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Motivations	



•  Variation operators can be replaced by building and sampling probabilistic 
models like in UMDA or PBIL.	



	


•  Probability vector is easy to learn and sample.	



•  Probability vector works great for simple problems like OneMax, where 
single-bit statistics lead towards the optimum.	



•  Probability vector even outperforms simple GAs for those simple problems 
because it provides more effective mixing.	



But probability vector fails for problems with���
misleading single-bit statistics (deceptive bits).	
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UMDA on OneMax and ���
Concatenated Trap	
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Why Failure?	



•  Onemax: 	


§ Optimum in 111…1	



§ 1 outperforms 0 on average.	



•  Traps: optimum in 11111, but	


•  f(0****) = 2	


•  f(1****) = 1.375	



•  So single bits are misleading.	
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Linkage Learning in EDAs���
	



•  Challenge	


§ Can we design probabilistic models that would allow us to 

solve additively separable problems of bounded order and 
other similar problems?	



•  Comments	



§ This is closely related to linkage learning.	


§ Need to modify probability vector to allow linkage learning.	



§ Remember messy GA?	
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Two Steps	



•  Step 1: Show that it can be done	


§ Try to find a probabilistic model that actually works for 

traps and other additively separable problems.	



•  Step 2: Do it	



§ Find a way to actually learn such a model so that we solve 
traps and other additively separable problems and similar 
problems.	
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Step 1: Good Model for Trap-5	



For each trap subfunction, store the proportions of different	


combinations of 5 bits in these 5 bits.	



Example	


•  For n = 10 bits where a trap is applied to the first 5 bits and the last 5 bits, 

we would store two arrays	


•  One array stores the proportions of all combinations of 5 bits in the first 5 

positions (i.e., proportions of 00000, 00001, …)	


•  The other array stores the proportions of all combinations of 5 bits in the 

last 5 positions.	


•  We have n/5 tables with 32 proportions/probabilities each.	
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Good Model for Trap-5	



Good model for 15-bit trap of order 5	
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Good Model for Trap-5	



•  Learning	


§ Go through the population, and for each trap subfunction, 

compute the proportions of all 32 combinations of 5 bits in 
the corresponding string positions.	



•  Sampling	



§ Go through all trap subfunctions, and for each subfunction, 
generate the 5 bits in the corresponding positions with the 
probabilities computed from the selected solutions.	



§ Generates 5 bits at a time.	


§ Can be implemented using the roulette-wheel selection of 

fitness-proportionate selection.	
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Good Model for Concatenated Trap-5	
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Why does it work?	



•  For single bits (probability vector), 0 outperforms 1 (average 
fitness) and, as a result, it fails.	



•  For 5 bits, 11111 is the global optimum of each trap 
subfunction, so it performs better than any other combination 
of 5 bits in the corresponding string positions.	



•  So, 11111 should win over other competing schemata.	



•  That is what happens.	



• We get convergence in O(n log n) evaluations just like for 
onemax and UMDA!	
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Step 2: How to Do It? ���
Extended Compact Genetic Algorithm 	



•  Extended compact genetic algorithm (ECGA) of Harik (1999)	



•  Uses models that consider subsets of string positions.	



•  Consider the good model for traps as an example.	



•  Different subsets can be of different size.	



•  Each subset can contain any positions (no contiguous blocks)	



•  A subset of size k will require 2k probabilities/proportions to learn.	



•  ECGA learns both that subsets we need to consider as well as the 
probabilities for all combinations of values for each subset.	



•  ECGA models are called marginal product models (MPMs).	
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Example of an ECGA Model	



A subproblem (BB) of order k requires 2k proportions 
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Extended Compact Genetic Algorithm ���
(ECGA)	



Learning ECGA Model 
There are two tasks for learning an MPM model: 
•  Learn what subsets (BBs) to consider. 
•  Learn the probabilities/proportions for each subset. 
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ECGA	



Population MPM Model Selection 
New 

Population 
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Learning Probabilities	



•  Two inputs	


§ Population of selected solutions.	


§ Subsets of string positions (BBs).	



•  Task: Learn all the proportions for the given BBs and population.	



•  For every subset of string positions (BB), do the following:	


§ Denote the number of string positions in this subset by k.	


§ Allocate an array for 2k positions (k is the number of string 

positions in this BB) to store the proportions.	


§ Compute the proportion of each of the 2k instances of this BB 

from the selected population of solutions.	


§ Store all the proportions in the allocated array.	
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Learning Probabilities: Example ���
	



•  Inputs	


§ Subsets (BBs): [1 3] [2] [4 5]	



§ Population:	



	



•  Learned proportions	


§ BB [1 3]: p(00)=0.25; p(01)=0.50; p(10)=0.00; p(11)=0.25;	



§ BB [2]: p(0)=0.25; p(1)=0.75;	


§ BB [4 5]: p(00)=0.25; p(01)=0.25; p(10)=0.00; p(11)=0.50;	
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Learning Subsets ���
(Structural Learning, Task 1)	



•  Use greedy algorithm	



•  Start with each string position being a separate BB ���
(like the probability vector).	



•  Repeat until we cannot improve model anymore:	


§ Consider merging any pair of BBs and evaluate how much 

each merge of two BBs improves the model.	



§ Merge the best pair of BBs (improving the model the most).	
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Learning Subsets ���
(Structural Learning, Task 1)	
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How to Evaluate Model Structure?���
	



• What we have	


§ We know how to learn proportions for given BB 

decomposition (MPM).	



§ We know how to learn MPM (where the BBs are) if we 
knew how to compare quality different MPMs.	



• What we want	


§ We need to know how to compare two alternative MPMs.	



§ Example: [1 3] [2] [4] [5] vs. [1 3] [2] [4 5]	


§ What information do we have? Selected set of solutions.	
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Occam’s Razor ���
	



•  One should not increase, beyond what is necessary, the 
number of entities required to explain anything.	



•  Other words: Simplest model is the best.	



•  Other ways to argue: Bayesian statistics.	



•  But let’s believe this for now.	



• We’ll use a specific measure based on this principle: Bayesian 
Information Criterion or BIC (Schwarz, 1978).	
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Bayesian Information Criterion (BIC)	



Bayesian Information Criterion 
•  BIC(M) = number of bits to encode both the population as well as the model 

parameters. 
•  Population component represents accuracy. 
•  Parameter component represents pressure toward simple models with fewer 

parameters. 

Two Components 
 
 
 
 

number of bits to encode the 
population given the model. 

number of bits to encode all 
probabilities/proportions. 
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BIC Components	



•  Probability of Xi given M is given by	



•  where m is the number of subsets (BBs) encoded by M, and p
(Sj |M) denotes the proportion/probability of the jth subset of 
bits given by model M.	



•  Observation (from information theory)	


•  	

                  component of BIC represents the number of 

bits required to encode the entire population of selected 
solutions with the knowledge of the model M.	
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Generating New Solutions	



•  Go one subset of bits after another (based on the model).	



•  For each subset, generate bit combinations based on the 
observed proportions.	



•  Each BB has the same probability as its proportion.	



•  This can be done with the roulette wheel generator.	



•  Recall how we did this for the good model for traps.	
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Summary	



•  ECGA Solves Additively Separable Problems	



•  ECGA can find BBs (linkage learning).	



•  ECGA can mix BBs (by sampling model).	



•  ECGA solves decomposable problems fast.	



•  Requires about O(n1.5 log n) evaluations (regardless k).	



•  The challenge we discussed at the beginning is met by ECGA.	



•  Very important result, but also done with other EDAs and other 
methods.	
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