
Claudio Fabiano Motta Toledo 
University of Sao Paulo – claudio@icmc.usp.br 

 
Márcio da Silva Arantes 

University of Sao Paulo – marcio@icmc.usp.br 
 

Renato Resente Ribeiro de Oliveira 
Federal University of Lavras – renatorro@comp.ufla.br 

 
Alexandre Cláudio Botazzo Delbem 

University of Sao Paulo – acbd@icmc.usp.br 
 

University of 
Sao Paulo 



Outline 
 The Multi-Level Problem 

 MIP model 

 LP model 

 HcGA 

 Fix and Optimize 

 Computational Results 

 Future Works 

 

 

2 



The Multi-Level Problem 
• Multi-level capacitated lot sizing problem (MLCLSP) aims to 

determine production plans for products with an 
interdependence among them at different production levels. 
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MIP model – Stadtler 2003 [14]  
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MIP model – Stadtler 2003 [14]  
Holding, setup and 

overtime costs 
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MIP model – Stadtler 2003 [14]  

Inventory constraints 
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MIP model – Stadtler 2003 [14]  

Capacity  constraints 
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MIP model – Stadtler 2003 [14]  

Upper bound  
constraints 
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LP model 
 The representation of individuals in the HcGA 

define the binary variables (Yjt) of the 
MLCLSP-MIP model. 

 

 

 

 

 So the setup times and setup costs are calculated 
from this representation of individual. 

 

Yjt T1 T2 T3 T4 T5 T6 

P1 0 0 1 1 0 1 

P2 0 0 1 0 0 0 

P3 0 1 1 0 0 1 

P4 1 1 1 1 0 1 

P5 1 1 1 1 1 1 

P6 1 0 1 0 1 1 
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LP model 
 Then, the setup costs are not necessary in the 

objective function. 

  ℎ𝑗 ∙ 𝑖𝑗𝑡

𝑇

𝑡=1

𝐽

𝑗=1

+   𝑜𝑐𝑚𝑡 ∙ 𝑧𝑚𝑡

𝑇

𝑡=1

𝑀

𝑚=1

 

 

 The capacity (Cmt) can be updated removing 
the setup times. 

𝐶𝑚𝑡 = 𝐶𝑚𝑡 − 𝑠𝑡𝑚𝑗 ∙ 𝑦𝑗𝑡

𝐽

𝑗=1
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LP model 
 Finally the continuous variables and the others costs 

can be determined solving the linear problem (LP) 
model below.  
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HcGA 
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HcGA 
• Individuals are created following the 

probability matrix and evaluated 
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HcGA 

Yjt T1 T2 T3 T4 T5 T6 

P1 0 0 1 1 0 1 

P2 0 0 1 0 0 0 

P3 0 1 1 0 0 1 

P4 1 1 1 1 0 1 

P5 1 1 1 1 1 1 

P6 1 0 1 0 1 1 

  
Planning horizon (T - Periods) 

T1 T2 T3 T4 T5 T6 

P1 0.17 0.30 0.80 0.76 0.25 0.96 

P2 0.15 0.36 0.65 0.40 0.06 0.22 

P3 0.07 0.88 0.93 0.12 0.25 0.76 

P4 0.98 0.76 0.88 0.45 0.33 0.87 

P5 0.66 0.56 0.95 0.75 0.89 0.67 

P6 0.90 0.10 0.86 0.30 0.75 0.99 

P
ro

d
u

ct
s 

Probability 
matrix 

Individual 
created 

• Individuals are created following the 
probability matrix and evaluated 
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Yjt T1 T2 T3 T4 T5 T6 

P1 * * 1 1 0 1 

P2 * * 1 0 0 0 

P3 * * 1 0 0 1 

P4 * * 1 1 0 1 

P5 * * 1 1 1 1 

P6 * * 1 0 1 1 

Fix and Optimize (F&O) 

Rolling the period windows 

MIP-Model 

 There is a set of binary 
values, Ybin, that must be 
optimized and another set 
of binary values, Yfix , 
previously fixed. 

 

 The period window 
(perwdw) sequentially 
defines MIP sub problems 
following from the first 
(T1) to the last period (T6). 
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Fix and Optimize (F&O) 
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MIP-Model 
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problems starting from the end products to the 
intermediate products 
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Computational Results 
 The proposed method solved the sets A+ and B+ of 

benchmark instances described by Tempelmeier [16] and 
Stadtler [14]. 

 A+ has instances without setup time while B+ has instances 
with setup time 

 Parameters: 
 The probability matrix is initialized with value 0.9 for all 

entries. 

 The population size is fixed in 10 individuals.  

 5 individuals are created at each iteration.  

 The fix and optimize heuristic starts with windows size 1 
for products and periods. 
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Computational Results 
 Computational results are compared with: 

 Akartunali and Miller's Heuristic (AMH) [2] 

 Stadtler's Heuristic (SH) [14] 

 Hybrid Multi-population Genetic Algorithm (HMGA)[17] 

 

 Each approach was executed for three minutes. 
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Computational Results 
 The evolutionary methods are executed 10 times, but 

AMH and SH are executed once. 

 Then the average solution is determined for them 
(HcGA and HMGA). 

 The deviation from the other approaches is evaluated 
following expression below. 
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Number of best results 
 Table  I compares HcGA with the other methods. 

 Total column represents the number of instances for each benchmark. 

 The following columns represent the number of instances in which  the 
HcGA has better results than others approaches. 

 

 

 

 

 

 There is only 1 instance where the proposed method did not outperform 
SH and 4 instances against AMH. 

 Compared to HMGA the results are similar but the proposed method is 
simpler. 

Set Total 
HcGA x 

SH AMH HMGA 

A+ 20 20 17 10 

B+ 19 18 18 15 

TABLE I 
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TABLE II Deviation results for A+ 
 The negative deviations indicate an 

improvement from previous 
results. 

 There is no positive deviation from 
SH and three positive deviations 
from AMH. 

 The best (blue) and worst (red) 
deviations are indicated in Table II. 

 Deviation values on HMGA 
column shows that the methods 
are similar. 
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TABLE III Deviation results for B+ 
 HcGA method did not 

outperformed AMH and SH in 
only one instance. 

 The number of not outperformed 
instances compared to HMGA 
method decreased significantly 
related to Table II results. 
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Average Deviation 
 Table IV compares the average results . 

 

 HcGA shows a better performance in the instances with setup time. 

 

 

 

 

 Set 
HcGA x 

SH AMH HMGA 

A+ -0.85 -3.14 -0.07 

B+ -5.62 -4.05 -0.68 

TABLE IV 
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Conclusions 
 Two hybrid issues are associated with the compact 

genetic algorithm: 
 The resolution of a linear programming model 

(MLCLSP-LP) 

 Fix and Optimize heuristic 

 The average results showed that:  
 Outperform the SH and AMH in both sets for the 

majority of instances. 

 Are competitive against the other evolutionary approach 
(HMGA). 

 HcGA presents a simpler algorithm once that several 
populations do not need to be stored and evolved. 
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Future Works 
 

 The method will be evaluated solving more complex 
benchmark instance sets, also considering problems 
that have backlogging constraints. 

 

 The extended compact genetic algorithm is also 
another approach being studied to be applied in the 
MLCLSP. 
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Thank you! 
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