
Stochastic Hill Climbing with Learning by Vectors of NormalDistributionsSecond corrected and enhanced versionStephan Rudlof, Mario K�oppen(Email: stephan.rudlof@ipk.fhg.de, mario.koeppen@ipk.fhg.de)Fraunhofer{Institute for Production Systems and Design Technology (IPK)Pascalstr. 8{9, D{10587 BerlinDecember 3, 1997AbstractThis paper describes a stochastic hill climbing algorithm named SHCLVND to optimize arbitrary vectorial<n ! < functions. It needs less parameters. It uses normal (Gaussian) distributions to represent probabilitieswhich are used for generating more and more better argument vectors. The �-parameters of the normal distri-butions are changed by a kind of Hebbian learning.Kvasnicka et al. [KPP95] used algorithm Stochastic Hill Climbing with Learning (HCwL) to optimize a highlymultimodal vectorial function on real numbers. We have tested proposed algorithm by optimizations of the sameand a similar function and show the results in comparison to HCwL. In opposite to it algorithm SHCLVNDdesribed here works directly on vectors of numbers instead their bit-vector representations and uses normaldistributions instead of numbers to represent probabilities.Keywords: optimization, evolutionary computation, stochastic hill climbing, genetic algorithms, Evolutions-strategien.1 OverviewIn Section 2 we give an introduction with the way to the algorithm. Then we describe it exactly in Section 3.There is also given a compact notation in pseudo PASCAL-code, see Section 3.4. After that we give an example:we optimize highly multimodal functions with the proposed algorithm and give some visualisations of the progressin Section 4. In Section 5 there are a short summary and some ideas for future works. At last in Section 6 we givesome hints for practical use of the algorithm.2 IntroductionThis paper describes a hill climbing algorithm to optimize vectorial functions on real numbers.2.1 MotivationFlexible algorithms for optimizing any vectorial function are interesting if there is no or only a very di�cultmathematical solution known, e.g. parameter adjustments to optimize with respect to some relevant property the� recalling behavior of a (trained) neuronal net [HKP91, Roj93], or the� resulting image of some image-processing �lter. 1

You are able to express mathematically (say with a quality function) the goodness of any solution, but you aren'table to �nd optimal solutions1 directly by using symbolic mathematics. Then you need a exible optimizationalgorithm!2.2 Evolutionsstrategien and Genetic AlgorithmsThere are many algorithms for optimizing any vectorial function which are based on concepts out of biology: E.g.Rechenberg's Evolutionsstrategien (ES's) [Sch77] and genetic algorithms (GAs) [Gol89]. They provide a greatexibility in optimizing vectorial functions. Evolutionsstrategien are working directly on vectors of real numbers,genetic algorithms are working on bit vectors which have to be interpreted as real numbers to optimize a functionwith real arguments 2.The main advantage of these algorithms is the big number of possibilities to adapt them to a special problem:In both algorithms you can change the population size, the number of childs and parents in one generation, andthe number of populations to be used. In GAs there are di�erent combining schemes (crossing over operators) togenerate childs from parents, mutation rates for chromosomes, etc.. In ES's there are stepwidths, mutation ratesfor these stepwidths, etc..This exibility is also a main disadvantage! You are forced to �nd good values for all these many parameters withtaking into account dependencies between them. If you are not experienced with these algorithms it is not so easyto obtain good results. So it is very interesting to look for algorithms which are comparable in the results butwhich have much less parameters. Then it is more comfortable to model the optimization process mathematically,which also gives advantages in the practical use of such algorithms.Baluja [Bal94] proposed the PBIL algorithm:\population-based incremental learning (PBIL), a method of combining the mechanisms of a gener-ational genetic algorithm with simple competitive learning. The combination of these two methodsreveals a tool which is far simpler than a GA, and which out-performs a GA on large set of optimiza-tion problems in terms of both speed and accuracy."Kvasnicka et al. [KPP95] realized a simpli�ed variant of the standard PBIL algorithm called 'hill climbing withlearning' (HCwL).Baluja also suggested the using of non-binary encodings for optimization of continuous valued functions by usinga Gaussian curve over the desired argument range:\A possible method of generating continuous values is to specify a gaussian curve over the desired range.The average and the standard deviation for each variable can be 'evolved' during the search. Methodsof encoding solutions which are similar to this are often used in evolutionary strategies and evolutionaryprogramming [BS93]."We took up this suggestion and combined it with the HCwL algorithm from Kvasnicka et al. [KPP95]. The resultingSHCLVND algorithm is related to Evolutionsstrategien and { similar to HCwL { does not store information asparents in a population 3. HCwL stores it as vector of probabilities, but SHCLVND as vector of probabilisticdistributions. Every element of this vector is used for one parameter to be optimized (i.e. one dimension of searchspace).3 The Stochastic Hill Climbing with Learning by Vectors of NormalDistributions (SHCLVND) algorithmSHCLVND is a hill climbing algorithm with a kind of Hebbian learning 4. It is inspired of genetic algorithms,Evolutionsstrategien, stochastic hill climbing etc. and has less parameters itselve. We have tried to transfer the1If there are multiple local optima with similar goodness, reaching one of them can be good enough in practice.2There are di�erent encoding schemes which are not desribed here.3Information is stored during the optimization process for directing the further search.4Important learning rule for neural nets [HKP91, Roj93]. 2

idea of a probabilistic vector to represent probabilities for the status of bits in a bit-vector, to a vector of realnumbers. This isn't trivial, because we are walking from the �eld of discrete values (bits) to continuous numberintervals. In the discrete case it is su�cient to have one real value to express the probability of a single bit beingon or o�. But we cannot express probabilities for numbers in an interval of nondiscrete values by simply one valuelike for a single bit. We have to take a distribution which represents the probabilities for obtaining one numberin this interval; in the proposed algorithm we have taken the normal (Gaussian) distribution. Because normally avectorial function is de�ned on more than one argument, we get vectors of normal distributions.Advantages of the proposed algorithm:1. less input parameters for controlling the algorithm,2. no encoding e�ort for real numbers,3. easy to implement,4. parallelizable.In this section we give a detailed mathematical description of SHCLVND. If you prefer to have a compact look atthe complete algorithm in pseudo PASCAL-code �rst, see Section 3.4.3.1 Optimization goalLet quality function qual be a function qual : <n ! < (1)which assigns to each vector ~v = v1; : : : ; vn a real number q 2 <, formally given by q = qual(~v). The optimizationgoal is to �nd a best vector ~vbest 2 <n which corresponds to a global minimum of quality function qual over thedomain space <n: ~vbest = arg min qual(~v) ; ~v 2 <n: (2)The limitation to minimum search is no problem, because every maximize problem can be transformed into aminimize problem 5.3.2 Conventions3.2.1 Limiting the search spaceThe search space S = <n of the optimization task is composed of <n points, that means in�nity large continuous(with in�nite �ne granularity) intervals for each dimension! To be able to work the proposed algorithm needs apair of vectorial interval limits ~rmin and ~rmax to limit the search space. In genetic or in HCwL [KPP95] algorithmswe have an implicit limitation of search space because we are searching in a �nite space consisting of 2n pointsinstead of an in�nite <n-space. 63.2.2 Probabilistic vectorGiven interval limits ~rmin and ~rmax we compute a vector of normal distributions ~N(~�; ~�) which is referred to asprobabilistic vector ~P in the following. ~P is used to generate random vectors ~v in search space S. Each dimensionhas its own normal distribution N(�; �) with average � and standard deviation �.In every generation the vectorial ~�-component of ~P -vector will be shifted to the best(s) ~v. The vectorial ~�-component of ~P -vector will be reduced by multiplying it with a constant factor.5Example: To search for a maximum of a function fmaximize(x) we could simply search for a minimum of the transformed functionfminimize(x) = �fmaximize(x)6More exactly: Real numbers in computers are consisting of bits, too, which could be seen as a limitation of the search space insense of granularity like at genetic algorithms. But in spite of this the search space on real numbers { encoded as bit-vectors { in geneticalgorithms or HCwL is limited through the interpretation of these bit-vectors as numbers in a �xed interval. This cuts o� the searchspace at the interval limits. An (soft) analogue to this �xed interval is what we want to have as input for the SHCLVND algorithm.3

We initialize the probabilistic vector ~P as follows:~rrange = ~rmax � ~rmin (3)~� = ~rmin + ~rrange2 (4)~� = ~rrange � ConstrangeToSigmaFactor : (5)By this initialisation we generate most random vectors near the centers of the given intervals (see Figure 4 fordi�erent normal distributions). The constant ConstrangeToSigmaFactor has to be chosen in a manner to guaranteethat we reach the whole given (by ~rmin and ~rmax) search space well and search somewhat over it (we have softlimits 7, see also Section 5); we have set it to 0:5 for all computations.The random generation of <n-vectors with respect to probabilistic vector ~P is formally expressed by~v = ~X 2 ~P ; ~X = (X1 2 N1; : : : ; Xn 2 Nn); (6)which means that for each dimension i we generate a random number Xi whith normal distribution Ni.A neighborhood U(~P) composed of randomly generated <n-vectors with respect to a probabilistic vector ~P isdetermined by U(~P) = f~v = ~X 2 ~Pg: (7)The cardinality jU(~P)j = popSize is �xed; it corresponds to population size of conventional ES. A 'diameter' ofU(~P) is small if ~� is small, too; ~� approaches the location of the average of U(~P), the more exactly the largerjU(~P)j.3.2.3 Generating random rumbersIn the proposed algorithm we need for each dimension random numbers according to the normal distribution ofthat dimension X 2 N(�; �): (8)One possibility to generate such a random number is to take two uniformly distributed random numbers r1; r2 fromthe interval [0::1) and to generate a normal distributed random number rnorm with � = 0 and � = 1 according toBox-M�uller formula rnorm =p�2 ln r1 sin(2�r2): (9)To get an arbitrary random number r�;� with standard deviation � and average � we �rst multiply result rnormwith �, then we can get another average � by adding �:r�;� = rnorm � � + �: (10)3.3 Learning mechanismLearning is applied to probabilistic vector ~P and is given by1. shifting averages ~� in direction of the best solutions and2. reducing standard deviationstandard deviations ~� to narrow the search space around ~�.7This also means that quality function qual has to be de�ned also outside the given (by ~rmin and ~rmax) search space.
4

1 Let B be the set of best 8 solutions found in one generation, its cardinality Bsize is kept �xed. We de�ne theaverage of ~b 2 B as ~bmiddle = 1jBj X(~b2B)~b: (11)Then we update the ~�-component of ~P -vector by an adapted Hebbian learning rule:~� = ~�+ �move(~bmiddle � ~�); (12)where �move is the learning rate and ~� is shifted to the average of the vectors in B.2 We reduce the ~�-component of ~P with~� = ~� � �reduce ; 0 < �reduce � 1: (13)So search space is narrowed from generation to generation more and more. This is very important, because witha constant ~� (�reduce = 1) we would generate random vectors in the big { only ~�-shifted { initial intervals in amanner similiar to a Monte-Carlo-simulation. But our goal is di�erent: if we are near the global minimum (bestvalues of quality function qual) with ~�-component of probabilistic vector ~P we want to improve the resolution, andsearch only in the neighborhood of the ~�-vector! 9The algorithm: For the complete algorithm in pseudo PASCAL-code see Section 3.4.8In sense of minimizing, for maximizing see 3.1.9This reminds of the fundamental exploration vs. exploitation principle of evolutionary search [Hol92].

5

3.4 Algorithm SHCLVND in pseudo PASCAL-codefunction initPVec (~rmin, ~rmax);begin~rrange := ~rmax � ~rmin;~� := ~rmin + ~rrange2 ;~� := ~rrange � ConstrangeToSigmaFactor ;return (~N(~�; ~�));end;function SHCLVND (generations, popSize, Bsize, ~rmin, ~rmax, �move, �reduce);begin~P := initPVec (~rmin; ~rmax);for i:=1 to generations dobeginB := ;;for j := 1 to popSize dobegin~v := ~X 2 ~P ;if jBj < Bsize thenB := B [f~vgelse if qual(~v) � qual(~bworst) thenB := (B n f~bworstg) [f~vg;end;if ~batAll = nil then~batAll := ~bbestelse if qual(~bbest) � qual(~batAll) then~batAll := ~bbest;~bmiddle := 1jBjP(~b2B)~b;~P (i+1) := ~P (i)(~�+ �move � (~bmiddle � ~�); �reduce � ~�); (* update ~P *)end;return (~�, ~batAll); (* ~� is part of ~P *)end;generations says how often to update the probabilistic vector ~P . popSize is the number of vectors in onegeneration from which we collect the best ones in B. ~rmin and ~rmax are vectorial mini- and maximum (soft) limitsof the intervals in which to optimize. �move says how much to move the ~�-component of probabilistic vector ~P indirection of ~bmiddle, �reduce how strong to reduce its ~�-component. ConstrangeToSigmaFactor is a scaling factorfor computing initial ~� of normal distributions ~N(~�; ~�) from ~rmin and ~rmax, it is set to 0:5 in all computations.~P will be initialized to a vector of normal distributions ~N(~�; ~�). ~v is a single <n-vector computed from probabilisticvector ~P . B is the set of best vectors with respect to quality function qual() in generation i, Bsize vectors will becollected there. qual() is a call to any (but the same) quality function and returns the scalar quality of a vector.~bworst is the vector with worst (highest) and ~bbest with best (lowest) value in B. ~bmiddle is the average of all vectorsin B. ~batAll is the best ~v ever generated. ~P (i+1) is the new ~P computed from old one ~P (i) by shifting ~� andreducing ~�. Return value ~� is a component of the �nal ~P . i and j in the 'For'-constructs are loop variables.Note: The algorithm minimizes.
6

4 Examplary application of SHCLVND4.1 Functions to optimize

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -5 0 5 10

f(x)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -5 0 5 10

f(x)
minimum

a) g from [KPP95] 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

f(x)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

f(x)
minimum

b) gshiftedFigure 1: Functions g and gshifted4.1.1 Quality function f from Kvasnicka et al.As multimodal testing function for the proposed algorithm we �rst took the multimodal function of n real variablesfrom [KPP95] as quality function qual; it is de�ned asf(x1; : : : ; xn) = nXi=1 g(xi); (14)g(x) = 0:993851231+ e(�0:001x2) sin(10x)cos(8x); (15)for a visualisation of g see Figure 1 a). 57 local minima of Function g are in interval [�10; 10] but only one globalminimum at x = �0:7853024 10. The next best (in sense of searching for minima) after it are x = 2:3559072 andx = �0:4402184.f is de�ned as sum of n one-dimensional functions g. The task is to search for the global minimum of f whichmeans to �nd the global minimum of g in every dimension of (x1; : : : ; xn). Kvasnicka et al. limited the search spaceto [�10; 10] in every dimension. We took the same limits as input (~rmin, ~rmax) for SHCLVND.4.1.2 Quality function fshiftedBut there is a problem with f: The best minima are all located near 0:0 what is just the initial value for everydimension of ~�-component in probabilistic vector ~P . 11 Hence, the function was modi�ed as follows: We shiftedit, so that the new global minimum of gshifted is at �9:7853024 near the left limit of the search interval [�10; 10]for each dimension. The new function is de�ned asfshifted(x1; : : : ; xn) = nXi=1 gshifted(xi); (16)gshifted(x) = 0:993851231+ e(�0:001(x+9)2) sin(10(x+ 9))cos(8(x + 9)); (17)10Function values rounded.11Someone could think that therefore it is easy for SHCLVND to �nd a global minimum near 0:0.7

which we took as second quality function (Figure 1 b)). So the initial ~� of probabilistic vector ~P really has to beshifted far and very near to the left edge of the given search intervals to get a succesful opimization.To get an idea about the di�erences between the results for a good and a more worse case with respect to ouralgorithm, we compared optimizations with function fshifted with others with original function f from [KPP95].4.2 Parameters of optimizationsAll optimizations in this article were made using the following �xed parameters:generations = 2500popSize = 200Bsize = 3�move = 0:05�reduce = 0:997241~rmin = (�10; : : : ;�10)~rmax = (10; : : : ; 10)ConstrangeToSigmaFactor = 0:5:Variable parameters were: qual : f orfshifted~vsize : 1 : : : 7random generators and seeds : di�erent:To have a comparison to the computations in [KPP95] we wanted to have the same number of evaluations of qualityfunction of 500000. So we have the constraint generations�popSize= 500000. Parameter ConstrangeToSigmaFactoris chosen such to ensure that most random numbers are generated approximately uniformly distributed 12 insidegiven search intervals, but also fewer outside (see also Figure 4).Other parameters: After some trials we had found these parameters to be good to optimize fshifted. The value of�reduce is not chosen by random: The �nal ~�-vector should consist of elements with size �targetFraction = 11000 ofinitial values 13. Hence �reduce = generationsq(�targetFraction) = generationsr(11000): (18)4.3 Results4.3.1 Progress of ~� for all optimizationsIn Figure 2 there is shown the logarithmic progress of one (and all) dimension(s) of ~�-component of ~P from �rst tolast generation for all optimizations presented in this paper. All elements of ~�-component of probabilistic vector~P are equal because all elements of vectorial interval limits ~rmin and ~rmax are equal.4.3.2 Optimization of fshifted with ~vsize = 5In Figure 3 a) there is shown the shift of the ~�-component of probabilistic vector ~P for the best, in Figure 3 b) forthe worst of 20 computations (see Table 4.3.3).In Figure 4 there is shown the density function of one of the normal distributions (for one dimension) in ~P :initialized, after 500, 1000 and and 1500 generations. It is shifted after 'mue1' in Figure 3 a) and in parallel itsstandard deviation � is reduced as shown for every element of ~� in Figure 2.12Flat Gaussian curve.13Note: The �nal ~�-component of probabilistic vector ~P won't be used for computation of last generation, because it will be updatedat the end of the loop (see pseudo PASCAL-code in Section 3.4). 8

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

sigma

Figure 2: ~�-component of probabilistic vector ~P during all optimizations for one and all dimension(s), plotted fromgeneration 0 to 2500 (x-axis)

-12

-10

-8

-6

-4

-2

0

2

0 200 400 600 800 1000

m
ue

generations

mue1
mue2
mue3
mue4
mue5

a) best -12

-10

-8

-6

-4

-2

0

2

0 200 400 600 800 1000

m
ue

generations

mue1
mue2
mue3
mue4
mue5

b) worstFigure 3: ~�-component of probabilistic vector ~P of a) best and b) worst optimization of fshifted for ~vsize = 5,plotted until generation 1000. Worst optimization missed the minimum of gshifted in two dimensions.The integral over a given interval below one curve is a measure for the probability that a generated random numberis located in this interval.4.3.3 Comparison between fshifted and fOptimum foundSHCLVND HCwL~vsize fshifted f f1 100% 100% 100%2 100% 100% 100%3 85% 95% 100%4 65% 80% 100%5 45% 55% 100%6 35% 45% 90%7 30% 30% - -
The percentages say, how often SHCLVND clearly found the global optimum (min-imum). To get them we made 20 computations with SHCLVND for every combi-nation of ~vsize and function type. To make the border between 'found' and 'notfound' more clear we give you examples for ~vsize = 5: The worst vector whichreached the global minimum was(�9:78514;�9:78524;�9:78453;�9:78554;�9:78437);the best which failed it was(�9:78577;�9:78529;�9:78554;�9:78531;�6:64432):The parameters (see Section 4.2) were tuned for fshifted with ~vsize= 5.The results for HCwL are taken from [KPP95], where 10 computations were made.In this table you see a comparison between both tested functions with dimensions 1::7.As a result you can see: The better the initial choice of the searching intervals by ~rmin and ~rmax, the better the9

-15 -10 -5 0 5
x

NormalDistributions

0.1

0.2

0.3

0.4

0.5

0.6

y

Figure 4: Density function of normal distribution of one dimension of ~P after 0, 500, 1000 and 1500 generationsshown for best optimization of fshifted. The plot nearly parallel to the x-axis is the initial normal distributionwith N(� = 0; � = 10); in progress of optimization the bell-shape of this (shown) and all other (not shown)normal distributions becomes higher and more narrow. The average � of this normal distribution has moved tothe optimum.proposed algorithm works. But there is not a big di�erence for SHCLVND between optimizing fshifted or f: Theposition of the optimum within the given intervals hasn't been critical; the elements of initial ~�-vector which iscomputed from ~rmin, ~rmax and ConstrangeToSigmaFactor have been large enough.5 Summary and future worksSHCLVND is useful for optimizing tested functions, but doesn't reach the results of the HCwL algorithm from[KPP95] with used parameters. It stems from the �rst and second of the following advantages.But in spite of this it has some advantages:Resolution of the search space is not limited, whereas HCwL depends on the used encoding scheme whichlimits the resolution.Limitation of search space is soft, our algorithm looks over the limits of the given intervals. HCwL or otherbit-coded algorithms cut search space absolutely at the limits of given intervals (an optimum just behindone limit could not be found: e.g. ~rmin = (�10; : : : ;�10), ~rmax = (+10; : : : ;+10) and the optimum at(+11; : : : ;+11)!).Decoding of bit-vectors is not necessary if we have a vectorial function <n ! < as quality function.5.1 Possible improvementsWe think there are some possibilities to improve the SHCLVND algorithm by changing some properties (seeespecially items 1 and 2), but you have to take into account the type of function to be optimized.1. Parameter tuning:� What are the best parameter combinations if there is given a �xed number of quality function evalua-tions? 10

� Is there a better ConstrangeToSigmaFactor to compute initial ~� from ~rmin and ~rmax?2. Changing the decay function of ~�:Now we have a logarithmic decay for each � aus ~�. What happens if we have a linear or other kind of decay?3. Changing the distribution type in ~P :It would be interesting to research the e�ects of using other types of probabilistic distributions in ~P . Wehave chosen the normal distribution, but that is not necessary for the algorithm to work. Other distributionscould be useful, too!5.2 Further researchFollowing questions could be researched in future:� More comparisons between HCwL and SHCLVND:It would be interesting to see the success of these algorithms for other quality functions than fshifted or f.What happens e.g. on weighted quality functions, that means if di�erent dimensions have varying relevancefor the value of the quality function 14.� Encoding:Is there a fundamental di�erence between di�erent kinds of encoding: Indirect optimization of bit-vectors15 respectively direct optimization of real-vectors? This is a fundamental question, whose answers couldilluminate the di�erence between bit- and real- vector-based algorithms.6 Hints for using SHCLVNDIn the following we give some hints for appropriate choice of parameters for SHCLVND to ease its use. We stay interms of pseudo PASCAL-code as seen in Section 3.4.6.1 Possible parameter ranges� ~1 < ~rmin < ~rmax < ~10 < generations0 < Bsize <= popSize0 < �move <= 10 < �reduce <= 10 < �targetFraction <= 16.2 Explanations of parametersThe (vectorial) interval limits ~rmin and ~rmax should be chosen to have the optimum of the quality function locatedwith high probability inside the interval de�ned by them, there is no problem if the optimum is near by or shortlyoutside one interval limit. generations � popSize are the number of evaluations of quality function qual. Theseparameters can be chosen the more larger, the faster is one evaluation of qual and the more computing power isavailable.B includes best vectors in one generation which are used for learning by the algorithm. So Bsize should be muchsmaller than popSize to enable a good selection of best vectors 16.14Example: qualweighted(x1; : : : ; xn) =Pni=1 j5� xij 10i�1.15With di�erent possible encoding schemes.16Extreme case: With popSize = Bsize and �targetFraction = 1 (resulting in �reduce = 1) we get an approximately stochasticsearch in given search space. 11

�move should only chosen large if popSize { thereby probability of making an optimizing step in the right direction{ is also large. Extreme case �move = 1 leads to the case that the average of best vectors (in B) of one generationbecomes immediately center point ~� of search space of next generation.Algorithm SHCLVND has the property to narrow search space in progress of optimization more and more andtherefore it enlarges the resolution more and more. This is controlled by parameter �reduce, which at best iscomputed from �targetFraction by formula 18. To do that you have to know how narrow search space has to befor the last step of the optimization. If you choose a small �targetFraction the algorithm has a high resolution atend, but easily reaches a local optimum. If you chose a large �targetFraction instead, search is hardly narrowed, butresolution is not much better than at the beginning of optimization.6.3 Parameter choiceTo optimize hazardous functions like e.g. function fshifted in Section 4 you should try parameters given there (4.2)�rst. If there are more simple functions, generations and popSize could be chosen much smaller. Then �moveshould be chosen such to have a good chance to reach best vectors from center of interval 17, therefore at least(1=generations) � 10 with generations >= 100.Always should be popSize >= 3. If popSize <= 5 then should Bsize = 1.We recommend Bsize = 3: This means, that if there are di�erent 'opinions' of two of the three vectors in B withrespect to optimum of qual 18, they partially neutralize each other, but at the same time the third vector ensuresthat the optimization doesn't stagnate.SHCLVND computes initial ~�-vector to have a good covering of search space given by ~rmin and ~rmax. The userhas to decide how narrow the search space has to be at the end of the optimization, and then he has to give by�targetFraction the fraction of the initial standard deviation which has to be left at the end of the optimization. 19References[Bal94] S. Baluja. Population-based incremental learning: A method for integrating genetic search based functionoptimization and competitive learning. Technical Report CMU-CS-94-193, School of Computer Science,Carnegie Mellon University, Pittsburgh, 1994.[Bal95] S. Baluja. Removing the genetics from the standard genetic algorithm. Technical Report CMU-CS-95-141,School of Computer Science, Carnegie Mellon University, Pittsburgh, 1995.[BS93] T. Baeck and H.P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolu-tionary Computation, 1(1):1, 1993.[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley,Reading, MA, 1989.[GW92] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison Wesley, Reading, MA,1992.[HKP91] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Networks. Addison Wesley,Reading, MA, 1991.[Hol92] John H. Holland. Adaption In Natural And Arti�cial Systems. MIT Press/Bradford Books edition, 1992.[JW94] Ari Juels and Martin Wattenberg. Stochastic hillclimbing as a baseline method for evaluating geneticalgorithms. Technical Report CSD-94-834, University of California, Berkeley, Berkeley, CA 94720, 1994.[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.MIT Press, Cambridge, MA, 1992. ISBN 0-262-11170-5.17Because ~�-component of ~P will not always moved in direction of (global) optimum.18E.g. there are two local optima.19Resulting in �reduce by formula 18. 12

[KPP95] Vladimir Kvasnicka, Martin Pelikan, and Jiri Pospichal. Hill climbing with learning (an abstraction ofgenetic algorithm). In Proceedings of the First International Conference on Genetic Algorithms on theoccasion of 130-th anniversary of Mendel's laws in Brno, pages 65{70, Brno, Czech Republic, September1995. Technical University of Brno. ISBN 80 214 0672-0.[Mut82] C. Muth. Einf�uhrung in die Evolutionsstrategie. Regelungstechnik, 30, 1982. 30.Jahrgang Heft 9.[RK96] S. Rudlof and M. K�oppen. Stochastic hill climbing by vectors of normal distributions. In Proceedings ofthe First Online Workshop on Soft Computing (WSC1), Nagoya, Japan, 1996. Nagoya University.[Roj93] Ra�ul Rojas. Theorie der neuronalen Netze: eine systematische Einf�uhrung. Springer-Verlag, Berlin,Heidelberg, New York, 1993.[Sch77] H.P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie.Birkh�auser Verlag, Basel, Stuttgart, 1977.

13

