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Foreword 
n  Motivation 

¨  Genetic and evolutionary computation (GEC) popular. 
¨  Toy problems great, but difficulties in practice. 
¨  Must design new representations, operators, tune, … 

n  This talk 
¨  Discuss a promising direction in GEC. 
¨  Combine machine learning and GEC. 
¨  Create practical and powerful optimizers. 
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Overview 
n  Introduction 

¨  Black-box optimization via probabilistic modeling. 
n  Probabilistic Model-Building GAs 

¨  Discrete representation 
¨  Continuous representation 
¨  Computer programs (PMBGP) 
¨  Permutations 

n  Conclusions 
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Problem Formulation 

n  Input 
¨  How do potential solutions look like? 
¨  How to evaluate quality of potential solutions? 

n  Output 
¨  Best solution (the optimum). 

n  Important 
¨  No additional knowledge about the problem. 
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Why View Problem as Black Box? 

n  Advantages 
¨  Separate problem definition from optimizer. 
¨  Easy to solve new problems. 
¨  Economy argument. 

n  Difficulties 
¨  Almost no prior problem knowledge. 
¨  Problem specifics must be learned automatically. 
¨  Noise, multiple objectives, interactive evaluation. 
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Representations Considered Here 

n  Start with 
¨  Solutions are n-bit binary strings. 

n  Later 
¨  Real-valued vectors. 
¨  Program trees. 
¨  Permutations 
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Typical Situation 

n  Previously visited solutions + their evaluation: 

n  Question: What solution to generate next? 

#	 Solution Evaluation 
1	 00100	 1	

2	 11011	 4	

3	 01101	 0	

4	 10111	 3	
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Many Answers 
n  Hill climber 

¨  Start with a random solution. 
¨  Flip bit that improves the solution most. 
¨  Finish when no more improvement possible. 

n  Simulated annealing 
¨  Introduce Metropolis. 

n  Probabilistic model-building GAs 
¨  Inspiration from GAs and machine learning (ML). 
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Probabilistic Model-Building GAs 
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Other Names for PMBGAs 

n  Estimation of distribution algorithms (EDAs) 
(Mühlenbein & Paass, 1996) 

n  Iterated density estimation algorithms (IDEA) 
(Bosman & Thierens, 2000) 
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Implicit vs. Explicit Model 
n  GAs and PMBGAs perform similar task 

¨  Generate new solutions using probability 
distribution based on selected solutions. 

n  GAs 
¨  Variation defines implicit probability distribution of 

target population given original population and 
variation operators (crossover and mutation). 

n  PMBGAs 
¨  Explicit probabilistic model of selected candidate 

solutions is built and sampled. 
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What Models to Use? 

n  Start with a simple example 
¨  Probability vector for binary strings. 

n  Later 
¨  Dependency tree models (COMIT). 
¨  Bayesian networks (BOA). 
¨  Bayesian networks with local structures (hBOA). 
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Probability Vector 

n  Assume n-bit binary strings. 
n  Model: Probability vector p=(p1, …, pn) 

¨  pi = probability of 1 in position i 
¨  Learn p: Compute proportion of 1 in each position. 
¨  Sample p: Sample 1 in position i with prob. pi 
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Example: Probability Vector 

(Mühlenbein, Paass, 1996), (Baluja, 1994) 
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Probability Vector PMBGAs 
n  PBIL (Baluja, 1995) 

¨  Incremental updates to the prob. vector. 
n  Compact GA (Harik, Lobo, Goldberg, 1998) 

¨  Also incremental updates but better analogy with 
populations. 

n  UMDA (Mühlenbein, Paass, 1996) 
¨  What we showed here. 

n  DEUM (Shakya et al., 2004) 
n  All variants perform similarly. 
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Probability Vector Dynamics 

n Bits that perform better get more copies. 
n And are combined in new ways. 
n But context of each bit is ignored. 

n Example problem 1: Onemax 
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Probability Vector: Ideal Scale-up 

n  O(n log n) evaluations until convergence 
¨  (Harik, Cantú-Paz, Goldberg, & Miller, 1997) 
¨  (Mühlenbein, Schlierkamp-Vosen, 1993) 

n  Other algorithms 
¨  Hill climber: O(n log n) (Mühlenbein, 1992) 
¨  GA with uniform: approx. O(n log n) 
¨  GA with one-point: slightly slower 



Martin Pelikan, Probabilistic Model-Building GAs 19 

When Does Prob. Vector Fail? 

n  Example problem 2: Concatenated traps 
¨  Partition input string into disjoint groups of 5 bits. 
¨  Groups contribute via trap (ones=number of ones): 

¨  Concatenated trap = sum of single traps 
¨  Optimum: String 111…1 

trap ones( ) = 5           if ones = 5
4 − ones otherwise

"
#
$
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Probability Vector on Traps 
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Why Failure? 

n  Onemax:  
¨  Optimum in 111…1 
¨  1 outperforms 0 on average. 

n  Traps: optimum in 11111, but 
n  f(0****) = 2 
n  f(1****) = 1.375 

n  So single bits are misleading. 
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How to Fix It? 

n  Consider 5-bit statistics instead 1-bit ones. 
n  Then, 11111 would outperform 00000. 
n  Learn model 

¨  Compute p(00000), p(00001), …, p(11111) 

n  Sample model 
¨  Sample 5 bits at a time 
¨  Generate 00000 with p(00000),  

00001 with p(00001), … 
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Good News: Good Stats Work Great! 

n  Optimum in O(n log n) evaluations. 
n  Same performance as on onemax! 
n  Others 

¨  Hill climber: O(n5 log n) = much worse. 
¨  GA with uniform: O(2n) = intractable. 
¨  GA with k-point xover: O(2n) (w/o tight linkage). 
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Challenge 

n  If we could learn and use relevant context for 
each position 
¨  Find non-misleading statistics. 
¨  Use those statistics as in probability vector. 

n  Then we could solve problems decomposable 
into statistics of order at most k with at most 
O(n2) evaluations! 
¨  And there are many such problems (Simon, 1968). 
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What’s Next? 
n  COMIT 

¨  Use tree models 

n  Extended compact GA 
¨  Cluster bits into groups. 

n  Bayesian optimization algorithm (BOA) 
¨  Use Bayesian networks (more general). 
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Beyond single bits: COMIT 

String 

Model 

X P(Y=1|X) 
0	 30 % 
1	 25 % 

P(X=1) 
75 % 

X P(Z=1|X) 
0	 86 % 
1 75 % 

(Baluja, Davies, 1997) 
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How to Learn a Tree Model? 
n  Mutual information: 

n  Goal 
¨  Find tree that maximizes mutual information 

between connected nodes. 
¨  Will minimize Kullback-Leibler divergence. 

n  Algorithm 
¨  Prim’s algorithm for maximum spanning trees. 

I(Xi ,Xj ) = P(Xi = a,Xj = b)
a,b
∑ log

P(Xi = a,Xj = b)
P(Xi = a)P(Xj = b)



Martin Pelikan, Probabilistic Model-Building GAs 30 

Prim’s Algorithm 

n  Start with a graph with no edges. 
n  Add arbitrary node to the tree. 
n  Iterate 

¨  Hang a new node to the current tree. 
¨  Prefer addition of edges with large mutual 

information (greedy approach). 

n  Complexity: O(n2) 
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Variants of PMBGAs with Tree Models 

n  COMIT (Baluja, Davies, 1997) 
¨  Tree models. 

n  MIMIC (DeBonet, 1996) 
¨  Chain distributions. 

n  BMDA (Pelikan, Mühlenbein, 1998) 
¨  Forest distribution (independent trees or tree) 
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Beyond Pairwise Dependencies: ECGA 

n  Extended Compact GA (ECGA) (Harik, 1999). 
n  Consider groups of string positions. 

0	 86 %	

1	 14 %	

String Model 

000	 17 %	

001	 2 %	

· · · 
111	 24 %	

00	 16 %	

01	 45 %	

10	 35 %	

11	 4 %	
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Learning the Model in ECGA 

n  Start with each bit in a separate group. 
n  Each iteration merges two groups for best 

improvement.  
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How to Compute Model Quality? 

n  ECGA uses minimum description length. 
n  Minimize number of bits to store model+data: 

 
 

n  Each frequency needs (0.5 log N) bits: 
 
 

n  Each solution X needs -log p(X) bits: 
 
 
	

  MDL( M , D) = DModel + DData

  
DModel = 2|g |−1 log N

g∈G
∑

  
DData = −N p( X ) log p( X )

X
∑
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Sampling Model in ECGA 

n  Sample groups of bits at a time. 

n  Based on observed probabilities/proportions. 

n  But can also apply population-based crossover 
similar to uniform but w.r.t. model. 
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Building-Block-Wise Mutation in ECGA 

n  Sastry, Goldberg (2004); Lima et al. (2005) 
n  Basic idea 

¨  Use ECGA model builder to identify decomposition 
¨  Use the best solution for BB-wise mutation 
¨  For each k-bit partition (building block) 

n  Evaluate the remaining 2k-1 instantiations of this BB 
n  Use the best instantiation of this BB 

n  Result (for order-k separable problems) 
¨  BB-wise mutation is                   times faster than ECGA! 
¨  But only for separable problems (and similar ones). 

O k logn( )
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What’s Next? 

n  We saw 
¨  Probability vector (no edges). 
¨  Tree models (some edges). 
¨  Marginal product models (groups of variables). 

n  Next: Bayesian networks 
¨  Can represent all above and more. 
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Bayesian Optimization Algorithm (BOA) 

n  Pelikan, Goldberg, & Cantú-Paz (1998) 
n  Use a Bayesian network (BN) as a model. 
n  Bayesian network 

¨  Acyclic directed graph. 
¨  Nodes are variables (string positions). 
¨  Conditional dependencies (edges). 
¨  Conditional independencies (implicit). 
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Example: Bayesian Network (BN) 

n  Conditional dependencies. 
n  Conditional independencies. 
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BOA 

Current 
population 
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population 

New 
population 

Bayesian 
network 
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Learning BNs 

n  Two things again: 
¨  Scoring metric (as MDL in ECGA). 
¨  Search procedure (in ECGA done by merging). 
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Learning BNs: Scoring Metrics 

n  Bayesian metrics 
¨  Bayesian-Dirichlet with likelihood equivallence 

n  Minimum description length metrics 
¨  Bayesian information criterion (BIC) 

  
BD(B) = p(B)

Γ(m '(π i ))
Γ(m '(π i ) + m(π i ))

Γ(m '(xi ,π i ) + m(xi ,π i ))
Γ(m '(xi ,π i ))xi

∏
π

i

∏
i=1

n

∏

  
BIC(B) = −H ( Xi |Πi )N − 2Πi

log2 N
2

#

$%
&

'(i=1

n

∑



Martin Pelikan, Probabilistic Model-Building GAs 43 

Learning BNs: Search Procedure 

n  Start with empty network (like ECGA). 
n  Execute primitive operator that improves the 

metric the most (greedy). 
n  Until no more improvement possible. 
n  Primitive operators 

¨  Edge addition (most important). 
¨  Edge removal. 
¨  Edge reversal. 
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Learning BNs: Example 
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BOA and Problem Decomposition 

n  Conditions for factoring problem decomposition 
into a product of prior and conditional 
probabilities of small order in Mühlenbein, 
Mahnig, & Rodriguez (1999). 

n  In practice, approximate factorization sufficient 
that can be learned automatically. 

n  Learning makes complete theory intractable. 
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BOA Theory: Population Sizing 
n  Initial supply (Goldberg et al., 2001) 

¨  Have enough stuff to combine. 

n  Decision making (Harik et al, 1997) 
¨  Decide well between competing partial sols. 

n  Drift (Thierens, Goldberg, Pereira, 1998) 
¨  Don’t lose less salient stuff prematurely. 

n  Model building (Pelikan et al., 2000, 2002) 
¨  Find a good model. 

 
O n( )

  
O n1.05( )

  
O n log n( )
  
O 2k( )
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BOA Theory: Num. of Generations 

n  Two extreme cases, everything in the middle. 
n  Uniform scaling 

¨  Onemax model (Muehlenbein & Schlierkamp-Voosen, 1993) 

n  Exponential scaling 
¨  Domino convergence (Thierens, Goldberg, Pereira, 1998) 

O n( )

O n( )
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Good News: Challenge Met! 
n  Theory 

¨  Population sizing (Pelikan et al., 2000, 2002) 
n  Initial supply. 
n  Decision making. 
n  Drift. 
n  Model building. 

¨  Number of iterations (Pelikan et al., 2000, 2002) 
n  Uniform scaling. 
n  Exponential scaling. 

 

n  BOA solves order-k decomposable problems in O(n1.55) to  
O(n2) evaluations! 
 

O(n) to O(n1.05) 

O(n0.5) to O(n) 
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Theory vs. Experiment (5-bit Traps) 

100	 125	 150	 175	 200	 225	 250	

100000	

150000	

200000	

250000	

300000	

350000	

400000	
450000	
500000	

Problem Size 

N
um

be
r o

f E
va

lu
at

io
ns

 

Experiment 
Theory 



Martin Pelikan, Probabilistic Model-Building GAs 50 

BOA Siblings 

n  Estimation of Bayesian Networks Algorithm 
(EBNA) (Etxeberria, Larrañaga, 1999). 

n  Learning Factorized Distribution Algorithm 
(LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999). 
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Another Option: Markov Networks 

n  MN-FDA, MN-EDA (Santana; 2003, 2005) 
n  Similar to Bayes nets but with undirected edges. 
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Yet Another Option: Dependency Networks 

n  Estimation of dependency networks algorithm (EDNA) 
¨  Gamez, Mateo, Puerta (2007). 
¨  Use dependency network as a model. 
¨  Dependency network learned from pairwise interactions. 
¨  Use Gibbs sampling to generate new solutions. 

n  Dependency network 
¨  Parents of a variable= all variables influencing this variable. 
¨  Dependency network can contain cycles. 
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Model Comparison 

BMDA ECGA BOA 

Model Expressiveness Increases 
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From single level to hierarchy 

n  Single-level decomposition powerful. 
n  But what if single-level decomposition is not 

enough? 
n  Learn from humans and nature 

¨  Decompose problem over multiple levels. 
¨  Use solutions from lower level as basic building 

blocks. 
¨  Solve problem hierarchically. 
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Hierarchical Decomposition 
	 Car 

Engine Braking system Electrical system 

Fuel system Valves Ignition system 
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Three Keys to Hierarchy Success 

n  Proper decomposition 
¨  Must decompose problem on each level properly. 

n  Chunking 
¨  Must represent & manipulate large order solutions. 

n  Preservation of alternative solutions 
¨  Must preserve alternative partial solutions 

(chunks). 
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Hierarchical BOA (hBOA) 

n  Pelikan & Goldberg (2000, 2001) 
n  Proper decomposition 

¨  Use Bayesian networks like BOA. 

n  Chunking 
¨  Use local structures in Bayesian networks. 

n  Preservation of alternative solutions. 
¨  Use restricted tournament replacement (RTR). 
¨  Can use other niching methods. 
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Local Structures in BNs 

n  Look at one conditional dependency. 
¨  2k probabilities for k parents. 

n  Why not use more powerful representations 
for conditional probabilities? 

X1 

X3 X2 

X2X3 P(X1=0|X2X3) 
00	 26 %	

01	 44 %	

10	 15 %	

11	 15 %	
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Local Structures in BNs 

n  Look at one conditional dependency. 
¨  2k probabilities for k parents. 

n  Why not use more powerful representations 
for conditional probabilities? 

X2 

X3 

0	 1	

0	 1	

26%	 44%	

15%	

X1 

X3 X2 
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Restricted Tournament Replacement 

n  Used in hBOA for niching. 
n  Insert each new candidate solution x like this: 

¨  Pick random subset of original population. 
¨  Find solution y most similar to x in the subset. 
¨  Replace y by x if x is better than y. 
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Hierarchical Traps: The Ultimate Test 

n  Combine traps on more levels. 
n  Each level contributes to fitness. 
n  Groups of bits map to next level. 
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hBOA on Hierarchical Traps 
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PMBGAs Are Not Just Optimizers 

n  PMBGAs provide us with two things 
¨  Optimum or its approximation. 
¨  Sequence of probabilistic models. 

n  Probabilistic models 
¨  Encode populations of increasing quality. 
¨  Tell us a lot about the problem at hand. 
¨  Can we use this information? 
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Efficiency Enhancement for PMBGAs 

n  Sometimes O(n2) is not enough 
¨  High-dimensional problems (1000s of variables) 
¨  Expensive evaluation (fitness) function 

n  Solution 
¨  Efficiency enhancement techniques 
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Efficiency Enhancement Types 

n  7 efficiency enhancement types for PMBGAs 
¨  Parallelization 
¨  Hybridization 
¨  Time continuation 
¨  Fitness evaluation relaxation 
¨  Prior knowledge utilization 
¨  Incremental and sporadic model building 
¨  Learning from experience 
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Multi-objective PMBGAs 
n  Methods for multi-objective GAs adopted 

¨  Multi-objective mixture-based IDEAs 
(Thierens, & Bosman, 2001) 

¨  Another multi-objective BOA (from SPEA2 and mBOA) 
(Laumanns, & Ocenasek, 2002)  

¨  Multi-objective hBOA (from NSGA-II and hBOA) 
(Khan, Goldberg, & Pelikan, 2002) 
(Pelikan, Sastry, & Goldberg, 2005) 

¨  Regularity Model Based Multiobjective EDA (RM-MEDA) 
(Zhang, Zhou, Jin, 2008) 
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Promising Results with Discrete PMBGAs 

n  Artificial classes of problems 
n  Physics 
n  Bioinformatics 
n  Computational complexity and AI 
n  Others 
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Results: Artificial Problems 

n  Decomposition 
¨  Concatenated traps (Pelikan et al., 1998). 

n  Hierarchical decomposition 
¨  Hierarchical traps (Pelikan, Goldberg, 2001). 

n  Other sources of difficulty 
¨  Exponential scaling, noise (Pelikan, 2002). 
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BOA on Concatenated 5-bit Traps 
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hBOA on Hierarchical Traps 
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Results: Physics 
n  Spin glasses (Pelikan et al., 2002, 2006, 2008) 

(Hoens, 2005) (Santana, 2005) (Shakya et al., 
2006) 
¨  ±J and Gaussian couplings 
¨  2D and 3D spin glass 
¨  Sherrington-Kirkpatrick (SK) spin glass 

n  Silicon clusters (Sastry, 2001) 
¨  Gong potential (3-body) 
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hBOA on Ising Spin Glasses (2D) 
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Results on 2D Spin Glasses 

n  Number of evaluations is O(n 1.51). 
n  Overall time is O(n 3.51). 
n  Compare O(n3.51) to O(n3.5) for best method 

(Galluccio & Loebl, 1999) 
n  Great also on Gaussians.	
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hBOA on Ising Spin Glasses (3D) 
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hBOA on SK Spin Glass 
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Results: Computational Complexity, AI 

n  MAXSAT, SAT (Pelikan, 2002) 
¨  Random 3CNF from phase transition. 
¨  Morphed graph coloring. 
¨  Conversion from spin glass. 

n  Feature subset selection (Inza et al., 2001) 
(Cantu-Paz, 2004) 
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Results: Some Others 
n  Military antenna design (Santarelli et al., 2004) 
n  Groundwater remediation design (Arst et al., 2004) 
n  Forest management (Ducheyne et al., 2003) 
n  Nurse scheduling (Li, Aickelin, 2004) 
n  Telecommunication network design (Rothlauf, 2002) 
n  Graph partitioning (Ocenasek, Schwarz, 1999; Muehlenbein, Mahnig, 

2002; Baluja, 2004) 
n  Portfolio management (Lipinski, 2005, 2007) 
n  Quantum excitation chemistry (Sastry et al., 2005)  
n  Maximum clique (Zhang et al., 2005) 
n  Cancer chemotherapy optimization (Petrovski et al., 2006) 
n  Minimum vertex cover (Pelikan et al., 2007) 
n  Protein folding (Santana et al., 2007) 
n  Side chain placement (Santana et al., 2007) 
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Discrete PMBGAs: Summary 
n  No interactions 

¨  Univariate models; PBIL, UMDA, cGA. 
n  Some pairwise interactions 

¨  Tree models; COMIT, MIMIC, BMDA. 
n  Multivariate interactions 

¨  Multivariate models: BOA, EBNA, LFDA. 
n  Hierarchical decomposition 

¨  hBOA 
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Discrete PMBGAs: Recommendations 

n  Easy problems 
¨  Use univariate models; PBIL, UMDA, cGA. 

n  Somewhat difficult problems 
¨  Use bivariate models; MIMIC, COMIT, BMDA. 

n  Difficult problems 
¨  Use multivariate models; BOA, EBNA, LFDA. 

n  Most difficult problems 
¨  Use hierarchical decomposition; hBOA. 
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Real-Valued PMBGAs 

n  New challenge 
¨  Infinite domain for each variable. 
¨  How to model? 

n  2 approaches 
¨  Discretize and apply discrete model/PMBGA 
¨  Create model for real-valued variables 

n  Estimate pdf. 
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PBIL Extensions: First Step 
n  SHCwL: Stochastic hill climbing with learning  

(Rudlof, Köppen, 1996). 
n  Model 

¨  Single-peak Gaussian for each variable. 
¨  Means evolve based on parents (promising solutions). 
¨  Deviations equal, decreasing over time. 

n  Problems 
¨  No interactions. 
¨  Single Gaussians=can model only one attractor. 
¨  Same deviations for each variable. 
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Use Different Deviations 

n  Sebag, Ducoulombier (1998) 
n  Some variables have higher variance. 
n  Use special standard deviation for each 

variable. 
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Use Covariance 

n  Covariance allows rotation of 1-peak Gaussians. 
n  EGNA (Larrañaga et al., 2000) 
n  IDEA (Bosman, Thierens, 2000) 
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How Many Peaks? 

n  One Gaussian vs. kernel around each point. 
n  Kernel distribution similar to ES. 
n  IDEA (Bosman, Thierens, 2000) 
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Mixtures: Between One and Many 
n  Mixture distributions provide transition between one 

Gaussian and Gaussian kernels. 
n  Mixture types 

¨  Over one variable. 
n  Gallagher, Frean, & Downs (1999). 

¨  Over all variables. 
n  Pelikan & Goldberg (2000). 
n  Bosman & Thierens (2000). 

¨  Over partitions of variables. 
n  Bosman & Thierens (2000). 
n  Ahn, Ramakrishna, and Goldberg (2004). 
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Mixed BOA (mBOA) 
n  Mixed BOA (Ocenasek, Schwarz, 2002) 
n  Local distributions  

¨  A decision tree (DT) for every variable. 
¨  Internal DT nodes encode tests on other variables 

n Discrete: Equal to a constant 
n Continuous: Less than a constant 

¨  Discrete variables:  
DT leaves represent probabilities. 

¨  Continuous variables:  
DT leaves contain a normal kernel distribution. 
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Real-Coded BOA (rBOA) 

n  Ahn, Ramakrishna, Goldberg (2003) 
n  Probabilistic Model 

¨  Underlying structure: Bayesian network 
¨  Local distributions: Mixtures of Gaussians 

n  Also extended to multiobjective problems 
(Ahn, 2005) 



Martin Pelikan, Probabilistic Model-Building GAs 88 

Aggregation Pheromone System (APS) 

n  Tsutsui (2004) 
n  Inspired by aggregation pheromones 
n  Basic idea 

¨  Good solutions emit aggregation pheromones 
¨  New candidate solutions based on the density of 

aggregation pheromones 
¨  Aggregation pheromone density encodes a mixture 

distribution 
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Adaptive Variance Scaling 

n  Adaptive variance in mBOA 
¨  Ocenasek et al. (2004) 

n  Normal IDEAs 
¨  Bosman et al. (2006, 2007) 
¨  Correlation-triggered adaptive variance scaling 
¨  Standard-deviation ratio (SDR) triggered variance 

scaling 
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Real-Valued PMBGAs: Discretization 

n  Idea: Transform into discrete domain. 
n  Fixed models 

¨  2k equal-width bins with k-bit binary string. 
¨  Goldberg (1989). 
¨  Bosman & Thierens (2000); Pelikan et al. (2003). 

n  Adaptive models 
¨  Equal-height histograms of 2k bins. 
¨  k-means clustering on each variable. 
¨  Pelikan, Goldberg, & Tsutsui (2003); Cantu-Paz (2001). 
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Real-Valued PMBGAs: Summary 
n  Discretization 

¨  Fixed 
¨  Adaptive 

n  Real-valued models 
¨  Single or multiple peaks? 
¨  Same variance or different variance? 
¨  Covariance or no covariance? 
¨  Mixtures?  
¨  Treat entire vectors, subsets of variables, or single 

variables? 
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Real-Valued PMBGAs: Recommendations 

n  Multimodality? 
¨  Use multiple peaks. 

n  Decomposability? 
¨  All variables, subsets, or single variables. 

n  Strong linear dependencies? 
¨  Covariance. 

n  Partial differentiability? 
¨  Combine with gradient search. 
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PMBGP (Genetic Programming) 
n  New challenge 

¨  Structured, variable length representation. 
¨  Possibly infinitely many values. 
¨  Position independence (or not). 
¨  Low correlation between solution quality and 

solution structure (Looks, 2006). 

n  Approaches 
¨  Use explicit probabilistic models for trees. 
¨  Use models based on grammars. 
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PIPE 
n  Probabilistic incremental 

program evolution 
(Salustowicz & 
Schmidhuber, 1997) 

n  Store frequencies of 
operators/terminals in 
nodes of a maximum tree. 

n  Sampling generates tree 
from top to bottom 

X P(X) 
sin 0.15 
+ 0.35 
- 0.35 
X 0.15 
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eCGP 

n  Sastry & Goldberg (2003) 
n  ECGA adapted to program trees. 
n  Maximum tree as in PIPE. 
n  But nodes partitioned into groups. 
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BOA for GP 

n  Looks, Goertzel, & Pennachin (2004) 
n  Combinatory logic + BOA 

¨  Trees translated into uniform structures. 
¨  Labels only in leaves. 
¨  BOA builds model over symbols in different nodes. 

n  Complexity build-up 
¨  Modeling limited to max. sized structure seen. 
¨  Complexity builds up by special operator. 
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MOSES 

n  Looks (2006). 
n  Evolve demes of programs. 
n  Each deme represents similar structures. 
n  Apply PMBGA to each deme (e.g. hBOA).  
n  Introduce new demes/delete old ones. 
n  Use normal forms to reduce complexity. 
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PMBGP with Grammars 
n  Use grammars/stochastic grammars as models. 
n  Grammars restrict the class of programs. 

n  Some representatives 
¨  Program evolution with explicit learning (Shan et al., 2003) 
¨  Grammar-based EDA for GP (Bosman, de Jong, 2004) 
¨  Stochastic grammar GP (Tanev, 2004) 
¨  Adaptive constrained GP (Janikow, 2004) 
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PMBGP: Summary 

n  Interesting starting points available. 
n  But still lot of work to be done. 
n  Much to learn from discrete domain, but some 

completely new challenges.  
n  Research in progress 
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PMBGAs for Permutations 

n  New challenges 
¨  Relative order  
¨  Absolute order 
¨  Permutation constraints 

n  Two basic approaches 
¨  Random-key and real-valued PMBGAs 
¨  Explicit probabilistic models for permutations 
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Random Keys and PMBGAs 
n  Bengoetxea et al. (2000); Bosman et al. (2001) 
n  Random keys (Bean, 1997) 

¨  Candidate solution = vector of real values 
¨  Ascending ordering gives a permutation 

n  Can use any real-valued PMBGA (or GEA) 
¨  IDEAs (Bosman, Thierens, 2002) 
¨  EGNA (Larranaga et al., 2001) 

n  Strengths and weaknesses 
¨  Good: Can use any real-valued PMBGA.  
¨  Bad: Redundancy of the encoding. 
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Direct Modeling of Permutations 

n  Edge-histogram based sampling algorithm 
(EHBSA) (Tsutsui, Pelikan, Goldberg, 2003) 
¨  Permutations of n elements 
¨  Model is a matrix A=(ai,j)i,j=1, 2, …, n 
¨  ai,j represents the probability of edge (i, j) 
¨  Uses template to reduce exploration 
¨  Applicable also to scheduling 
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ICE: Modify Crossover from Model 

n  ICE 
¨  Bosman, Thierens (2001). 
¨  Represent permutations with random keys. 
¨  Learn multivariate model to factorize the problem. 
¨  Use the learned model to modify crossover. 

n  Performance 
¨  Typically outperforms IDEAs and other PMBGAs 

that learn and sample random keys. 
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Multivariate Permutation Models 
n  Basic approach 

¨  Use any standard multivariate discrete model. 
¨  Restrict sampling to permutations in some way. 
¨  Bengoetxea et al. (2000), Pelikan et al. (2007). 

n  Strengths and weaknesses 
¨  Use explicit multivariate models to find regularities. 
¨  High-order alphabet requires big samples for good models.  
¨  Sampling can introduce unwanted bias. 
¨  Inefficient encoding for only relative ordering constraints, 

which can be encoded simpler. 
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Conclusions 
n  Competent PMBGAs exist 

¨  Scalable solution to broad classes of problems. 
¨  Solution to previously intractable problems. 
¨  Algorithms ready for new applications. 

n  PMBGAs do more than just solve the problem 
¨  They provide us with sequences of probabilistic models. 
¨  The probabilistic models tell us a lot about the problem. 

n  Consequences for practitioners 
¨  Robust methods with few or no parameters. 
¨  Capable of learning how to solve problem. 
¨  But can incorporate prior knowledge as well. 
¨  Can solve previously intractable problems. 
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Starting Points 
n  World wide web 
n  Books and surveys 

¨  Larrañaga & Lozano (eds.) (2001). Estimation of distribution 
algorithms: A new tool for evolutionary computation. Kluwer. 

¨  Pelikan et al. (2002). A survey to optimization by building and 
using probabilistic models. Computational optimization and 
applications, 21(1), pp. 5-20. 

¨  Pelikan (2005). Hierarchical BOA: Towards a New Generation of 
Evolutionary Algorithms. Springer. 

¨  Lozano, Larrañaga, Inza, Bengoetxea (2006). Towards a New 
Evolutionary Computation: Advances on Estimation of Distribution 
Algorithms, Springer. 

¨  Pelikan, Sastry, Cantu-Paz (eds.) (2006). Scalable Optimization via 
Probabilistic Modeling: From Algorithms to Applications, Springer. 
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Online Code (1/2) 
n  BOA, BOA with decision graphs, dependency-tree EDA 

http://medal-lab.org/ 

n  ECGA, xi-ary ECGA, BOA, and BOA with decision trees/graphs 
http://www.illigal.org/ 

n  mBOA 
http://jiri.ocenasek.com/ 

n  PIPE 
http://www.idsia.ch/~rafal/ 

n  Real-coded BOA 
http://www.evolution.re.kr/ 
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Online Code (2/2) 
n  Demos of APS and EHBSA 

http://www.hannan-u.ac.jp/~tsutsui/research-e.html 

n  RM-MEDA: A Regularity Model Based Multiobjective EDA 
Differential Evolution + EDA hybrid 
http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm 

n  Naive Multi-objective Mixture-based IDEA (MIDEA)  
Normal IDEA-Induced Chromosome Elements Exchanger (ICE)    
Normal Iterated Density-Estimation Evolutionary Algorithm (IDEA)  
http://homepages.cwi.nl/~bosman/code.html 
 


