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Abstract. The Breeder Genetic Algorithm (BGA) is based on the equa-
tion for the response to selection. In order to use this equation for predic-
tion, the variance of the fitness of the population has to be estimated. For
the usual sexual recombination the computation can be difficult. In this
paper we shortly state the problem and investigate several modifications
of sexual recombination. The first method is gene pool recombination,
which leads to marginal distribution algorithms. In the last part of the
paper we discuss more sophisticated methods, based on estimating the
distribution of promising points.

1 Introduction

The Breeder Genetic Algorithm (BGA) is based on the classical science of live-
stock breeding. The central part of the theory i1s the equation for the response
to selection

R(t) =b()- 1 -a(1) (1)

Here R denotes the response, which is defined as the difference between the mean
fitness of the population at generation ¢t 41 and ¢, b(2) is the realized heritability,
I is the selection intensily and o is the standard deviation of the fitness [12].
If b(t) and o(f) can be estimated, the equation can be used for predicting the
mean fitness of the population. In livestock breeding many methods have been
developed to estimate the heritability [12], estimating the variance is still an
open question [15].

But in evolutionary computation we have more freedom. We can design new
recombination operators which have no counterpart in nature and use the above
equation to evaluate the operators. In [13] we have made a further step away
from the biological example and investigated gene pool recombination GPR.
With GPR the genes of all selected parents are used to create offspring. The
microscopic view of recombining two chromosomes in a Mendelian manner is
abandoned.

In this paper we shortly show why the analysis of sexual recombination is
so difficult, then we investigate two algorithms which use univariate marginal
distribution of selected points to generate new points. In the last section the
problem of estimating distributions is shortly discussed. The conditional distri-
bution algorithm is outlined and applied to optimization problems known to be
difficult for genetic algorithms.



2 Analysis of uniform crossover for two loci

The difficulty of analyzing Mendelian sexual recombination will be shown with a
simple example, namely two loci and proportionate selection. In this case there
are four possible genotypes: (0,0),(0,1),(1,0), and (1,1) which we index by
J =(0,1,2,3). We denote their fitness values fo, f1, f2, and fs respectively. Let
¢;(t) be the frequency of genotype j at generation ¢. For simplicity we restrict the
analysis to uniform crossover [18]. It is an example of two parent recombination

(TPR).

Theorem 1. For proportionate selection and uniform crossover the gene fre-
quenctes obey the following difference equation
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where € = (—1,1,1,-1); f(t) = 23:0 fiq;(t) is the average fitness of the popu-
lation; and Dy (t) is defined as

Ds(t) = fof3qo(t)qs(t) — fifaq1(t)qa(1). (3)

e+ 1) = S

Proof: For proportionate selection the gene frequencies ¢; after selection are
given by
fi

() = = ~4;(1)

! O
Now we pair randomly between the selected parents and count how often geno-
type j arises after uniform crossover. We take j = 0 as an example. We easily
obtain

qo(t + 1) = q5(t) (qo(t) + q1(t) + ¢5(t) + 1/2q3(1)) + 1/2¢1(1)g5(2)

Using that ¢3(t) + ¢S (¢) + ¢3(¢) + ¢5(¢t) = 1 we obtain the conjecture for j = 0.
The remaining equations are obtained in the same manner. O
Equations (2) are identical to the ones known for diploid chromosomes in popu-
lation genetics [6], despite the fact that the underlying genetic recombination is
different. This shows that uniform crossover can be thought of as Mendelian re-
combination for haploid organisms. Note that D, (t) = 0if ¢o(¢)g3(t) = q1(¢)g2(?)
and fofs = fif2. The first condition is called linkage equilibrium in population
genetics.

This system of four nonlinear difference equations has not yet been solved
analytically (see the discussion in [15]), but it is possible to derive an exact
expression for the realized heritability.

Theorem 2. The realized heritability b(t) for uniform crossover is given by

b(t)zl_%(fo_fl_fz—i—fS)WV)(t). (4)



Proof: By summation we obtain

. . Vi) 1 D(t)

RO = Ft+ 1)~ J0) = 55 = 0o+ fa= fi = F) g

where V() = a?(t) denotes the variance of the population. Using S(t) = V(t)/f(t)
we obtain equation ({). O

Uniform crossover in genetic algorithms, which models Mendelian recombi-
nation, leads to very difficult systems of difference equations. The genetic pop-
ulation moves away from linkage equilibrium. This makes an analysis of the
algorithm almost impossible. But in genetic algorithms we may use recombina-
tion schemes which lead to simpler equations.

Simpler equation are obtained if the population is in linkage equilibrium.
Without proof we note that linkage equilibrium is identical to the gene frequen-
cies being in Robbins proportions [16]. Here the probability of a genotype p(x)
is given by

()

() = [T mite) (®

where p;(x;) are the univariate marginal frequencies.

The assumption of linkage equilibrium is not as severe as one might think.
We have numerically confirmed the conjecture that without selection, the gene
frequencies of a population using uniform crossover will converge to linkage equi-
librium. This means that linkage equilibrium can be considered to be the limiting
distribution of any genetic recombination scheme applied without selection.

3 Univariate Marginal Distributions

There exist a simple recombination scheme that maintains the population in
linkage equilibrium; we have called it gene pool recombination (GPR) [13]. In
GPR, for each locus the two alleles to be recombined are chosen ndependently
from the gene pool defined by the selected parent population. The biologically
inspired idea of restricting the recombination to the alleles of two parents for
each offspring i1s abandoned.

Definition: In gene pool recombination the two “parent” alleles of an off-
spring are randomly chosen for each locus with replacement from the gene pool
given by the parent population selected before. Then the offspring allele is com-
puted using any of the standard recombination schemes for TPR.

For a discussion of gene pool recombination and its analysis see [13]. Gene
pool recombination leads to simple difference equations for the marginal frequen-
cies p;(x;) [13]. We generalize this idea and define a conceptual algorithm which
uses univariate marginal frequencies directly.

Let x = (#1,...,2n), ¥; € {0,1}, f(x) be its fitness and ¢(x) its frequency.
Then the univariate marginal frequencies can be computed from

pi(r) = 3 4(x) (7)

X|z;



where the sum is taken over all x with z; held fixed. The conceptual Univariate
Marginal Distribution Algorithm (UMDA) is defined as follows.

UMDA

— STEPO: Set ¢t = 1. Generate N > 0 points randomly.

— STEP1: Select M < N points according to a selection schedule. Compute
the marginal frequencies r;(2;) of the selected set.

— STEP2: Generate N new points according to the distribution ¢;41(x) =
H?:l ri(x;). Set t =t 4 1.

— STEP3: If not terminated, go to STEP1

Theorem 3. For proportionate selection the marginal frequencies of UMDA
obey the difference equation

f)

(8)

Peg1:(%i) = pei(xi)

where

fri(wi) = Z f(x) Hpt;j(l’j)
R

Proof: For proportionate selection the frequency of the selected points §;(x) is
given by

From

ri(ed) = prai(z) = Y §i(x)

X|z;

equation (8) follows. O

The difference equation (8) can also be written in the form
Fii(@i)

1) ®)

Pit1:(xi) = pri(s) + pra(s)
where _ _
Fyi(xs) = fri(xs) — f(1) (10)

The term Fy;(x;) was already introduced in [1] ( there it is denoted f;(x;)).
The terms F;(2;) minimize the weighted quadratic error

> aulx) (f(X) —f6 =3 az’(l‘i))

i=1

The terms are used to define the additive genetic variance Va, called Vi in

[1].
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It is obvious that p,11,(%;) = pei(w;) iff Fiiy(w;) = 0 or pyi(x;) = 0. Therefore
we obtain:

Corollary: For proportionate selection the UMDA stays in equilibrium

iff Va = 0.

The response to selection is zero if the additive variance is zero. UMDA only
exploits the additive genetic variance. It is interesting to note that this result
is also used as a rule of thumb in livestock breeding. Up to now no rigorous
mathematical proof is available.

The corollary also implies that UMDA 1is not a global optimization method
for difficult fitness functions. This problem has already been discussed for gene
pool recombination in [13].

The following theorem is a correct version of Fisher’s Fundamental Theorem
of Natural Selection [8], restricted to populations in linkage equilibrium.

Theorem4. For UMDA with proportionate selection the response to selection
15 given by

R = 2+ 3 Age) (f(w) SUEY F()) (1)

where Aq(@) = qrq1(®) — qi(®) is the difference of the frequencies of genotype
x.

Proof:

ZAq ZF“Z Zﬂ;i(mZAq(w)

z|z;

= ZFtl Apl Z)
= ZptZthl(xl)/f(t)

Here Ap;(2;) = piy1.i(2;) — pri(e;). Equation (9) was used for the last step. By
using >~ Aq(x)f(x) = R(t) and )~ Aq(x) = 0, the conjecture is obtained. O

Corollary: The realized heritability of any algorithm based on univariate marginal
distributions can be estimated by

08 (13)



Proof: We have
Val) _ Va@ V() _ Va@®)
R(t) ~ —= =V T Vi (1).
f@) ) f(1) (t)
Va(t)/V(t) is called herdtability in the narrow sense in livestock breeding [7],

abbreviated by h2. Estimating h,, is one of the most difficult parts in the science
of livestock breeding.

4 A simple UMDA implementation

In order to implement UMDA, estimates for the marginal distributions are nec-
essary. Especially the computation of Fy;(2;) in Equation 9 is fairly computing
intensive. Independently of the theory presented in this paper a simple algorithm
has been already proposed in [2]. In this algorithm the univariate marginal fre-
quencies are updated according to

Pt+1;z’(l‘z’) = Pt;i(l’i) + A(rt;i(xi) - Pt;i(xi)) (14)

where r;.;(x;) are the marginal frequencies of the selected points and A is a con-
trol parameter. The resulting algorithm we call the simple univariate marginal

distribution algorithm (SUMDA).
SUMDA

— STEPO: Set t = 1. Set py ;(z;).

— STEP1: Generate N new points according to the distribution ¢;41(x) =
[T; puilz:).

— STEP2: Select M < N points according to a selection schedule. Compute
the marginal frequencies r;(2;) of the selected set.

— STEP3: Update the marginal frequencies according to equation (14). Set
t=1t4+1.

— STEP4: If not terminated, go to STEP1

Note that A influences the speed of convergence. The smaller A the less the
convergence speed. Before we show some computational results, we qualitatively
analyze the algorithm. We simplify the notation p;i(xz;) = p(t) and ri(z;) =
r(t). We start with the simplest case.

Theorem 5. Assume that r(t) = ¢ with 0 < ¢ < 1. Then
pt+1)=p()(1 =N —c(1 =N +¢c ¢t=0,1,... (15)
The proof is straightforward and will be omitted. We obviously have
limi_oop(t) = ¢

In a real algorithm »(#) will oscillate. A qualitative analysis of the SUMDA
algorithm has been first made in [11].



Theorem 6. If the difference Fquation (14) can be approzimated by the differ-
ential equation

WO — 3oty = i), (16)
the solution s given by
p(t) = p(1)e™ 4 Ae™M /Ot r(r)erdr (17)

If 7(t) = ¢ one obtains an approximation of equation (15). But in real simu-
lations one observes that SUMDA often consists of two phases. In the first phase
(0 <t < t1) r(t) more or less randomly oscillates about a mean < r(t) >&. If
p(t) gets more focused, then r(¢) changes accordingly.

In table 1 we give numerical results for the linear function ON EM AX. Note
how A influences the convergence speed. Because the size of the population, NV,
is very large, the speed of convergence is almost independent of the size of the
problem n. For difficult multi modal fitness functions the success of SUMDA
depends on the parameter A and N. We have to omit this discussion here. But it
should be obvious that SUMDA suffers from the problem, all algorithms using
marginal distributions only have: they are not able to handle higher order gene
interactions.

n =30 n =30 n = 60 n =90

t|  plstd(p)]|  plstd(p)|  p|std(p)]  p|std(p)
10]0.726| 0.049{(0.952| 0.024(0.887| 0.086(0.834| 0.122
20(0.893| 0.025(|0.997| 0.001]0.993| 0.005|0.985| 0.014
30(0.963| 0.009(|1.000| 0.000{1.000| 0.001{0.999| 0.001

Table 1. SUMDA: N =1024;A = 0.1,n = 30;A = 0.25 else

5 Conditional distributions

Gene pool recombination with two parent mating and uniform crossover as well
as the two marginal distribution algorithms UMDA and SUMDA exploit the
additive genetic variance mainly. The suitability of these algorithms for solving
optimization problems with strongly interacting genes at different loci seems
limited.

An extension of univariate marginal distribution algorithms are multivariate
ones. Unfortunately it is difficult to generate the probabilty p(#) of genotype @
from multivariate marginal distributions. We demonstrate the problem with an
example. For n = 4 loci for instance, we may use p(x) = p(x1, x2) p(xs, 4). But
then four of the six bivariate distribution are left out. There are methods to solve



this problem by using a system of equations as constraints, but the number of
multivariate distributions scales exponentially. Therefore i1t seems easier to use
conditional distributions p(x;|®1, ..., %i-1,%i41,...,%y) to reconstruct interac-
tions between the variables. We use the notation

Xy = (X1, T, i, -, )

Then p(x;|x_;) is the probability of #; given @_;. Besag [3] has proven that the n
different conditional distributions p(z;|®_;), ¢ = 1,... n, completely determine
the joint distribution p(«). In our algorithm we will use conditional distributions
P21, ..oy Bm|Tmy1, ..., Tn). In order to keep the description simple we will start
with an algorithm using p(x;|®_;) only.

There are a number of methods in statistics that estimate conditional dis-
tributions. We selected regression tree methods because they are reasonably
accurate and computationally cheap. Algorithms for classification and regres-
sion trees date back to Sonquist and Morgan [17] and have been improved by
Breiman et al.[4], see also [5] [14].

It turns out that the estimation of conditional distributions is very difficult.
We are not able to describe our conditional distribution algorithm CDA here.
It uses tree regression to estimate conditional distributions, and the Metropolis-
Hastings algorithm to correct the estimates. In order to speed up the compu-
tation we use a cluster algorithm to compute the conditional distributions for
correlated variables. Furthermore we scale the probability distribution p(®) in
order to concentrate its mass near the optima of f(x).

In the next Section we give first numerical results.

6 Numerical results

Deceptive problems have been introduced by Goldberg [9] as a challenge to
genetic algorithm. For these functions genetic algorithms will converge to sub-
optimal points. To overcome this problem, a radically different type of genetic
algorithm called a messy genetic algorithm has been devised and tested by Gold-
berg and his coworkers. In a messy genetic algorithm the interaction of genes is
tested with substrings in a primordial phase. Of crucial importance 1s the ini-
tialization. The interested reader should consult [10] for a recent update of the
messy genetic algorithm applied to deceptive problems.

Our conditional distribution algorithm CDA tries to determine the important
interactions more globally with well-known statistical techniques. The implemen-
tation of CDA is much more difficult than a genetic algorithm or an algorithm
using univariate marginal distributions only.

For our numerical experiments we used the following deceptive functions.

n/3]-1

[
fa(d,x) = Z g3(d, 3541, T3i12, 3i43) (18)

+=0



where

1—-d, >z =0;
1—-2d, > »; =1,
g3(d, @1, 20, 23) = 4 %x _ 9. (20)
1, E r; =
(21)
The function f5 is defined similarly to fs. The function f(5 3) has clusters of
three and five interacting variables. By using an exponential transformation the
marginal distributions of the clusters are independent from each other.

| n| func | N| 6| eval|
50] fs, d=0.1 [1000](4,25)] 57000
50| f5, Goldberg [1000|(4, 45)] 121000
50] fs, d=0.1 |2000|(4,45)| 710000
50]f(5.2), d = 0.1]1000[(4, 45)| 911000

(5,35)

(5,45)

(5,45)

100] fs, d = 0.1 [1000](5, 35)] 100000
100| fs, d = 0.1 |4000](5, 45)[4960000

[200] fs, d =0.1 [1000](5,45)] 500000

Table 2. Numerical results for CDA

Preliminary numerical results are presented in the Table 2. They clearly show
that the algorithm is able to solve large deceptive problems. But the algorithm
is at this stage more a conservative statistical estimation procedure than an
optimization algorithm. It will take some time and lots of numerical experiments
to end up with an efficient and reliable optimization algorithm.

Our results are not directly comparable to [10], because there a a deceptive
function with a fitness value of 0.58 for the local optimum « = (0,0,0,0,0)
is used. We have used a fitness value of 0.9. Goldberg’s deceptive function is
substantially easier to solve, because the difference between the global and the
local optimum is larger. Our algorithm needs for Goldberg’s deceptive function
of n = 50 about 1/6 function evaluations compared to our deceptive function.

Nevertheless, Goldberg’s messy genetic algorithm seems to need substantially
less function evaluations than our algorithm. But in our opinion, the messy ge-
netic algorithm uses the cluster size as a priori information! Furthermore, the
interacting variables are supposed to be contiguously located. Our algorithm de-
tects all interactions without prior information. This 1s shown with the function
J(5,3). Here clusters of size 3 and size 5 alternate, unknown to the algorithm.

From our statistical experience we believe that it is impossible to detect all
important gene interactions by simply manipulating substrings like it is done
in the messy genetic algorithm. Whether our conjecture is true the future will
show, when experiments with a variety of deceptive functions are made.
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