if all univariate frequenies are loser than � > 0 to 0 or 1, the algorithm isterminated. If this is the ase, we say the algorithm �-onverged. In most ofour experiments, we use this termination riterion.The probability model used by BMDA is given byp(x) = Yr2R pr(xr) Yi2V nR pi;e(i)(xijxe(i)) (6)

7where e(i) returns the vertex onneted to the vertex i but added sooner thanthis vertex using the algorithm for the onstrution of a dependeny graph fromSetion 3. To say it in another way, e(i) is the vertex that is the next one onthe way from ith vertex to the r 2 R that orresponds to the omponent wherethe vertex i is loated. This fatorization is a speial ase of the fatorizationonsidered in [4℄.6. How Does It Work and Why?The distribution of BMDA is based on the use of onditional probabilities forpairs of positions that seem to be dependent. This information is estimatedfrom the urrent population of strings. Any binary funtion an be deomposedas follows [4℄f(x) = a+Xi1 ai1xi1 + Xi1<i2 ai1;i2xi1xi2 + : : :+ a0;1;:::;n�1x0x1 : : : xn�1 (7)A funtion is deomposable of order k if all oeÆients of higher order are 0.Let us talk about deomposable funtions of order at most two, �rst. For thislass of funtions, the best dependeny graph an be onstruted fairly easily.It an be done by onneting the verties i and j just when the oeÆient ai;jis not equal to zero. A graph onstruted this way does not have to be ayli.If this graph is ayli or this an be ahieved by deletion of only insigni�antdependenies, then it serves as the best dependeny graph that an be usedfor the generation of new individuals. If BMDA found this dependeny graphand used it for generation of new individuals, it would perform very well. Itwould perform as well as UMDA does with linear funtions. The performaneof BMDA therefore relies on whether it is able to detet these dependenieshaving no problem-spei� knowledge in an initial stage. In the empirial partof this paper it will be shown that most of the dependenies are usually foundafter only a few generations. If the mentioned graph is not ayli and thisproperty annot be satis�ed by deletion of signi�antly unimportant depen-denies from it, the problem beomes impossible to solve within the use of thismodel. This problems ould be possibly solved by the use of terms of ondi-tional independene. Not only onditional probabilities for a position havinggiven the value for another one but for a position having given values for a setof some of other positions as well would be taken into aount. The problemwith this approah is, as it was already mentioned above, that BMDA doesnot get any problem-spei� knowledge about the problem that is solved. Dur-ing optimization, it is learning the struture of the problem itself. From thebeginning, the information about dependenies is very unlear and almost nopair of positions seems to be independent. The approximation gradually getsmore and more aurate. There is no e�etive method for the predition ofthe more omplex model. Moreover, the �tness funtion does not have to bedeomposable. A model that is simpler than the orret model may serve well

8in many ases. This an be demonstrated by the good performane of UMDAfor many nonlinear problems. The right hoie is somewhere between the a-urate model and a simple model as univariate marginal distributions. Theharater of this lass of algorithms does not allow very omplex preditionsof the model due to the amount of available information about the problem.The problem arises when the optimized funtion is additively deomposable oforder three or more. If this is the ase, the given �tness distribution annot beovered by the BMDA model. The best BMDA an do is to use the model thatis as lose as possible to the original distribution. The disovery of higher orderdependenies is signi�antly more time and spae omplex and that is why itis hard to say if it was worthy to follow the way of enlarging the bloks takeninto aount. Moreover, there is again lak of information about the problem topredit the more omplex models. If all the dependenies were known from thebeginning, the best way would be to use them as in FDA [4℄. Experiments showthat BMDA performs well on problems of higher order dependenies as well.Higher order dependenies are usually substituted by hain-like dependenystrutures in our model.7. ExperimentsFirst experiments were done for a few di�erent �tness funtions. The hoieof the �tness funtions was done to make the behavior of the used algorithmmore lear. Comparisons to some other methods were done. But the mainpurpose of this setion is the explanation of the behavior of BMDA. The sizeof the paper does now allow us to take into aount all other algorithms thatould possibly ompete with BMDA for solving these problems. For most ofthe problems the deomposition of the problem is shown too, to make thingsmore lear.In the experiments the so-alled ordering parameter [8℄ is often used as ameasure of onvergene. The ordering parameter is de�ned as follows�(p) = 4n n�1Xi=0 �pi(1)� 12�2 (8)where p is the vetor of univariate marginal frequenies pi(1). The loser theparameter is to one, the less diversity the population ontains.For some �tness funtions a permutation of the variables will be allowed. Thepermutations will be denoted as �k where k 2 f1; : : : ; ng. The permutation�k is well-de�ned for any k suh that n an be divided by k. It is de�ned asfollows �k(i) = �n(i mod k) + ik � (9)�1 is the identity. For �2 and n = 12 we get �2 =(0; 2; 4; 6; 8; 10; 1; 3; 5;7; 9; 11). Permutations will be used to hange the order of the positions of a

9string to show the behavior of di�erent algorithms with respet to the usedpermutation.For all experiments a �xed seletion method (Trunation seletion [3℄ with� = 50%) was used. The worse half of the old population was replaed by thenew individuals.7.1 Onemax �tness funtionThis �tness funtion is atually a simple linear funtion over the single bitswith all oeÆients equal to 1. That means it is just the sum of all bits in astring, i.e. fonemax(x) = n�1Xi=0 xi (10)where xi is the value on the ith position in string x. Onemax �tness funtiondoes not have a permutation as an input parameter beause its value is thesame for any permutation of bits in an input string. This funtion is deom-posable of order one, as we an see from its basi form already. That meansthat BMDA should give good results for this funtion. As it was already shownin [3℄, UMDA works very well for this lass of problems. For UMDA a verysmall population size is suÆient for its onvergene into the optimum. BMDAuses a more omplex distribution and to make this orret the dependeniesthat are present in the problem have to be disovered well. That is why thepopulation size has to be enlarged. For eah algorithm, the set of parameters ishosen to make it onverge to the optimum in 100% of totally 30 independentruns. For all algorithms the �-onvergene termination riterion was used with� = 0:05.As it is shown in Figures 1 and 2, BMDA onverges slower than UMDA andthe simple geneti algorithm with uniform rossover. This is aused by theuse of statistial methods to disover dependenies that require to enlarge thepopulation. UMDA takes the bits as independent from the beginning, so ituses the information BMDA has to disover! If BMDA had this information,it would perform exatly the same as UMDA. GA with uniform rossoverand a great rossover rate performs similar to UMDA [3℄, i.e. it performsvery well for linear problems. Geneti algorithm with onepoint rossover keepsthe dependenies among neighboring bits so it has the same disadvantagewith linear problems as BMDA. In Figure 1, an average number of �tnessevaluations until onvergene for 30 independent runs is shown. In Figure 2the evolution of ordering parameter in a randomly hosen run is shown.7.2 Quadrati FuntionThe quadrati �tness funtion used for omparisons in this setion is de�nedas fquadrati(x; �) = n2�1Xi=0 f2(x�(2i); x�(2i+1)) (11)

10
0

1000

2000

3000

4000

5000

6000

7000

20 40 60 80 100 120 140 160 180

N
um

be
r

of
 f

itn
es

s
ev

al
ua

tio
ns

Size of the problem

UMDA
GA(uniform)

GA(onepoint)
BMDA

Figure 1. Number of �tness evaluations for fonemax. The ranges of the used pop-ulation size (for n = 30 to n = 180) were 50 � 170 for UMDA, 32 � 100 for GA(uniform), 32 � 160 for GA (onepoint), and 120 � 260 for BMDA. The trunationseletion with � = 50% was used.
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

O
rd

er
in

g

Number of function evaluations

UMDA
BMDA

Figure 2. Ordering parameter for fonemax, n = 90. The population sizes were 110for UMDA and 180 for BMDA. The trunation seletion with � = 50% was used.where f2 is de�ned asf2(u; v) = 0:9� 0:9(u+ v) + 1:9uv (12)With both arguments equal to 0 we get f2(0; 0) = 0:9. With di�erent argu-ments we get f2(0; 1) = f2(1; 0) = 0. With both arguments equal to 1 we getf2(1; 1) = 1. The optimum is learly in the string with 1's on all positions.Criteria for onvergene as well as the requirement for 100% onvergene in30 independent runs and the hoie of optimal parameters for all algorithmsare the same as in the last setion. UMDA was not used for omparisons sine

11it performed muh worse than any of other methods. An average number offuntion evaluations until onvergene over 30 runs is taken into aount.The funtion is not deeptive and that is why it should be not so hard to �ndthe optimum for simple GA. It is an ideal funtion for the BMDA beauseit is deomposable of order 2 (see its de�nition) and the dependenies donot form yles. First, the fquadrati with permutation �1 (i.e., identity) willbe disussed. Experiments have shown that although this funtion is not abig problem to solve by simple GA, BMDA performs muh better. For GAwith onepoint rossover the number of �tness evaluations seems to grow muhfaster than for BMDA with inreasing size of a problem (see Figure 3). GAwith uniform rossover performs signi�antly worse than GA with onepointrossover (see Figure 4, notie that there is used a log-saling for the numberof �tness evaluations in this �gure). The bad performane of GA is aused bythe similar �tness values for both leading shemata that are opposite to eahother and by the fat that their disruption signi�antly dereases the �tness. Inboth �gures 4 an average number of �tness evaluations needed for onvergenein 30 independent runs is shown.Another permutation that was used for omparisons was �2 that spreads pairsof positions (2i) and (2i+ 1) so that the distane between them is half of thesize of a string. This reordering of bits has di�erent e�et on di�erent algo-rithms. For BMDA (as well as it would be for UMDA), it atually does nota�et anything beause both algorithms are independent of positioning of bits.For simple GA with uniform rossover the situation is analogial. The prob-lem arises for simple GA with onepoint rossover. In this ase, this algorithmperforms very poorly. Already for a problem of size n = 30, GA with onepointrossover requires about 10 times more �tness evaluations than with �1. Thisgap enlarges with the size of a problem. Results for BMDA and simple GAwith uniform rossover are just slightly di�erent from results with permutation�1.7.3 Deeptive funtion of order 3Deeptive funtion is often used for omparisons of di�erent optimizationmethods for its being deeptive. With deeptive problems, the average �tnessof low order shemata present in optimum is lower than the average �tness ofalternative ones. This property makes this lass of funtions hard to solve bythe simple geneti algorithm as well as UMDA and many other evolutionaryalgorithms beause these algorithms are based on the superior position of loworder shemata that are mathed by optimum. The �tness funtion is thende�ned as f3deeptive(x; �) = n3�1Xi=0 f3(x�(3i) + x�(3i+1) + x�(3i+2)) (13)where x is a bit string, � is any permutation of order n, and f3 is de�ned as

12
0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120

N
um

be
r

of
 f

itn
es

s
ev

al
ua

tio
ns

Size of the problem

BMDA
GA(onepoint)

Figure 3. Number of �tness evaluations for fquadrati. The ranges of the used pop-ulation size (for n = 30 to n = 120) were 200 � 570 for BMDA and 260 � 2500 forGA (onepoint). The trunation seletion with � = 50% was used.f3(u) =8>><>>: 0:9 if u = 00:8 if u = 10 if u = 21 otherwise (14)Two di�erent ordering permutations �1 and �3 (see Equation 9) are used. The�3 operator mixes up the positions of the bits in a string so that the threeneighboring bits (3i), (3i+1), and (3i+2) are positioned so that the distanebetween eah two of them is at least one third of the length of hromosome. Forinstane, for n = 12 we get �3 = (0; 4; 8; 1; 5; 9; 2; 6; 10; 3; 7; 11). The problemis atually the same for any permutation although for �3 the dependenies aredistributed more widely so that important shemata are of a greater de�ninglength than originally.Results for the problem of size n = 30 are shown in Table 1.Table 1. Number of �tness evaluations for f3deeptive. The population sizes for apermutation �1 were 400 for GA (onepoint) and 1300 for BMDA. For permutation�3 the population size for BMDA was 1300. GA (uniform) for both used permutationsand GA (onepoint) for permutation �3 did not ahieve 100% onvergene even forpopulations larger than 15000 (there is given a lower bound for the number of �tnessevaluations in the table). The trunation seletion with � = 50% was used.�tness eval. for �1 �tness eval. for �3BMDA 17; 550 17; 420GA (onepoint) 4; 977 > 230; 000GA (uniform) > 650; 000 > 650; 000

13
1000

10000

100000

1e+06

30 40 50 60 70 80 90 100 110 120

N
um

be
r

of
 f

itn
es

s
ev

al
. (

lo
g-

sc
al

e)

Size of the problem

BMDA
GA(onepoint)
GA(uniform)

Figure 4. Number of �tness evaluations for fquadrati (log-saling). The ranges ofthe used population size (for n = 30 to n = 120) were 200�570 for BMDA, 260�2500for GA (onepoint), and 680� 7000 for GA (uniform). The trunation seletion with� = 50% was used.7.4 NK �tness funtionThere are two important input parameters for the so-alled NK �tness fun-tion [10℄, the length of an input string n, the number of neighbors to take intoaount k. When the funtion is initialized, for eah position of a string thereare hosen k other positions at random. In this fashion we get n groups of po-sitions, eah of length k+1. Eah position is ontained in at least one of thesegroups. Let us denote fpi;0; : : : ; pi;kg to be the ith group. For eah group thereis randomly generated value for eah of possible ombinations of values on or-responding positions. That means that for ith group, there are generated 2k+1values. Let us denote by fi the funtion that returns the generated value forombination of values fxpi;0 ; : : : ; xpi;kg on positions from ith group. Then forgiven matrix of positions P = (pi;j)n�1;ki;j=0 and vetor of funtions F = (fi)n�1i=0(both generated in the initial stage) the �tness funtion is de�ned asfNK(x) = n�1Xi=0 fi(xpi;0 ; : : : ; xpi;k) (15)Sine the neighbors are piked at random it makes no sense to use any per-mutation to reorder the positions. NK �tness funtion is learly deomposableof order at most k + 1. Random generation of both the neighbors and of thevalues an redue the order, of ourse. However, the hane that this is thease is very small.For n = 50 two di�erent k were used, k = 2 and k = 3. For eah of them, thematrix P and vetor of funtions F was generated �rst. Only one generatedset of these parameters was used for eah k. Results for various algorithms arepresented in Table 2.

14Sine the optimum is not known for any of possible k, the best found numberever was taken as optimal and all algorithms were required to onverge to thisnumber. The problem spae was explored by all algorithms with populationsthat should be large enough to �nd the real optimum. Even if this is not thease, i.e. the optimum was not found well, the best number ever found is takeninto aount, and even if the optimum were di�erent from this number, thiswould not hange anything on omparisons and their results.Table 2. Number of �tness evaluations for fNK . The population sizes for n = 50 andk = 2 were 210 for UMDA, 220 for GA (uniform), 340 for BMDA and 500 for GA(onepoint). The population sizes for n = 50 and k = 3 were 300 for GA (uniform), 700for GA (onepoint), 2500 for BMDA and 8000 for UMDA. The trunation seletionwith � = 50% was used. (n; k) = (50; 2) (n; k) = (50; 3)BMDA 5; 480 51; 625GA (onepoint) 11; 010 17; 440GA (uniform) 4; 288 7; 826UMDA 3; 398 259:6008. ConlusionsFor linear and quadrati problems, BMDA works well what an be explainedby the use of probabilisti distribution based on pair dependenies for the gen-eration of new individuals. For linear problems UMDA and GA with uniformrossover perform better and GA with onepoint rossover performs similarlyor worse than BMDA. The onvergene of BMDA is slowed down by the needto disover the probabilisti model during optimization �rst. For quadratiproblem, BMDA performs best among all ompared algorithms. The GA withonepoint rossover performs best of all other algorithms but it fails when thede�ning length of important shemata is enlarged by di�erent ordering of bitsin a string. Experiments have shown that the gap between BMDA and otheralgorithms is for a quadrati funtion very large. The di�erene between thisand other algorithms with linear funtion is insigni�ant in this ontext.For BMDA, the problem arises with problems with dependenies of a higherorder than two. For this lass of problems, the used model of the searh spae isnot suÆient. It is approximated somehow but this is often not suÆient. Fordeeptive �tness funtion of order 3, BMDA onverged slower than GA withonepoint rossover. The GA with uniform rossover onverged muh worsethan BMDA and UMDA was mislead in most of the ases even for huge pop-ulation sizes. What is important though is that when the length of shematais enlarged, GA with onepoint rossover performs very poor even for hugepopulations sizes and the number of �tness evaluations but the performaneof BMDA remains almost the same. This, as well as the results for quadratifuntion, gives an evidene that GA with onepoint rossover does not e�e-tively disover and use the shemata of a large de�ning length. It works very

15well for short building bloks. Uniform rossover is independent of the length ofshemata but it disrupts dependenies very often. UMDA disrupts dependen-ies too. BMDA takes into aount dependenies of order at most two and thisauses that although it is independent of length of the shemata and it doesnot disrupt dependenies of order two, it might disrupt the dependenies ofa higher order. The dependenies of a higher order are substituted by hain-like strutures omposed of the dependenies of order two but this is oftennot suÆient. The solution to this problem might be the use of FatorizationDistribution Algorithm although this requires a problem spei� knowledgein the initial stage. This is not required by any of UMDA, BMDA, or GA. Ifthis were overome, FDA would perform very well for all problems that aredeomposable.AknowledgementsAuthors would like to thank The Department of Mathematis of Slovak Teh-nial University and The German National Center for Information Tehnology(GMD) for a tehnial support of the projet. Martin Pelikan's stay at GMDwas supported by Catholi Aademi Program for Foreigners (KAAD, Bonn).Speial thanks to Vladimir Kvasnika and Jiri Pospihal for useful ommentsand help with the preparation as well as the ompletion of the paper.Referenes1. Goldberg D E 1989 Geneti Algorithms in Searh, Optimization, and MahineLearning. Addison-Wesley, Reading, MA2. Kargupta H 1996 The Gene Expression Messy Geneti Algorithm. In: Proeedingsof the 1996 IEEE International Conferene on Evolutionary Computation. Nagoya,pp 631{6363. Muehlenbein H 1998 The Equation for Response to Seletion and its Use forPredition. Evolutionary Computation 5: 303{3464. Muehlenbein H, Rodriguez A O 1998 Shemata, Distributions and Graphial Mod-els in Evolutionary Optimization, submitted for publiation5. De Bonet J S, Isbell Ch L, Viola P 1997 MIMIC: Finding Optima by EstimatingProbability Densities. In: Mozer M, Jordan M, Petshe Th (Eds) 1997 Advanes inNeural Information Proessing Systems 9. MIT Press, Cambridge6. Baluja S, Davies S 1997 Using Optimal Dependeny-Trees for Combinatorial Op-timization: Learning the Struture of the Searh Spae. Report Number CMU-CS-97-107, Carnegie Mellon University, Pittsburgh, PA7. Marasuilo L A, MSweeney M 1977 Nonparametri and Distribution-Free Meth-ods for the Soial Sienes. Brooks/Cole Publishing Company, CA8. Kvasnika V, Pelikan M, Pospihal J 1996 Hill Climbing with Learning (An Ab-stration of Geneti Algorithm). Neural Network World 5: 773-7969. Baluja S 1994 Population-Based Inremental Learning: A Method for Integrat-ing Geneti Searh Based Funtion Optimization and Competitive Learning. ReportNumber CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA10. Kau�man S A 1993 The Origins of Order: Self-Organization and Seletion inEvolution. Oxford University Press, In., NY

