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tThe paper deals with the Bivariate Marginal Distribution Algorithm (BMDA).BMDA is an extension of the Univariate Marginal Distribution Algorithm(UMDA). It uses the pair gene dependen
ies in order to improve algorithmsthat use simple univariate marginal distributions. BMDA is a spe
ial 
ase ofthe Fa
torization Distribution Algorithm, but without any problem spe
i�
knowledge in the initial stage. The dependen
ies are being dis
overed duringthe optimization pro
ess itself. In this paper BMDA is des
ribed in detail.BMDA is 
ompared to di�erent algorithms in
luding the simple geneti
 algo-rithm with di�erent 
rossover methods and UMDA. For some �tness fun
tionsthe relation between problem size and the number of �tness evaluations until
onvergen
e is shown.1. Introdu
tionGeneti
 algorithms work with populations of strings of �xed length. In this pa-per binary strings will be 
onsidered. From 
urrent population better stringsare sele
ted at the expense of worse ones. New strings are generated using there
ombination/
rossover operator and mutation. The re
ombination operator
ombines the information 
ontained in two strings. Mutation performs a smallperturbation to these strings in order to keep the population diverse and tointrodu
e new information. The theory behind these operators is based on thes
hema theorem [1℄. It is known that the operators often 
ause the disrup-tion of s
hemata of large de�ning length. This may 
ause bad performan
e ofgeneti
 algorithms on problems where these s
hemata are needed to obtainthe optimum. This has lead to new approa
hes for doing re
ombination. The�rst line of resear
h uses di�erent reordering methods and other methods thatde
rease the de�ning length of important s
hemata. In these methods, the val-ues of bits on di�erent positions are not the only thing that is optimized as



2it was with 
lassi
al geneti
 algorithm. The order of bits and other featuresare optimized as well. The methods work quite well for de
omposable prob-lems although they require some prior knowledge about the problem and theyare usually very memory and time 
onsuming. This dire
tion has lead to theGEMGA (Gene Expression Messy Geneti
 Algorithm) [2℄.The se
ond line of resear
h is based on the estimation of probability distribu-tion. The simplest way is to estimate the distribution using univariate marginalfrequen
ies in the set of sele
ted parents. This is what UMDA (UnivariateMarginal Distribution Algorithm) [3℄ is based on. This algorithm works per-fe
t for linear problems as is shown in [3℄. But it also works very well forproblems that don't 
ontain signi�
ant dependen
ies. Performan
e of UMDA
an be estimated with the use of the varian
e de
omposition [3℄. In general,the greater the rate of additive varian
e to the sum of higher order varian
es,the better UMDA performs.For problems with dependen
ies among di�erent genes this approa
h is notsuÆ
ient. The theory of UMDA has been extended to problems where theprobability model is known. In FDA (Fa
torization Distribution Algorithm) itis assumed that the probability 
an be written as some produ
t of marginal fre-quen
ies [4℄. This is an ideal s
hema algorithm, be
ause no important s
hemata
an be disrupted. A more pragmati
 way to extend UMDA is to use bivariatemarginal distributions.In the MIMIC algorithm [5℄ the distribution is assumed to be a simple 
hain-like produ
t. All bits are ordered into a 
hain using a simple greedy algorithm�rst taking as input the univariate and bivariate marginal frequen
ies in theset of sele
ted parents. For ea
h new individual, the �rst bit is generated us-ing its univariate marginal frequen
y. All other bits are generated using the
onditional probability given the previous bit. Another approa
h, presentedin [6℄, uses a tree stru
ture for the probability model. The tree is 
onstru
tedto maximize the sum of the so-
alled mutual information of genes that are
onne
ted. The value for the bit 
orresponding to the root of this tree is gen-erated using its univariate frequen
y. The remaining bits are generated using
onditional probability given the value of their parent in the dependen
y tree.Both univariate and bivariate frequen
ies are 
al
ulated in
rementally. In ourapproa
h we 
ombine these two methods. The mutual information dependen
ymeasure is repla
ed by Pearson's 
hi-square statisti
s, in order to be able toidentify pairs that are independent with a 
ertain probability. These pairs aremapped into a dependen
y graph. The algorithm will be pre
isely des
ribedin the next se
tions. Even though the algorithm and all terms are de�ned for
hromosomes de�ned as binary strings of �xed length, these 
an be easily re-formulated for any �nite alphabet. The �rst position in a string is referred asthe 0th position in this paper. This makes the equations simpler.



32. Marginal Frequen
ies and Pearson's statisti
sLet us denote the length of 
hromosome as n. Let P be a set of binary stringsof length n (the population). The size of P will be denoted as N . For ea
hposition i 2 f0; : : : ; n� 1g and ea
h possible value on this position xi 2 f0; 1g,we de�ne the univariate marginal frequen
y pi(xi) for set P as the frequen
yof strings that have xi on ith position in set P . Similarly, for any two positionsi 6= j 2 f0; : : : ; n�1g and any possible values on these positions xi; xj 2 f0; 1g,we de�ne the bivariate marginal frequen
y pi;j(xi; xj) for set P as the frequen
yof strings that have xi and xj on positions i and j, respe
tively. Sometimes theterm of probability will be used instead of frequen
y. With the use of univariateand bivariate marginal frequen
ies, the 
onditional probability of appearan
eof the value xi on ith position having given the value xj on jth position 
anbe 
al
ulated as pi;j(xijxj) = pi;j(xi; xj)pj(xj) (1)Pearson's 
hi-square statisti
s [7℄ is de�ned byX2 =X (observed� expe
ted)2expe
ted (2)Here, for ea
h pair of positions, the observed quantity is the number of possiblepairs of values on these positions. If these two positions were independent,the number for ea
h of these pairs of values 
ould be easily 
al
ulated usingthe basi
 probability theory. This is the expe
ted quantity. Then, in terms ofunivariate and bivariate frequen
ies and the total number of points taken intoa

ount, for positions i 6= j, we get [7℄X2i;j = Xxi;xj (Npi;j(xi; xj)�Npi(xi)pj(xj))2Npi(xi)pj(xj) (3)If positions i and j are independent for 95%, then for Pearson's 
hi-squarestatisti
s following inequality holds [7℄X2i;j < 3:84 (4)3. The Constru
tion of a Dependen
y GraphIn this se
tion the 
onstru
tion of a dependen
y graph will be des
ribed. Thegraph will be de�ned by three sets, V , E, and R, i.e. G = (V;E;R). V isthe set of verti
es, E � V � V is the set of edges and R is a set 
ontainingone vertex from ea
h of the 
onne
ted 
omponents of G. In a dependen
ygraph ea
h node 
orresponds to a position in a string. There is one to one
orresponden
e between the verti
es and positions in a string. Thus, we 
anuse the set of verti
es V = f0; : : : ; n � 1g, where vertex i 
orresponds to the



4ith position. As it will be 
lear from the 
onstru
tion of a dependen
y graph,the graph does not have be 
onne
ted. That means that it does not have toform a tree. The dependen
y graph is always a
y
li
. It 
an be seen as the setof trees that are not mutually 
onne
ted. The generation of new strings doesnot depend on the number of 
onne
ted 
omponents of the dependen
y graph.When talking about frequen
ies in this se
tion, we always mean the set whi
his used for 
reation of a dependen
y graph. In the des
ription of the algorithmit is always said whi
h one is meant.Let us denote A the set of verti
es that have not been pro
essed yet. At thestart of the algorithm A is set to V . Then, su

essively, as edges are beingadded into E, A gets smaller. The algorithm ends up with A equal to anempty set what means that all verti
es have been pro
essed. Another set isdenoted D. It is the set of all pairs from V � V that are not independent for95% (see Equations 3 and 4), i.e.D = �(i; j)ji 6= j 2 f0; : : : ; n� 1g ^X2i;j � 3:84	 (5)Then, the algorithm for the 
onstru
tion of a dependen
y tree is de�ned asfollowsAlgorithm for the Constru
tion of a Dependen
y Graph1. set V  f0; : : : ; n� 1gset A Vset E  ;2. v  any vertex from Aadd v into R3. remove v from A4. if there are no more verti
es in set A, �nish5. if in D there are no more dependen
ies of any v and v0 where v 2 A andv0 2 V nA, go to 26. set v to the vertex from A that maximizes X2v;v0 over all v 2 A andv0 2 V nA7. add edge (v; v0) into the set of edges E8. go to 3The basi
 idea of the algorithm is very simple. It is similar to the well-knownalgorithm for obtaining the largest spanning tree. First, an arbitrary vertex isadded to the graph. Then, the vertex with the greatest dependen
y with someof previously added verti
es and the edge 
orresponding to this dependen
yare added to the graph. The last step is repeated until there is no dependen
ybetween already added verti
es and the rest. If this is the 
ase, an arbitraryvertex is added into graph and the pro
ess repeats. The whole pro
ess repeatsuntil all verti
es are added into the graph. The e�e
t is that an a
y
li
 graphwith a maximal sum of 
hi-square statisti
s values over the 
onne
ted verti
esis 
onstru
ted. Resulting graph does not have to be 
onne
ted, as it was alreadymentioned above. As the �rst vertex from ea
h 
omponent (that is su

essively



5
reated by adding verti
es a

ording to the dependen
ies) is added into thegraph, it is added also into the set R (i.e., to the set of spe
ial verti
es, onefor ea
h 
omponent of the resulting graph).Sin
e the set A is initialized to a �nite set of verti
es and in ea
h 
y
le at leastone vertex is removed from it, the algorithm does always �nish and thereforeit is well-de�ned. The time 
omplexity of the des
ribed algorithm is O(n3).4. Generation of New IndividualsTo generate new individuals, a previously des
ribed dependen
y graph G =(V;E;R) is used. For ea
h individual the values for positions 
ontained inR are generated by the univariate marginal frequen
ies. Then, if there exista position v that is yet not generated and it is 
onne
ted to some alreadygenerated position v0 (a

ording to the set of edges E), it is generated usingthe 
onditional probability (see Equation 1) for a position v having given thevalue on a position v0. The last step is repeated until values for all positionsare generated.In the following des
ription of the algorithm for the generation of a new indi-vidual, one important set, among sets de�ning graph G, appears. It is denotedasK and it stands for the set of all positions that have been already generated.The individual is a string of length n and will be denoted by x. Its ith bit willbe denoted as xi.Algorithm for the Generation of a New Individual1. set K  V2. generate xr for all r 2 R using univariate frequen
ies, i.e. set it to thevalue a with probability pr(a)set K  K nR3. if K is already empty, �nish4. 
hoose k from K su
h that there exist k0 from V nK 
onne
ted to k inthe graph G5. generate xk using 
onditional probability having given value for xk0 , i.e.set it to value a with probability pk;k0(ajxk0 )6. remove k from the set K7. go to 4The set K is initialized as a �nite set and in ea
h 
y
le one vertex is removedfrom it. For ea
h 
onne
ted 
omponent, at least one vertex is generated �rst.The algorithm is therefore well-de�ned. The generation of one individual 
anbe done in O(n) steps. The generation of di�erent individuals is independent.The algorithm for generation of new individuals is therefore well suited forparallelization.



65. Bivariate Marginal Distribution AlgorithmHaving de�ned the algorithms for the 
onstru
tion of a dependen
y graphand the generation of new individuals, the bivariate marginal distribution al-gorithm (BMDA) 
an be des
ribed. In BMDA, the population is randomlygenerated �rst. From this population, the better individuals are sele
ted. Uni-variate and bivariate marginal frequen
ies for these individuals are then 
al-
ulated. Using these frequen
ies, a dependen
y graph is 
onstru
ted as it isdes
ribed in Se
tion 3. Having given the dependen
y graph, new individualsare generated as des
ribed in Se
tion 4. New individuals are then added intothe old population from whi
h the individuals were originally sele
ted. Theyrepla
e some of the old ones, usually the worst of them, so that the numberof individuals in the population remains 
onstant. From the new population,individuals are sele
ted again. The pro
ess, starting o� with the sele
tion ofbetter individuals and ending with adding the new individuals into the oldpopulation, repeats until the termination 
riteria are met. The termination
riteria 
an 
ause the algorithm to stop if it has already found the optimum orthe diversity of population is too low. The value of the optimum is usually un-known by the breeder. That is why the se
ond 
ondition is the more importantone. When the diversity is too low almost all individuals in the population arethe same. That means that there is not enough information in the populationto 
reate new individuals that would �t the problem better than already foundones.Bivariate Marginal Distribution Algorithm1. set t 0randomly generate initial population P (0)2. sele
t parents S(t) from P (t)
al
ulate univariate frequen
ies pi and bivariate frequen
ies pi;j for thesele
ted set S(t)3. 
reate dependen
y graph G = (V;E;R) using the frequen
ies pi and pi;j4. generate the set of new individuals O(t) using dependen
y graph G andfrequen
ies pi and pi;j5. repla
e some of individuals from P (t) with new individuals O(t)set t t+ 16. if termination 
riteria are not met, go to 2The termination 
riterion due to the la
k of diversity is de�ned as follows:if all univariate frequen
ies are 
loser than � > 0 to 0 or 1, the algorithm isterminated. If this is the 
ase, we say the algorithm �-
onverged. In most ofour experiments, we use this termination 
riterion.The probability model used by BMDA is given byp(x) = Yr2R pr(xr) Yi2V nR pi;e(i)(xijxe(i)) (6)



7where e(i) returns the vertex 
onne
ted to the vertex i but added sooner thanthis vertex using the algorithm for the 
onstru
tion of a dependen
y graph fromSe
tion 3. To say it in another way, e(i) is the vertex that is the next one onthe way from ith vertex to the r 2 R that 
orresponds to the 
omponent wherethe vertex i is lo
ated. This fa
torization is a spe
ial 
ase of the fa
torization
onsidered in [4℄.6. How Does It Work and Why?The distribution of BMDA is based on the use of 
onditional probabilities forpairs of positions that seem to be dependent. This information is estimatedfrom the 
urrent population of strings. Any binary fun
tion 
an be de
omposedas follows [4℄f(x) = a+Xi1 ai1xi1 + Xi1<i2 ai1;i2xi1xi2 + : : :+ a0;1;:::;n�1x0x1 : : : xn�1 (7)A fun
tion is de
omposable of order k if all 
oeÆ
ients of higher order are 0.Let us talk about de
omposable fun
tions of order at most two, �rst. For this
lass of fun
tions, the best dependen
y graph 
an be 
onstru
ted fairly easily.It 
an be done by 
onne
ting the verti
es i and j just when the 
oeÆ
ient ai;jis not equal to zero. A graph 
onstru
ted this way does not have to be a
y
li
.If this graph is a
y
li
 or this 
an be a
hieved by deletion of only insigni�
antdependen
ies, then it serves as the best dependen
y graph that 
an be usedfor the generation of new individuals. If BMDA found this dependen
y graphand used it for generation of new individuals, it would perform very well. Itwould perform as well as UMDA does with linear fun
tions. The performan
eof BMDA therefore relies on whether it is able to dete
t these dependen
ieshaving no problem-spe
i�
 knowledge in an initial stage. In the empiri
al partof this paper it will be shown that most of the dependen
ies are usually foundafter only a few generations. If the mentioned graph is not a
y
li
 and thisproperty 
annot be satis�ed by deletion of signi�
antly unimportant depen-den
ies from it, the problem be
omes impossible to solve within the use of thismodel. This problems 
ould be possibly solved by the use of terms of 
ondi-tional independen
e. Not only 
onditional probabilities for a position havinggiven the value for another one but for a position having given values for a setof some of other positions as well would be taken into a

ount. The problemwith this approa
h is, as it was already mentioned above, that BMDA doesnot get any problem-spe
i�
 knowledge about the problem that is solved. Dur-ing optimization, it is learning the stru
ture of the problem itself. From thebeginning, the information about dependen
ies is very un
lear and almost nopair of positions seems to be independent. The approximation gradually getsmore and more a

urate. There is no e�e
tive method for the predi
tion ofthe more 
omplex model. Moreover, the �tness fun
tion does not have to bede
omposable. A model that is simpler than the 
orre
t model may serve well



8in many 
ases. This 
an be demonstrated by the good performan
e of UMDAfor many nonlinear problems. The right 
hoi
e is somewhere between the a
-
urate model and a simple model as univariate marginal distributions. The
hara
ter of this 
lass of algorithms does not allow very 
omplex predi
tionsof the model due to the amount of available information about the problem.The problem arises when the optimized fun
tion is additively de
omposable oforder three or more. If this is the 
ase, the given �tness distribution 
annot be
overed by the BMDA model. The best BMDA 
an do is to use the model thatis as 
lose as possible to the original distribution. The dis
overy of higher orderdependen
ies is signi�
antly more time and spa
e 
omplex and that is why itis hard to say if it was worthy to follow the way of enlarging the blo
ks takeninto a

ount. Moreover, there is again la
k of information about the problem topredi
t the more 
omplex models. If all the dependen
ies were known from thebeginning, the best way would be to use them as in FDA [4℄. Experiments showthat BMDA performs well on problems of higher order dependen
ies as well.Higher order dependen
ies are usually substituted by 
hain-like dependen
ystru
tures in our model.7. ExperimentsFirst experiments were done for a few di�erent �tness fun
tions. The 
hoi
eof the �tness fun
tions was done to make the behavior of the used algorithmmore 
lear. Comparisons to some other methods were done. But the mainpurpose of this se
tion is the explanation of the behavior of BMDA. The sizeof the paper does now allow us to take into a

ount all other algorithms that
ould possibly 
ompete with BMDA for solving these problems. For most ofthe problems the de
omposition of the problem is shown too, to make thingsmore 
lear.In the experiments the so-
alled ordering parameter [8℄ is often used as ameasure of 
onvergen
e. The ordering parameter is de�ned as follows�(p) = 4n n�1Xi=0 �pi(1)� 12�2 (8)where p is the ve
tor of univariate marginal frequen
ies pi(1). The 
loser theparameter is to one, the less diversity the population 
ontains.For some �tness fun
tions a permutation of the variables will be allowed. Thepermutations will be denoted as �k where k 2 f1; : : : ; ng. The permutation�k is well-de�ned for any k su
h that n 
an be divided by k. It is de�ned asfollows �k(i) = �n(i mod k) + ik � (9)�1 is the identity. For �2 and n = 12 we get �2 =(0; 2; 4; 6; 8; 10; 1; 3; 5;7; 9; 11). Permutations will be used to 
hange the order of the positions of a



9string to show the behavior of di�erent algorithms with respe
t to the usedpermutation.For all experiments a �xed sele
tion method (Trun
ation sele
tion [3℄ with� = 50%) was used. The worse half of the old population was repla
ed by thenew individuals.7.1 Onemax �tness fun
tionThis �tness fun
tion is a
tually a simple linear fun
tion over the single bitswith all 
oeÆ
ients equal to 1. That means it is just the sum of all bits in astring, i.e. fonemax(x) = n�1Xi=0 xi (10)where xi is the value on the ith position in string x. Onemax �tness fun
tiondoes not have a permutation as an input parameter be
ause its value is thesame for any permutation of bits in an input string. This fun
tion is de
om-posable of order one, as we 
an see from its basi
 form already. That meansthat BMDA should give good results for this fun
tion. As it was already shownin [3℄, UMDA works very well for this 
lass of problems. For UMDA a verysmall population size is suÆ
ient for its 
onvergen
e into the optimum. BMDAuses a more 
omplex distribution and to make this 
orre
t the dependen
iesthat are present in the problem have to be dis
overed well. That is why thepopulation size has to be enlarged. For ea
h algorithm, the set of parameters is
hosen to make it 
onverge to the optimum in 100% of totally 30 independentruns. For all algorithms the �-
onvergen
e termination 
riterion was used with� = 0:05.As it is shown in Figures 1 and 2, BMDA 
onverges slower than UMDA andthe simple geneti
 algorithm with uniform 
rossover. This is 
aused by theuse of statisti
al methods to dis
over dependen
ies that require to enlarge thepopulation. UMDA takes the bits as independent from the beginning, so ituses the information BMDA has to dis
over! If BMDA had this information,it would perform exa
tly the same as UMDA. GA with uniform 
rossoverand a great 
rossover rate performs similar to UMDA [3℄, i.e. it performsvery well for linear problems. Geneti
 algorithm with onepoint 
rossover keepsthe dependen
ies among neighboring bits so it has the same disadvantagewith linear problems as BMDA. In Figure 1, an average number of �tnessevaluations until 
onvergen
e for 30 independent runs is shown. In Figure 2the evolution of ordering parameter in a randomly 
hosen run is shown.7.2 Quadrati
 Fun
tionThe quadrati
 �tness fun
tion used for 
omparisons in this se
tion is de�nedas fquadrati
(x; �) = n2�1Xi=0 f2(x�(2i); x�(2i+1)) (11)
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e



11it performed mu
h worse than any of other methods. An average number offun
tion evaluations until 
onvergen
e over 30 runs is taken into a

ount.The fun
tion is not de
eptive and that is why it should be not so hard to �ndthe optimum for simple GA. It is an ideal fun
tion for the BMDA be
auseit is de
omposable of order 2 (see its de�nition) and the dependen
ies donot form 
y
les. First, the fquadrati
 with permutation �1 (i.e., identity) willbe dis
ussed. Experiments have shown that although this fun
tion is not abig problem to solve by simple GA, BMDA performs mu
h better. For GAwith onepoint 
rossover the number of �tness evaluations seems to grow mu
hfaster than for BMDA with in
reasing size of a problem (see Figure 3). GAwith uniform 
rossover performs signi�
antly worse than GA with onepoint
rossover (see Figure 4, noti
e that there is used a log-s
aling for the numberof �tness evaluations in this �gure). The bad performan
e of GA is 
aused bythe similar �tness values for both leading s
hemata that are opposite to ea
hother and by the fa
t that their disruption signi�
antly de
reases the �tness. Inboth �gures 4 an average number of �tness evaluations needed for 
onvergen
ein 30 independent runs is shown.Another permutation that was used for 
omparisons was �2 that spreads pairsof positions (2i) and (2i+ 1) so that the distan
e between them is half of thesize of a string. This reordering of bits has di�erent e�e
t on di�erent algo-rithms. For BMDA (as well as it would be for UMDA), it a
tually does nota�e
t anything be
ause both algorithms are independent of positioning of bits.For simple GA with uniform 
rossover the situation is analogi
al. The prob-lem arises for simple GA with onepoint 
rossover. In this 
ase, this algorithmperforms very poorly. Already for a problem of size n = 30, GA with onepoint
rossover requires about 10 times more �tness evaluations than with �1. Thisgap enlarges with the size of a problem. Results for BMDA and simple GAwith uniform 
rossover are just slightly di�erent from results with permutation�1.7.3 De
eptive fun
tion of order 3De
eptive fun
tion is often used for 
omparisons of di�erent optimizationmethods for its being de
eptive. With de
eptive problems, the average �tnessof low order s
hemata present in optimum is lower than the average �tness ofalternative ones. This property makes this 
lass of fun
tions hard to solve bythe simple geneti
 algorithm as well as UMDA and many other evolutionaryalgorithms be
ause these algorithms are based on the superior position of loworder s
hemata that are mat
hed by optimum. The �tness fun
tion is thende�ned as f3de
eptive(x; �) = n3�1Xi=0 f3(x�(3i) + x�(3i+1) + x�(3i+2)) (13)where x is a bit string, � is any permutation of order n, and f3 is de�ned as
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tion with � = 50% was used.f3(u) =8>><>>: 0:9 if u = 00:8 if u = 10 if u = 21 otherwise (14)Two di�erent ordering permutations �1 and �3 (see Equation 9) are used. The�3 operator mixes up the positions of the bits in a string so that the threeneighboring bits (3i), (3i+1), and (3i+2) are positioned so that the distan
ebetween ea
h two of them is at least one third of the length of 
hromosome. Forinstan
e, for n = 12 we get �3 = (0; 4; 8; 1; 5; 9; 2; 6; 10; 3; 7; 11). The problemis a
tually the same for any permutation although for �3 the dependen
ies aredistributed more widely so that important s
hemata are of a greater de�ninglength than originally.Results for the problem of size n = 30 are shown in Table 1.Table 1. Number of �tness evaluations for f3de
eptive. The population sizes for apermutation �1 were 400 for GA (onepoint) and 1300 for BMDA. For permutation�3 the population size for BMDA was 1300. GA (uniform) for both used permutationsand GA (onepoint) for permutation �3 did not a
hieve 100% 
onvergen
e even forpopulations larger than 15000 (there is given a lower bound for the number of �tnessevaluations in the table). The trun
ation sele
tion with � = 50% was used.�tness eval. for �1 �tness eval. for �3BMDA 17; 550 17; 420GA (onepoint) 4; 977 > 230; 000GA (uniform) > 650; 000 > 650; 000
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Figure 4. Number of �tness evaluations for fquadrati
 (log-s
aling). The ranges ofthe used population size (for n = 30 to n = 120) were 200�570 for BMDA, 260�2500for GA (onepoint), and 680� 7000 for GA (uniform). The trun
ation sele
tion with� = 50% was used.7.4 NK �tness fun
tionThere are two important input parameters for the so-
alled NK �tness fun
-tion [10℄, the length of an input string n, the number of neighbors to take intoa

ount k. When the fun
tion is initialized, for ea
h position of a string thereare 
hosen k other positions at random. In this fashion we get n groups of po-sitions, ea
h of length k+1. Ea
h position is 
ontained in at least one of thesegroups. Let us denote fpi;0; : : : ; pi;kg to be the ith group. For ea
h group thereis randomly generated value for ea
h of possible 
ombinations of values on 
or-responding positions. That means that for ith group, there are generated 2k+1values. Let us denote by fi the fun
tion that returns the generated value for
ombination of values fxpi;0 ; : : : ; xpi;kg on positions from ith group. Then forgiven matrix of positions P = (pi;j)n�1;ki;j=0 and ve
tor of fun
tions F = (fi)n�1i=0(both generated in the initial stage) the �tness fun
tion is de�ned asfNK(x) = n�1Xi=0 fi(xpi;0 ; : : : ; xpi;k ) (15)Sin
e the neighbors are pi
ked at random it makes no sense to use any per-mutation to reorder the positions. NK �tness fun
tion is 
learly de
omposableof order at most k + 1. Random generation of both the neighbors and of thevalues 
an redu
e the order, of 
ourse. However, the 
han
e that this is the
ase is very small.For n = 50 two di�erent k were used, k = 2 and k = 3. For ea
h of them, thematrix P and ve
tor of fun
tions F was generated �rst. Only one generatedset of these parameters was used for ea
h k. Results for various algorithms arepresented in Table 2.



14Sin
e the optimum is not known for any of possible k, the best found numberever was taken as optimal and all algorithms were required to 
onverge to thisnumber. The problem spa
e was explored by all algorithms with populationsthat should be large enough to �nd the real optimum. Even if this is not the
ase, i.e. the optimum was not found well, the best number ever found is takeninto a

ount, and even if the optimum were di�erent from this number, thiswould not 
hange anything on 
omparisons and their results.Table 2. Number of �tness evaluations for fNK . The population sizes for n = 50 andk = 2 were 210 for UMDA, 220 for GA (uniform), 340 for BMDA and 500 for GA(onepoint). The population sizes for n = 50 and k = 3 were 300 for GA (uniform), 700for GA (onepoint), 2500 for BMDA and 8000 for UMDA. The trun
ation sele
tionwith � = 50% was used. (n; k) = (50; 2) (n; k) = (50; 3)BMDA 5; 480 51; 625GA (onepoint) 11; 010 17; 440GA (uniform) 4; 288 7; 826UMDA 3; 398 259:6008. Con
lusionsFor linear and quadrati
 problems, BMDA works well what 
an be explainedby the use of probabilisti
 distribution based on pair dependen
ies for the gen-eration of new individuals. For linear problems UMDA and GA with uniform
rossover perform better and GA with onepoint 
rossover performs similarlyor worse than BMDA. The 
onvergen
e of BMDA is slowed down by the needto dis
over the probabilisti
 model during optimization �rst. For quadrati
problem, BMDA performs best among all 
ompared algorithms. The GA withonepoint 
rossover performs best of all other algorithms but it fails when thede�ning length of important s
hemata is enlarged by di�erent ordering of bitsin a string. Experiments have shown that the gap between BMDA and otheralgorithms is for a quadrati
 fun
tion very large. The di�eren
e between thisand other algorithms with linear fun
tion is insigni�
ant in this 
ontext.For BMDA, the problem arises with problems with dependen
ies of a higherorder than two. For this 
lass of problems, the used model of the sear
h spa
e isnot suÆ
ient. It is approximated somehow but this is often not suÆ
ient. Forde
eptive �tness fun
tion of order 3, BMDA 
onverged slower than GA withonepoint 
rossover. The GA with uniform 
rossover 
onverged mu
h worsethan BMDA and UMDA was mislead in most of the 
ases even for huge pop-ulation sizes. What is important though is that when the length of s
hematais enlarged, GA with onepoint 
rossover performs very poor even for hugepopulations sizes and the number of �tness evaluations but the performan
eof BMDA remains almost the same. This, as well as the results for quadrati
fun
tion, gives an eviden
e that GA with onepoint 
rossover does not e�e
-tively dis
over and use the s
hemata of a large de�ning length. It works very



15well for short building blo
ks. Uniform 
rossover is independent of the length ofs
hemata but it disrupts dependen
ies very often. UMDA disrupts dependen-
ies too. BMDA takes into a

ount dependen
ies of order at most two and this
auses that although it is independent of length of the s
hemata and it doesnot disrupt dependen
ies of order two, it might disrupt the dependen
ies ofa higher order. The dependen
ies of a higher order are substituted by 
hain-like stru
tures 
omposed of the dependen
ies of order two but this is oftennot suÆ
ient. The solution to this problem might be the use of Fa
torizationDistribution Algorithm although this requires a problem spe
i�
 knowledgein the initial stage. This is not required by any of UMDA, BMDA, or GA. Ifthis were over
ome, FDA would perform very well for all problems that arede
omposable.A
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