Stochastic Hill Climbing with Learning by Vectors of Normal
Distributions

Second corrected and enhanced version

Stephan Rudlof, Mario Képpen
(Email: stephan.rudlof@ipk.fhg.de, mario.koeppen@ipk.fhg.de)
Fraunhofer Institute for Production Systems and Design Technology (TPK)
Pascalstr. 8 9, D 10587 Berlin

December 3, 1997

Abstract

This paper describes a stochastic hill climbing algorithm named SHCLVND to optimize arbitrary vectorial

R"™ — R functions. It needs less parameters. It uses normal (Gaussian) distributions to represent probabilities
which are used for generating more and more better argument vectors. The p-parameters of the normal distri-
butions are changed by a kind of Hebbian learning.
Kvasnicka et al. [KPP95] used algorithm Stochastic Hill Climbing with Learning (HCwL) to optimize a highly
multimodal vectorial function on real numbers. We have tested proposed algorithm by optimizations of the same
and a similar function and show the results in comparison to HCwL. In opposite to it algorithm SHCLVND
desribed here works directly on vectors of numbers instead their bit-vector representations and uses normal
distributions instead of numbers to represent probabilities.

Keywords: optimization, evolutionary computation, stochastic hill climbing, genetic algorithms, Evolutions-
strategien.

1 Overview

In Section 2 we give an introduction with the way to the algorithm. Then we describe it exactly in Section 3.
There is also given a compact notation in pseudo PASCAL-code, see Section 3.4. After that we give an example:
we optimize highly multimodal functions with the proposed algorithm and give some visualisations of the progress
in Section 4. In Section 5 there are a short summary and some ideas for future works. At last in Section 6 we give
some hints for practical use of the algorithm.

2 Introduction

This paper describes a hill climbing algorithm to optimize vectorial functions on real numbers.

2.1 Motivation

Flexible algorithms for optimizing any vectorial function are interesting if there is no or only a very difficult
mathematical solution known, e.g. parameter adjustments to optimize with respect to some relevant property the

e recalling behavior of a (trained) neuronal net [HKP91, Roj93], or the

e resulting image of some image-processing filter.

able to find optimal solutions! directly by using symbolic mathematics. Then you need a flexible optimization
algorithm!

2.2 Evolutionsstrategien and Genetic Algorithms

There are many algorithms for optimizing any vectorial function which are based on concepts out of biology: E.g.
Rechenberg’s Evolutionsstrategien (ES’s) [Sch77] and genetic algorithms (GAs) [Gol89]. They provide a great
flexibility in optimizing vectorial functions. Fvolutionsstrategien are working directly on vectors of real numbers,
genetic algorithms are working on bit vectors which have to be interpreted as real numbers to optimize a function
with real arguments 2.

The main advantage of these algorithms is the big number of possibilities to adapt them to a special problem:
In both algorithms you can change the population size, the number of childs and parents in one generation, and
the number of populations to be used. In GAs there are different combining schemes (crossing over operators) to
generate childs from parents, mutation rates for chromosomes, etc.. In ES’s there are stepwidths, mutation rates
for these stepwidths, etc..

This flexibility is also a main disadvantage! You are forced to find good values for all these many parameters with
taking into account dependencies between them. If you are not experienced with these algorithms it is not so easy
to obtain good results. So it is very interesting to look for algorithms which are comparable in the results but
which have much less parameters. Then it is more comfortable to model the optimization process mathematically,
which also gives advantages in the practical use of such algorithms.

Baluja [Bal94] proposed the PBIL algorithm:

“population-based incremental learning (PBIL), a method of combining the mechanisms of a gener-
ational genetic algorithm with simple competitive learning. The combination of these two methods
reveals a tool which is far simpler than a GA, and which out-performs a GA on large set of optimiza-
tion problems in terms of both speed and accuracy.”

Kvasnicka et al. [KPP95] realized a simplified variant of the standard PBIL algorithm called *hill climbing with
learning’ (HCwL).

Baluja also suggested the using of non-binary encodings for optimization of continuous valued functions by using
a Gaussian curve over the desired argument range:

“A possible method of generating continuous values is to specify a gaussian curve over the desired range.
The average and the standard deviation for each variable can be ’evolved’ during the search. Methods
of encoding solutions which are similar to this are often used in evolutionary strategies and evolutionary
programming [BS93].”

We took up this suggestion and combined it with the HCwL algorithm from Kvasnicka et al. [KPP95]. The resulting
SHCLVND algorithm is related to Ewvolutionsstrategien and — similar to HCwL — does not store information as
parents in a population 2. HCwL stores it as vector of probabilities, but SHCLVND as vector of probabilistic
distributions. Every element of this vector is used for one parameter to be optimized (i.e. one dimension of search
space).

3 The Stochastic Hill Climbing with Learning by Vectors of Normal
Distributions (SHCLVND) algorithm

SHCLVND is a hill climbing algorithm with a kind of Hebbian learning *. Tt is inspired of genetic algorithms,
Evolutionsstrategien, stochastic hill climbing etc. and has less parameters itselve. We have tried to transfer the

LIf there are multiple local optima with similar goodness, reaching one of them can be good enough in practice.
2There are different encoding schemes which are not desribed here.

3Information is stored during the optimization process for directing the further search.

4Tmportant learning rule for neural nets [HKP91, Roj93].

numbers. This isn’t trivial, because we are walking from the field of discrete values (bits) to continuous number
intervals. In the discrete case it is sufficient to have one real value to express the probability of a single bit being
on or off. But we cannot express probabilities for numbers in an interval of nondiscrete values by simply one value
like for a single bit. We have to take a distribution which represents the probabilities for obtaining one number
in this interval; in the proposed algorithm we have taken the normal (Gaussian) distribution. Because normally a
vectorial function is defined on more than one argument, we get vectors of normal distributions.

Advantages of the proposed algorithm:

1. less input parameters for controlling the algorithm,
2. no encoding effort for real numbers,

3. easy to implement,

4. parallelizable.

In this section we give a detailed mathematical description of SHCLVND. If you prefer to have a compact look at
the complete algorithm in pseudo PASCAL-code first, see Section 3.4.

3.1 Optimization goal

Let quality function qual be a function
qual : " —> RN (1)

which assigns to each vector ¥ = vy,...,v, areal number ¢ € R, formally given by q = qual(¥). The optimization
goal is to find a best vector thesr € R™ which corresponds to a global minimum of quality function qual over the
domain space R":

Tpest = arg min qual (7) ;o veR". (2)

The limitation to minimum search is no problem, because every maximize problem can be transformed into a
minimize problem 2.

3.2 Conventions
3.2.1 Limiting the search space

The search space S = R™ of the optimization task is composed of R” points, that means infinity large continuous
(with infinite fine granularity) intervals for each dimension! To be able to work the proposed algorithm needs a
pair of vectorial interval limits 7, i, and 7,4, to limit the search space. In genetic or in HCwL [KPP95] algorithms
we have an implicit limitation of search space because we are searching in a finite space consisting of 2" points
instead of an infinite R"-space. ©

3.2.2 Probabilistic vector

Given interval limits 7,;, and 7., we compute a vector of normal distributions]\7(;1' &) which is referred to as
probabilistic vector P in the following. P is used to generate random vectors ¢ in search space S. Each dimension
has its own normal distribution N (u, o) with average p and standard deviation o.

In every generation the vectorial f-component of P-vector will be shifted to the best(s) #. The vectorial G-
component of P-vector will be reduced by multiplying it with a constant factor.

5Example: To search for a maximum of a function fmazimize(%) we could simply search for a minimum of the transformed function
fminimize (CB) = 7fmaa:imize (CB)

6More exactly: Real numbers in computers are consisting of bits, too, which could be seen as a limitation of the search space in
sense of granularity like at genetic algorithms. But in spite of this the search space on real numbers — encoded as bit-vectors — in genetic
algorithms or HCwL is limited through the interpretation of these bit-vectors as numbers in a fixed interval. This cuts off the search
space at the interval limits. An (soft) analogue to this fixed interval is what we want to have as input for the SHCLVND algorithm.

— o -
Trn,nge = Tmaz — Tmin (3)

- - Trange
H = Tmin + (4)
2
0 = Trange * CO”/StTangeToSigmaFactor- (5)

By this initialisation we generate most random vectors near the centers of the given intervals (see Figure 4 for
different normal distributions). The constant Const,angeToSigmaFactor has to be chosen in a manner to guarantee
that we reach the whole given (by 7, and ,4.) search space well and search somewhat over it (we have soft
limits 7, see also Section 5); we have set it to 0.5 for all computations.

The random generation of £™-vectors with respect to probabilistic vector Pis formally expressed by

—

t=XeP ; X=(Xi€Ny,....,X,€N,), (6)

which means that for each dimension i we generate a random number X; whith normal distribution N;.
A neighborhood U(IB) composed of randomly generated R™-vectors with respect to a probabilistic vector Pis
determined by

U(P)={7=X ¢ P}. (7)

-

The cardinality |U(P)| = popSize is fixed; it corresponds to population size of conventional ES. A ’diameter’ of
U(P) is small if & is small, too; fi approaches the location of the average of U(P), the more exactly the larger
U(p).

3.2.3 Generating random rumbers

In the proposed algorithm we need for each dimension random numbers according to the normal distribution of

that dimension
X € N(u,0). (8)

One possibility to generate such a random number is to take two uniformly distributed random numbers 71, ry from
the interval [0..1) and to generate a normal distributed random number 7,4, with g = 0 and o = 1 according to

Box-Miiller formula
Trnorm = V/ —21In7y sin(27ry). (9)

To get an arbitrary random number r, , with standard deviation ¢ and average p we first multiply result 7,0rm
with o, then we can get another average p by adding u:

Tu,o0 = T'norm * O + u. (10)

3.3 Learning mechanism
Learning is applied to probabilistic vector P and is given by
1. shifting averages i in direction of the best solutions and

2. reducing standard deviationstandard deviations & to narrow the search space around /.

"This also means that quality function qual has to be defined also outside the given (by #in and #maz) search space.

average of be B as
. 1 .
bmiddie =] > b (11)
(beB)

Then we update the ji-component of P-vector by an adapted Hebbian learning rule:

-

ﬁ = ﬁ + //fmm;e(bmiddle - ﬁ); (12)
where Uy ove 18 the learning rate and ji is shifted to the average of the vectors in B.
2 We reduce the &-component of P with
G =0x% Oreduce 5 0< Oreduce S 1. (13)

So search space is narrowed from generation to generation more and more. This is very important, because with
a constant & (0requce = 1) we would generate random vectors in the big — only fi-shifted — initial intervals in a
manner similiar to a Monte-Carlo-simulation. But our goal is different: if we are near the global minimum (best
values of quality function qual) with fi-component of probabilistic vector P we want to improve the resolution, and
search only in the neighborhood of the fi-vector! °

The algorithm: For the complete algorithm in pseudo PASCAL-code see Section 3.4.

8In sense of minimizing, for maximizing see 3.1.
9This reminds of the fundamental exploration vs. exploitation principle of evolutionary search [Hol92].

function initPVec (Fin, Fmae);

- oo - X
Trange ‘= Tmaz — Tmin;

- - 7

i = Fin + Teonec

0 = Trange * OonStrangeToSi_qmaF‘actor;

return (N (i, 5));
end;

function SHCLVND (generations, popSize, Bgi.e, Fmin, Tmazs Mmoves Treduce);
begin
P:= initPVec (Fmin, Fnas);
for i:=1 to generations do
begin
B := ();
for j:=1 to popSize do
begin
7=Xe€ ﬁ;
if |B| < Byize then
B := BU{v}
else
if qual(d) < qual(?_;“mmt) then
B := (B \ {bworst}) U {77}5
end;
if bogan = nil then
bat Al = bpest
else
if qual(l_;best) < qual(l_;am”) then

batAll = bbest_ﬁ

bmiddle = ‘%‘ Z(ge,;) b;
ﬁ(i+]) = 13(2) (/_j+ Mmove * (I_;middle - /I) Oreduce * E)a (* uPdate ﬁ *)
end;
return ([, gatAll); (* [is part of P *)
end;

generations says how often to update the probabilistic vector P. popSize is the number of vectors in one
generation from which we collect the best ones in B. Frin and Fmaez are vectorial mini- and maximum (soft) limits
of the intervgls in which to optimize. pmove says how much to move the ji-component of probabilistic vector P in
direction of biniddies Oreduce how strong to reduce its 6-component. Const,qngeToSigmaFactor 18 a scaling factor
for computing initial & of normal distributions N(/I, @) from Fpyin and Fmaaz, it is set to 0.5 in all computations.
P will be initialized to a vector of normal distributions]_f(ﬁ, 7). 7 is a single R™-vector computed from probabilistic
vector P. B is the set of best vectors with respect to quality function qual() in generation ¢, Bg;.. vectors will be
collected there. qual() is a call to any (but the same) quality function and returns the scalar quality of a vector.
Bworst is the vector with worst (highest) and bpes; With best (lowest) value in B. Boniddle is the average of all vectors
in B. bgyay is the best @ ever generated. PU+1D) ig the new P computed from old one P() by shifting i and
reducing &. Return value [i is a component of the final P. ¢ and j in the 'For’-constructs are loop variables.
Note: The algorithm minimizes.

4.1 Functions to optimize

T T
) —) —
minimum o minimum o

0.8

0.6

a) g from [KPP95] b) gshifted

Figure 1: Functions g and gspiftea

4.1.1 Quality function f from Kvasnicka et al.

As multimodal testing function for the proposed algorithm we first took the multimodal function of n real variables
from [KPP95] as quality function qual; it is defined as

i=1
g(z) = 0.993851231 + e(~0-0017%) gin(10z)cos (8); (15)

for a visualisation of g see Figure 1 a). 57 local minima of Function g are in interval [—10, 10] but only one global
minimum at z = —0.7853024 'C. The next best (in sense of searching for minima) after it are z = 2.3559072 and
x = —0.4402184.

f is defined as sum of n one-dimensional functions g. The task is to search for the global minimum of f which
means to find the global minimum of g in every dimension of (1, ...,z,). Kvasnicka et al. limited the search space
to [-10,10] in every dimension. We took the same limits as input (#nin, Fmaz) for SHCLVND.

4.1.2 Quality function f4ifica

But there is a problem with f: The best minima are all located near 0.0 what is just the initial value for every
dimension of ji-component in probabilistic vector p. 1 Hence, the function was modified as follows: We shifted
it, so that the new global minimum of gsp;fseqa is at —9.7853024 near the left limit of the search interval [—10, 10]
for each dimension. The new function is defined as

Fanifted(T1, . a0) =Y Genigrea(ws), (16)
i=1
Ganifrea(x) = 0.993851231 + e =001 @+9%) gin (10(z + 9))cos(8(x + 9)); (17)

O Function values rounded.
1Someone could think that therefore it is easy for SHCLVND to find a global minimum near 0.0.

shifted far and very near to the left edge of the given's'earch intervals to get a succesful opimization.
To get an idea about the differences between the results for a good and a more worse case with respect to our
algorithm, we compared optimizations with function fspifteq with others with original function f from [KPP95].

4.2 Parameters of optimizations

All optimizations in this article were made using the following fized parameters:

generations = 2500
popSize = 200
Bsize = 3
Hmove = 0.05
Oreduce = 0.997241
Fin = (—10,...,—10)
Tmaz = (10,...,10)
ConstrangeToSigmaFactor = 0.5.
Variable parameters were:
qual : forfshifted
Usize : 1...7
random generators and seeds : different.

To have a comparison to the computations in [KPP95] we wanted to have the same number of evaluations of quality
function of 500000. So we have the constraint generationsspopSize = 500000. Parameter Const,qnger0SigmaFactor
is chosen such to ensure that most random numbers are generated approximately uniformly distributed '2 inside
given search intervals, but also fewer outside (see also Figure 4).

Other parameters: After some trials we had found these parameters to be good to optimize fspifteq. The value of
Oreduce 18 not chosen by random: The final G-vector should consist of elements with size otqpgetFraction = of
initial values '3. Hence

1
1000

ioms | enerations |, 1
Oreduce — generations (UtargetFraction) =7 ' (m) (18)

4.3 Results
4.3.1 Progress of & for all optimizations

In Figure 2 there is shown the logarithmic progress of one (and all) dimension(s) of &-component of P from first to
last generation for all optimizations presented in this paper. All elements of #-component of probabilistic vector
P are equal because all elements of vectorial interval limits 7,;, and 7., are equal.

4.3.2 Optimization of fyificq With 7. =5

In Figure 3 a) there is shown the shift of the fi-component of probabilistic vector P for the best, in Figure 3 b) for
the worst of 20 computations (see Table 4.3.3).

In Figure 4 there is shown the density function of one of the normal distributions (for one dimension) in P:
initialized, after 500, 1000 and and 1500 generations. It is shifted after ‘'muel’ in Figure 3 a) and in parallel its
standard deviation o is reduced as shown for every element of & in Figure 2.

12Flat Gaussian curve.
13Note: The final &-component of probabilistic vector P won’t be used for computation of last generation, because it will be updated
at the end of the loop (see pseudo PASCAL-code in Section 3.4).

0 500 1000 1500 2000 2500

Figure 2: -component of probabilistic vector P during all optimizations for one and all dimension(s), plotted from
generation 0 to 2500 (x-axis)

muel —
muez -
mue3 -
mue4.

muel —
mue2 -
mue3 -

mued o by
mues -~

mue
mue

o 200 400 600 800 1000 0 200 400 600 800 1000
generations generations

a) best b) worst

Figure 3: ji-component of probabilistic vector P of a) best and b) worst optimization of fspifeq for ¥gize = 5,
plotted until generation 1000. Worst optimization missed the minimum of gsp;fteq in two dimensions.

The integral over a given interval below one curve is a measure for the probability that a generated random number
is located in this interval.

4.3.3 Comparison between fsp;ift.q and f

| Optimum found | The percentages say, how often SHCLVND clearly found the global optimum (min-
imum). To get them we made 20 computations with SHCLVND for every combi-
SHCLVND HCwL nation of ¥s;:. and function type. To make the border between ’found’ and ’'not
T . found’ more clear we give you examples for #5;.. = 5: The worst vector which
Vgiz
srze fShlftEd f f reached the global minimum was
1 100% 100% 100%
2 100% 100% 100% (—9.78514, —9.78524, —9.78453, —9.78554, —9.78437);
3 85% 95% 100% the best which failed it was
4 65% 80% 100%
5 45% 55% 100% (—9.78577, —9.78529, —9.78554, —9.78531, —6.64432).
6 35% 45% 90% The parameters (see Section 4.2) were tuned for fspnifieq With Usi-c= 5.
7 30% 30% - - The results for HCwL are taken from [KPP95], where 10 computations were made.

In this table you see a comparison between both tested functions with dimensions 1..7.
As a result you can see: The better the initial choice of the searching intervals by 7, and 7., , the better the

Nor mal Di stri butions

—15 ~10 B 5

Figure 4: Density function of normal distribution of one dimension of P after 0, 500, 1000 and 1500 generations
shown for best optimization of fsnifieq. The plot nearly parallel to the x-axis is the initial normal distribution
with N(p = 0,0 = 10); in progress of optimization the bell-shape of this (shown) and all other (not shown)
normal distributions becomes higher and more narrow. The average p of this normal distribution has moved to
the optimum.

proposed algorithm works. But there is not a big difference for SHCLVND between optimizing fspifteqa or f: The
position of the optimum within the given intervals hasn’t been critical; the elements of initial &-vector which is
computed from 7pin, Mmae and ConstrangeToSigmaFactor have been large enough.

5 Summary and future works

SHCLVND is useful for optimizing tested functions, but doesn’t reach the results of the HCwL algorithm from
[KPP95] with used parameters. It stems from the first and second of the following advantages.
But in spite of this it has some advantages:

Resolution of the search space is not limited, whereas HCwL depends on the used encoding scheme which
limits the resolution.

Limitation of search space is soft, our algorithm looks over the limits of the given intervals. HCwL or other
bit-coded algorithms cut search space absolutely at the limits of given intervals (an optimum just behind
one limit could not be found: e.g. 7in = (—10,...,—10), Frmax = (+10,...,410) and the optimum at
(+11,...,+11)h.

Decoding of bit-vectors is not necessary if we have a vectorial function R” — R as quality function.

5.1 Possible improvements

We think there are some possibilities to improve the SHCLVND algorithm by changing some properties (see
especially items 1 and 2), but you have to take into account the type of function to be optimized.

1. Parameter tuning:
e What are the best parameter combinations if there is given a fixed number of quality function evalua-

tions?

10

2. Changing the decay function of &:
Now we have a logarithmic decay for each o aus &. What happens if we have a linear or other kind of decay?

3. Changing the distribution type in P:
It would be interesting to research the effects of using other types of probabilistic distributions in P. We
have chosen the normal distribution, but that is not necessary for the algorithm to work. Other distributions
could be useful, too!

5.2 Further research

Following questions could be researched in future:

e More comparisons between HCwL and SHCLVND:
It would be interesting to see the success of these algorithms for other quality functions than fgpifseq or f.
What happens e.g. on weighted quality functions, that means if different dimensions have varying relevance
for the value of the quality function 4.

e Encoding:
Is there a fundamental difference between different kinds of encoding: Indirect optimization of bit-vectors
15 respectively direct optimization of real-vectors? This is a fundamental question, whose answers could
illuminate the difference between bit- and real- vector-based algorithms.

6 Hints for using SHCLVND

In the following we give some hints for appropriate choice of parameters for SHCLVND to ease its use. We stay in
terms of pseudo PASCAL-code as seen in Section 3.4.

6.1 Possible parameter ranges

—X < Pmin < Tmaz < 0
0 < generations

0 < Bgjze <= popSize

0 < fhmove <=1

0 < Oreduce <=1

0< OtargetFraction <= 1

6.2 Explanations of parameters

The (vectorial) interval limits 7,5, and 7,4, should be chosen to have the optimum of the quality function located
with high probability inside the interval defined by them, there is no problem if the optimum is near by or shortly
outside one interval limit. generations x popSize are the number of evaluations of quality function qual. These
parameters can be chosen the more larger, the faster is one evaluation of gqual and the more computing power is
available.

B includes best vectors in one generation which are used for learning by the algorithm. So By;.. should be much
smaller than popSize to enable a good selection of best vectors 6.

MExample: qualyeighted(T1,---,Tn) = Z;:I |5 — x;| 1001,
15With different possible encoding schemes.
16Extreme case: With popSize = Bij,. and OtargetFraction = 1 (resulting in ¢,¢4ycc = 1) we get an approximately stochastic

search in given search space.

11

— is also large. Extreme case fimove = 1 leads to the case that the average of best vectors (in B) of one generation
becomes immediately center point i of search space of next generation.

Algorithm SHCLVND has the property to narrow search space in progress of optimization more and more and
therefore it enlarges the resolution more and more. This is controlled by parameter o,¢g4yce, which at best is
computed from GtqrgetFraction by formula 18. To do that you have to know how narrow search space has to be
for the last step of the optimization. If you choose a small ot4pgetFraction the algorithm has a high resolution at
end, but easily reaches a local optimum. If you chose a large ¢4y get Fraction instead, search is hardly narrowed, but
resolution is not much better than at the beginning of optimization.

6.3 Parameter choice

To optimize hazardous functions like e.g. function fspifseq in Section 4 you should try parameters given there (4.2)
first. If there are more simple functions, generations and popSize could be chosen much smaller. Then py,ope
should be chosen such to have a good chance to reach best vectors from center of interval '7, therefore at least
(1/generations) x 10 with generations >= 100.

Always should be popSize >= 3. If popSize <=5 then should By, = 1.

We recommend Bg;.. = 3: This means, that if there are different 'opinions’ of two of the three vectors in B with
respect to optimum of qual '®, they partially neutralize each other, but at the same time the third vector ensures
that the optimization doesn’t stagnate.

SHCLVND computes initial -vector to have a good covering of search space given by 7, and 7p,q.. The user
has to decide how narrow the search space has to be at the end of the optimization, and then he has to give by
OtargetFraction the fraction of the initial standard deviation which has to be left at the end of the optimization. 19

References

[Bal94] S. Baluja. Population-based incremental learning: A method for integrating genetic search based function
optimization and competitive learning. Technical Report CMU-CS-94-193, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1994.

[Bal95] S. Baluja. Removing the genetics from the standard genetic algorithm. Technical Report CMU-CS-95-141,
School of Computer Science, Carnegie Mellon University, Pittsburgh, 1995.

[BS93] T. Baeck and H.P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolu-
tionary Computation, 1(1):1, 1993.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley,
Reading, MA, 1989.

[GW92] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison Wesley, Reading, MA,
1992.

[HKP91] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Networks. Addison Wesley,
Reading, MA, 1991.

[Hol92] John H. Holland. Adaption In Natural And Artificial Systems. MIT Press/Bradford Books edition, 1992.

[JWO4] Ari Juels and Martin Wattenberg. Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. Technical Report CSD-94-834, University of California, Berkeley, Berkeley, CA 94720, 1994.

[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, 1992. ISBN 0-262-11170-5.

17Because ji-component of P will not always moved in direction of (global) optimum.
18E.g. there are two local optima.
9Resulting in 0,¢qyce by formula 18.

12

[Mut82]
[RK96]

[Roj93]

[Sch77]

‘ genetic algorithm). In Proceedings of the First International Conferehce on Genetic Algom'thms on the

occasion of 130-th anniversary of Mendel’s laws in Brno, pages 65—70, Brno, Czech Republic, September
1995. Technical University of Brno. ISBN 80 214 0672-0.

C. Muth. Einfiihrung in die Evolutionsstrategie. Regelungstechnik, 30, 1982. 30.Jahrgang Heft 9.

S. Rudlof and M. Képpen. Stochastic hill climbing by vectors of normal distributions. In Proceedings of
the First Online Workshop on Soft Computing (WSC1), Nagoya, Japan, 1996. Nagoya University.

Rail Rojas. Theorie der neuronalen Netze: eine systematische FEinfiihrung. Springer-Verlag, Berlin,
Heidelberg, New York, 1993.

H.P. Schwefel. = Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie.
Birkhauser Verlag, Basel, Stuttgart, 1977.

13

