
Updating the probability vector using MRF
technique for a Univariate EDA

S. K. Shakya, J. A. W. McCall, and D. F. Brown
{ss, jm, db}@comp.rgu.ac.uk

School of Computing, The Robert Gordon University,
St.Andrew Street, Aberdeen,

AB25 1HG, UK.

Abstract. In this paper, we propose a new technique to update a probability vector
[1] for Estimation of Distribution Algorithms (EDA)[15]. We present a novel algo-
rithm belonging to the general class of EDA which we call Distribution Estimation
using Markov Random Fields (DEUM). In common with other EDAs, DEUM uses
a population of chromosomes to build a probabilistic model of good solutions. The
model is then used to update the probability vector which is sampled to generate fur-
ther populations, replacing the function of recombinative operators in a traditional
genetic algorithm. DEUM uses Markov Random Field (MRF) modelling [3] to es-
timate the probabilistic relationship between allele values and fitness and iteratively
refine a probability vector to generate better solutions. We present experimental re-
sults on the performance of DEUM and make comparisons with other algorithms in
the Univariate EDA class. Our experiments show that MRF modelling provides a sig-
nificant advantage over other approaches on problems where univariate algorithms are
typically used.

1 Introduction

Estimation of Distribution Algorithms (EDA) [15] [11], also known as Probabilistic Model
Building Genetic Algorithms [PMBGA] [17], are a developing area of research interest in
the field of evolutionary and genetic algorithms (GA). The earliest example of this class of
algorithm is Population Based Incremental Learning (PBIL), first proposed in [1]. Several
different variants of EDA have been proposed to date [18] and are the subject of active re-
search in the GA community. EDAs are reported to solve problems that are known to be the
hard problems for traditional GAs [19]. EDAs are motivated by the idea of identifying and
preserving the important patterns or Building Blocks [7]. A model of the probability distribu-
tion of allele values is constructed from the population of solutions at each cycle. This model
is used to generate the next population of solutions in a way that is explicitly biased towards
important patterns learnt by the EDA. This contrasts with the implicit processing of Building
Blocks in traditional GAs. EDAs are classified as univariate, bivariate or multivariate [17] ac-
cording to the extent to which interaction between allele values is incorporated in the estimate
of the probability distribution.

The aim of this paper is to introduce a new approach to update a probability vector [1] in
order to improve the performance of EDAs. We describe an optimization algorithm which we
call Distribution Estimation using Markov Random Fields (DEUM). DEUM belongs to the



class of univariate EDAs. DEUM uses the Markov Random Field (MRF) modelling approach
described in [3] to update the probability vector. In most univariate EDAs, the probability
distribution is estimated using the marginal frequency of each allele value in a selected subset
of the population (see for example [15], [17]). In particular, PBIL uses marginal frequencies
to evolve a probability vector that is sampled to generate successive populations. In DEUM,
we adapt the PBIL approach by replacing marginal frequencies with an MRF model on a
selected set of solutions. The MRF model gives a maximum likelihood estimation of the
optimal solution based on the selected set and this is used to update the probability vector.
The result of this, as we hypothesise and show by experiments, is a significant improvement
in learning on well-known univariate EDA problems.

The rest of the paper is constructed as follows. Section 2 sets out the relevant background
of EDAs. Section 3 introduces our univariate MRF model and shows how we determine the
model from a population of solutions. Section 4 describes the workflow of DEUM and we
present experiments and results in section 5. We summarise the paper and outline further
work in section 6.

2 Background

In EDAs, a solution (chromosome/individual) is regarded as a set of random variables (the
alleles) each taking a particular value from a set of possible values. In particular we represent
a solution as x = {x1, x2, .., xn} where each xi is the value taken by the ith random variable.
In this paper, we consider problems where solutions are encoded as bit-string chromosomes
and so n is chromosome length, the xi represent allele values in the obvious way and so each
xi will be 0 or 1.

As in a traditional GA, all EDAs begin by generating an initial population of M solutions.
N promising solutions are then selected according to a chosen selection criterion (usually
fittest) for some N ≤ M . An estimation of the probability distribution of allele values is
made from the selected set of solutions [15]. Offspring are then generated by sampling the
probability distribution to replace the current population with a new population. This process
continues until a termination criterion is satisfied.

Univariate EDAs do not consider any dependencies between variables, i.e., they are ca-
pable of modelling only building blocks of order one. So the joint probability distribution
becomes simply the product of the univariate marginal probability of all variables in an indi-
vidual, i.e;

p(x) =
n
∏

i=1

p(xi) (1)

where, p(xi) is the marginal probability of ith variable having value xi.

Population Based Incremental Learning (PBIL) [1], Univariate Marginal Distribution Al-
gorithm (UMDA) [15] and Compact Genetic Algorithm (cGA) [9] all use the univariate
model of probability distribution.

Bivariate EDAs consider pair-wise dependencies between variables, i.e., they are capable
of modelling building blocks of order two. The probability model in this case becomes more
complex than one of univariate model and takes a form of a probabilistic network between



variables [20]. Mutual Information Maximization for Input Clustering (MIMIC) [5], Combin-
ing Optimizers with Mutual Information Trees (COMIT) [2], Bivariate Marginal Distribution
Algorithm (BMDA) [20] all use the bivariate Model of probability Distribution.

Multivariate EDAs consider dependencies between variables of order more than two. The
probability network representing such dependencies obviously becomes more complex, and
the computation time to search for a good network increases. Extended Compact Genetic
Algorithm (ECGA) [8], Factorised Distribution Algorithm (FDA) [13], Bayesian Optimiza-
tion algorithm (BOA) [16], Learning Factorised Distribution Algorithm (LFDA) [14], and
Estimation of Bayesian Network (EBNA) [6] all use the multivariate model of probability
distribution.

This paper concentrates on univariate EDAs.

3 Univariate Markov Random Field Modelling of Chromosome Fitness

MRF theory [12] is a branch of probability theory for analysing the spatial or contextual
dependencies of physical phenomena. It has been applied for many years to the analysis of
images, particularly in the detection of visual patterns or textures. In [3] MRF theory was
used to provide a formulation of the joint probability distribution that relates solution fitness
to an energy function calculated from the values of the solution variables. To be precise,

p(x) =
f(x)

∑

y f(y)
=

e−U(x)

∑

y e
−U(y)

(2)

from which can be derived an equation for each solution x,

− ln(f(x)) = U(x) (3)

Here, f(x) is the fitness of an individual and U(x) is an energy function. The summations
are over all possible solutions y. Specification of U(x) fully specifies the joint probability dis-
tribution. U(x) can be thought of as a probabilistic model of the fitness function. In particular,
minimising U(x) is equivalent to maximising f(x).

In general, the form of the energy function will involve interaction between the variables
xi. In DEUM, however, we use a simple form which assumes no interaction. Instead each
variable provides a contribution αixi to the overall energy. Using the formulae above, we
derive an equation for each solution

− ln(f(x)) = α1x1 + α2x2 + ...+ αnxn (4)

We refer to this as the Univariate MRF model. The real-valued αi are called MRF pa-
rameters and completely determine the probability distribution.

Each solution in any given population gives an equation satisfying the model. Selecting
N promising solutions from a population therefore allows us to estimate the distribution by
solving

Aα = F

Where,
A is the N × n dimensional matrix of allele values in the selected set,
α is the vector of MRF parameters α = {α1, α2, ..., αn},



F is the N dimensional vector containing − ln(f(x)) of the selected set of solutions x.

Solving this system of linear equations, we get the set of MRF parameters α = {α1, α2, ..., αn}.
Depending on the relationship betweenN and n, the system will be under-, over-, or precisely
specified. A standard least-squares fitting algorithm can be used to give a maximum likeli-
hood estimation of the αi.

For mathematical reasons, we use {-1, 1} as the values of xi in our model rather than {0,
1}. This ensures arithmetical symmetry between the possible allele values. Another way of
saying this is that the magnitude of the energy contribution from an order 1 building block
xi is completely determined by the MRF parameter αi and is independent of the allele value.
As a consequence of this, the energy contribution from a particular variable will be positive
or negative depending on the product of signs of the MRF parameter and the variable value.
More precisely, αi will indicate whether xi is likely to be -1 or 1.

In the next section we describe DEUM, an EDA that uses the univariate MRF model to
direct the search for better solutions.

4 DEUM: Distribution Estimation using Markov Random Fields

The workflow of DEUM is similar to that of other univariate EDAs such as PBIL, UMDA
and cGA. DEUM begins by initializing a probability vector where each element of the vector
is assigned the value 0.5. M solutions are then generated by sampling the probability vector,
out of which N best solutions are selected. MRF parameters are then calculated by fitting
the univariate MRF model on the selected set and solving the system of linear equations.
DEUM uses the Singular Value Decomposition (SVD) [21] technique to solve the system of
linear equations. SVD proves to be the most stable technique and can solve systems of linear
equations that are under-specified or over-specified. The MRF parameters are then used to
update the probability vector, which is then sampled M times to create a new population.
This process continues until termination criteria are satisfied.

Pseudo-code for DEUM is as follows:

1. Initialize probability vector p = {p1, p2, ..., pn} by assigning 0.5 to each pi

2. Sample p to generate M number of parent solution

3. Select N fittest solutions from parent where N ≤M

4. Calculate MRF parameters α = {α1, α2, ..., αn} by applying univariate MRF model

5. Use α to update p using following updating rule
For i = 1..n do

If αi < 0 then pi = pi(1− λ) + λ;
If αi > 0 then pi = pi(1− λ);

6. Go to step 2 until termination criteria satisfies

λ is a learning rate [1] parameter specified by the user which takes a value between 0
and 1. λ has a direct effect on the convergence speed of DEUM where convergence is slow if



λ is closer to 0 and convergence is fast if λ is closer to 1. As stated in the previous section, to
calculate α the binary representation {0, 1} of the solution is replaced by {-1, 1}.

Unlike the updating rules used in UMDA, PBIL and cGA, the DEUM updating rule uses
the sign of the MRF parameter to direct the search towards favouring a particular value of xi.
This is achieved by updating the probability vector pi in the appropriate direction by a fixed
learning rate λ. Note that when selection size N = 1, the DEUM updating rule will always
have an identical effect to the PBIL updating rule.

The updating rule should be understood in terms of the energy function. To maximise
fitness, we are trying to minimise energy because of the negative log relationship between
energy and fitness represented by the univariate MRF model. When all of the terms on
the right hand side of our system of equations are non-positive, i.e., on the condition that
− ln(f(x)) ≤ 0, for all solutions in the selected set, a negative αi indicates that xi is more
likely to be 1 and a positive αi indicates that xi is more likely to be -1. So the updating rule
moves the marginal probability in the direction indicated by the αi. This condition is equiva-
lent to f(x) ≥ 1 for all solutions x in the selected set. This is easily achieved on the problems
we consider in this paper and held true on all runs of each of the experiments presented in the
next section. For problems where f(x) < 1 is likely to occur in a selected set of promising
solutions, DEUM should be applied by adding 1 to the fitness function. This will not affect
the selection process of the algorithm as DEUM selects the fittest N solutions out of M .

5 Experimental results

In this section, we compare DEUM with other univariate EDAs and a GA on three different
problems. In order to compare best with best, we empirically determined the parameters for
DEUM. For the rest of the algorithms, we used parameter settings from the literature or
empirically determined parameters depending on which proved best for particular problems.

5.1 Onemax Problem

This is a simple linear problem which can be defined as follows.

fonemax(x) =
n
∑

i=1

xi

Where, xi is the value of ith variable of set x and the fitness is the sum of all bits in x.
This problem is decomposable of order one and therefore is an ideal problem for univariate
EDAs. It has been shown that UMDA works very well on this problem even with a very small
selection size [15].

We compare performance of DEUM against a simple GA with uniform crossover (GA
(uniform)) and two variants of UMDA: UMDA with selection size N = 0.5M (UMDA (0.5))
and UMDA with selection size N = 0.3M (UMDA (0.3)). 100 runs of each algorithm were
executed for a series of Onemax problems with chromosomes ranging in size between 30 and
180. The number of fitness evaluations taken to find the solution was recorded for each run.
Uniform crossover with exchange probability of 0.5 was used for GA (uniform), crossover
was applied all the time and mutation was not applied. Population size M ranged from 40 -
100 for GA (uniform), 50 - 170 for both variants of UMDA and was set to be 1.5n for DEUM
(40 - 270). Learning rate λwas from 0.5 to 0.6 for DEUM. Truncation selection with selection
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Figure 1: Average number of fitness evaluations for 30 to 180 sized onemax problem where the population size
was 40 -100 for GA (uniform), 50 - 170 for both variant of UMDA and 1.5n for DEUM which is 40 - 300. λ
for DEUM was 0.5-0.6.

size N = 0.5M was used for GA (uniform). For DEUM selection size of N = 0.85M was
used. No elitism was used and new populations were generated with complete replacement.
Fig. 1 shows the average number of fitness evaluations for each algorithm over the range of
onemax problems.

The success ratio of converging to the optimum was 93.5% for DEUM, 99% for UMDA
(0.5), 98% for UMDA (0.3) and 100% for GA (uniform). GA with one point crossover is not
shown in the experiment as its performance was much worse than the algorithms shown in
Fig. 1.

As we can see from Fig. 1, GA (uniform) as expected has a performance comparable to
UMDA (0.5). UMDA (0.3) performs better than both GA (uniform) and UMDA (0.5). Finally
DEUM has a comparable performance to UMDA (0.3) for small problems and performs
better for large problems.

5.2 Schaffer f6 Function optimization

The Schaffer f6 function, described in [4], is an interesting function for optimization, which
has been frequently used to evaluate the performance of GAs. A simplified version of it is
presented below.

f(x) = 1 +

(

cos(x)

1 + 0.001x2

)

Where, −300 ≤ x ≤ 300.

An interesting feature of this function is that it has lots of local optima but a single global
optimal solution (Fig. 2). So a hill climbing algorithm will rapidly become trapped in one of
the local optima. The optimal solution is f(x) = 2 when x = 0.

We performed experiments with two different 20-bit representations of the f6 function.
Firstly with a simple binary representation, and secondly with a gray coded representation.
Each algorithm with fixed parameter settings was run for a total of 1000 runs. For each run
the number of evaluations taken to find the optimum solution was recorded.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-300 -200 -100 0 100 200 300

Figure 2: Fitness landscape for simplified version of Schaffer f6 function

For the binary representation, the parameter settings were as follows. For UMDA, the
population size was 400, selection size was N = 0.3M and 50% elitism was used. For GA
(uniform), population size was 200 and truncation selection with selection size N = 0.5M
was used. Crossover was applied all the time, mutation was set to 0.01 and 50% elitism
was used. For PBIL and DEUM, identical parameter settings were used: population size was
160, learning rate λ was set to 0.15, selection size N = 2 was used. Mutation shift was not
applied in PBIL. Within the limits of representational accuracy, the termination criterion was
effectively f(x) > 1.99999988079071. The experimental results are shown in Fig. 3.
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Figure 3: Experimental results in the form of RLD showing, for each algorithm running on the 20-bit binary
representation of Schaffer f6 function, the cumulative percentage of successful runs that terminated within a
certain number of function evaluations

For the gray code representation, the parameter settings were as follows. For GA (uni-
form), population size was 300 and truncation selection with selection size N = 0.5M was
used. Crossover was applied all the time, mutation was set to 0.01 and 50% elitism was used.
For PBIL and DEUM, identical parameter settings were used: population size was 500, learn-
ing rate λ was set to 0.1, selection size N = 2 was used. Mutation shift was not applied in
PBIL. The experimental results are shown in Fig. 4. The result for UMDA is not shown in



the figure as its performance was much worst than other three algorithms.
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Figure 4: Experimental results in the form of RLD showing, for each algorithm running on the 20-bit gray code
representation of Schaffer f6 function, the cumulative percentage of successful runs that terminated within a
certain number of function evaluations

Figs. 3 and 4 shows the Run Length Distribution (RLD) [10] for each of the compared
algorithms, i.e., for each algorithm, the cumulative percentage of successful runs is plotted
against the number of function evaluations needed to achieve success. RLD is a powerful
technique used to understand the dynamic behaviour, that is usually observed in stochastic
algorithms like GAs and EDAs. For example, Fig. 3 shows that, with DEUM, 50% of runs
found the optimum within 1700 function evaluations in comparison to 2200 function evalua-
tions of PBIL. We can see that, for both binary and gray representations, the performance of
DEUM was better than other Univariate EDAs.

As we stated earlier, the performance of DEUM was identical to the performance of PBIL
when selection size N was set to 1 (Fig. 5a). The updating rule in this case is effectively
identical. However, as selection size increases, the performance of DEUM exceeds that of
PBIL (Fig. 5b and 5c).

5.3 Composed trap function of order 5

A composed trap function of order k [18] can be defined as

ftrap,k(x) =

n/k
∑

i=1

trapk(xbi,1 + ...+ xbi,k)

Each block (xbi,1 + ... + xbi,k) gives a fitness which can be calculated through a general
trap function of order k

trapk(u) =

{

fhigh, if u = k

flow − uflow

k−1
, otherwise

Where, u is the number of ones in the input block of k bits. The trap function of order 5
(Fig. 6) is the instance of the general trap function where k = 5, fhigh = 5 and flow = 4.
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(a) N = 1
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Figure 5: Experimental results comparing DEUM and PBIL for 20-bit binary representation Schaffer f6 func-
tion. For both algorithm population size was 160, learning rate was 0.1 and selection size was 1 for (a), 2 for (b)
and 3 for (c).
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The important feature of a trap function is that the block of bits with u < k has de-
creasing fitness as u increases and so misleads the algorithm away from the global optimum.
The purpose of this experiment is to show that DEUM, like other univariate EDAs and GA
with uniform crossover, is misled by a trap function because it cannot detect the interaction
between variables.

Experiments done with problem size n = 30 showed that none of GA (uniform), UMDA,
PBIL with learning λ = 0.1 or DEUM with different settings of λ could find the optimum
even using a population size of 15000. However a simple GA with one point crossover (GA
(onepoint)) could find the solution using average of 7500 fitness evaluations. For GA (one-
point) crossover probability was 100%, mutation probability was 1%, population size was
600 and 50% elitism was used. For all experiments, truncation selection with N = 0.5M was
used except that the single best selection was used for PBIL.

6 Conclusions

In this paper, we have presented DEUM as a novel EDA, which uses MRF modelling of
fitness to update the probability vector. The motivation behind DEUM is to use MRF mod-
elling to provide a better estimate of the probability distribution. Our experiments support
our hypothesis that, for order one problems, the use of MRF parameters instead of the sim-
ple univariate marginal frequency does provide better convergence of the probability vector,
leading to better performance in terms of the number of function evaluations required for
convergence to the global optimum.

Our experiments with trap function of order 5 showed that DEUM has a similar problem
as other univariate EDAs, that is premature convergence to the local optimum. Our future
work will focus on developing MRF model on bivariate and multivariate EDAs, so that the
problems with higher order variable interactions can also be tackled.

At this stage of our research, DEUM only uses the sign of MRF parameters to update
probability vector. However, it would be interesting to use the value of MRF parameters as a
weighted energy contributor of a particular allele on the fitness of a chromosome. This means,
we need to find the technique to sample the MRF parameter to generate next population. Work
on this topic is ongoing and, the encouraging results are expected in near future.

Acknowledgement

We would like to thank the three anonymous reviewers for their useful comments on an earlier
version of this paper.

References

[1] Shumeet Baluja. Population-based incremental learning: A method for integrating genetic search based
function optimization and competitive learning,. Technical Report CMU-CS-94-163, Pittsburgh, PA, 1994.

[2] Shumeet Baluja and Scott Davies. Using optimal dependency-trees for combinatorial optimization: Learn-
ing the structure of the search space. In Proceedings of the 1997 International Conference on Machine
Learning, 1997.

[3] D. F. Brown, A. B. Garmendia-Doval, and J. A. W. McCall. Markov Random Field Modelling of Royal
Road Genetic Algorithms. Evolution Artificielle 2001, page 12, 2001.

[4] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.



[5] Jeremy S. de Bonet, Charles L. Isbell, Jr., and Paul Viola. MIMIC: Finding optima by estimating probabil-
ity densities. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, page 424. The MIT Press, 1997.
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