
From recombination of genes to the estimationof distributions I. Binary parametersH. M�uhlenbein1 and G. Paa�1GMD { Forschungszentrum Informationstechnik, 53754 Sankt Augustin , GermanyAbstract. The Breeder Genetic Algorithm (BGA) is based on the equa-tion for the response to selection. In order to use this equation for predic-tion, the variance of the �tness of the population has to be estimated. Forthe usual sexual recombination the computation can be di�cult. In thispaper we shortly state the problem and investigate several modi�cationsof sexual recombination. The �rst method is gene pool recombination,which leads to marginal distribution algorithms. In the last part of thepaper we discuss more sophisticated methods, based on estimating thedistribution of promising points.1 IntroductionThe Breeder Genetic Algorithm (BGA) is based on the classical science of live-stock breeding. The central part of the theory is the equation for the responseto selection R(t) = b(t) � I � �(t) (1)Here R denotes the response, which is de�ned as the di�erence between the mean�tness of the population at generation t+1 and t, b(t) is the realized heritability,I is the selection intensity and � is the standard deviation of the �tness [12].If b(t) and �(t) can be estimated, the equation can be used for predicting themean �tness of the population. In livestock breeding many methods have beendeveloped to estimate the heritability [12], estimating the variance is still anopen question [15].But in evolutionary computation we have more freedom. We can design newrecombination operators which have no counterpart in nature and use the aboveequation to evaluate the operators. In [13] we have made a further step awayfrom the biological example and investigated gene pool recombination GPR.With GPR the genes of all selected parents are used to create o�spring. Themicroscopic view of recombining two chromosomes in a Mendelian manner isabandoned.In this paper we shortly show why the analysis of sexual recombination isso di�cult, then we investigate two algorithms which use univariate marginaldistribution of selected points to generate new points. In the last section theproblem of estimating distributions is shortly discussed. The conditional distri-bution algorithm is outlined and applied to optimization problems known to bedi�cult for genetic algorithms.



2 Analysis of uniform crossover for two lociThe di�culty of analyzing Mendelian sexual recombination will be shown with asimple example, namely two loci and proportionate selection. In this case thereare four possible genotypes: (0; 0); (0; 1); (1; 0); and (1; 1) which we index byj = (0; 1; 2; 3). We denote their �tness values f0; f1; f2, and f3 respectively. Letqj(t) be the frequency of genotype j at generation t. For simplicity we restrict theanalysis to uniform crossover [18]. It is an example of two parent recombination(TPR).Theorem1. For proportionate selection and uniform crossover the gene fre-quencies obey the following di�erence equationqj(t + 1) = fj�f(t) qj(t) + 12�j Ds(t)�f (t)2 j = 0; 1; 2; 3; (2)where � = (�1; 1; 1;�1); �f (t) =P3j=0 fjqj(t) is the average �tness of the popu-lation; and Ds(t) is de�ned asDs(t) = f0f3q0(t)q3(t) � f1f2q1(t)q2(t): (3)Proof: For proportionate selection the gene frequencies qsj after selection aregiven by qsj (t) = fj�f (t)qj(t)Now we pair randomly between the selected parents and count how often geno-type j arises after uniform crossover. We take j = 0 as an example. We easilyobtain q0(t + 1) = qs0(t) (qs0(t) + qs1(t) + qs2(t) + 1=2qs3(t)) + 1=2qs1(t)qs2(t)Using that qs0(t) + qs1(t) + qs2(t) + qs3(t) = 1 we obtain the conjecture for j = 0.The remaining equations are obtained in the same manner. 2Equations (2) are identical to the ones known for diploid chromosomes in popu-lation genetics [6], despite the fact that the underlying genetic recombination isdi�erent. This shows that uniform crossover can be thought of as Mendelian re-combination for haploid organisms. Note that Ds(t) = 0 if q0(t)q3(t) = q1(t)q2(t)and f0f3 = f1f2. The �rst condition is called linkage equilibrium in populationgenetics.This system of four nonlinear di�erence equations has not yet been solvedanalytically (see the discussion in [15]), but it is possible to derive an exactexpression for the realized heritability.Theorem2. The realized heritability b(t) for uniform crossover is given byb(t) = 1� 12(f0 � f1 � f2 + f3) D(t)�f (t)V (t) : (4)



Proof: By summation we obtainR(t) = �f(t + 1)� �f (t) = V (t)�f (t) � 12(f0 + f3 � f1 � f2) D(t)�f(t)2; (5)where V (t) = �2(t) denotes the variance of the population. Using S(t) = V (t)= �f (t)we obtain equation (4). 2Uniform crossover in genetic algorithms, which models Mendelian recombi-nation, leads to very di�cult systems of di�erence equations. The genetic pop-ulation moves away from linkage equilibrium. This makes an analysis of thealgorithm almost impossible. But in genetic algorithms we may use recombina-tion schemes which lead to simpler equations.Simpler equation are obtained if the population is in linkage equilibrium.Without proof we note that linkage equilibrium is identical to the gene frequen-cies being in Robbins proportions [16]. Here the probability of a genotype p(x)is given by p(x) = nYi=1pi(xi); (6)where pi(xi) are the univariate marginal frequencies.The assumption of linkage equilibrium is not as severe as one might think.We have numerically con�rmed the conjecture that without selection, the genefrequencies of a population using uniform crossover will converge to linkage equi-librium.This means that linkage equilibrium can be considered to be the limitingdistribution of any genetic recombination scheme applied without selection.3 Univariate Marginal DistributionsThere exist a simple recombination scheme that maintains the population inlinkage equilibrium; we have called it gene pool recombination (GPR) [13]. InGPR, for each locus the two alleles to be recombined are chosen independentlyfrom the gene pool de�ned by the selected parent population. The biologicallyinspired idea of restricting the recombination to the alleles of two parents foreach o�spring is abandoned.De�nition: In gene pool recombination the two \parent" alleles of an o�-spring are randomly chosen for each locus with replacement from the gene poolgiven by the parent population selected before. Then the o�spring allele is com-puted using any of the standard recombination schemes for TPR.For a discussion of gene pool recombination and its analysis see [13]. Genepool recombination leads to simple di�erence equations for the marginal frequen-cies pi(xi) [13]. We generalize this idea and de�ne a conceptual algorithm whichuses univariate marginal frequencies directly.Let x = (x1; : : : ; xn), xi 2 f0; 1g, f(x) be its �tness and q(x) its frequency.Then the univariate marginal frequencies can be computed frompi(xi) = Xxjxi q(x) (7)



where the sum is taken over all x with xi held �xed. The conceptual UnivariateMarginal Distribution Algorithm (UMDA) is de�ned as follows.UMDA{ STEP0: Set t = 1. Generate N � 0 points randomly.{ STEP1: Select M � N points according to a selection schedule. Computethe marginal frequencies rt;i(xi) of the selected set.{ STEP2: Generate N new points according to the distribution qt+1(x) =Qni=1 rt;i(xi). Set t = t + 1.{ STEP3: If not terminated, go to STEP1Theorem3. For proportionate selection the marginal frequencies of UMDAobey the di�erence equationpt+1;i(xi) = pt;i(xi) �ft;i(xi)�f (t) (8)where �ft;i(xi) = Xxjxi f(x) nYj=1j 6=i pt;j(xj)Proof: For proportionate selection the frequency of the selected points ~qt(x) isgiven by ~qt(x) = f(x)�f t qt(x)From rt;i(xi) = pt+1;i(xi) = Xxjxi ~qt(x)equation (8) follows. 2The di�erence equation (8) can also be written in the formpt+1;i(xi) = pt;i(xi) + pt;i(xi)Ft;i(xi)�f(t) (9)where Ft;i(xi) = �ft;i(xi)� �f (t) (10)The term Ft;i(xi) was already introduced in [1] ( there it is denoted f(i)(xi)).The terms Ft;i(xi) minimize the weighted quadratic errorXx qt(x) f(x) � �f (t) � nXi=1 �i(xi)!2The terms are used to de�ne the additive genetic variance VA, called V1 in[1].



VA(t) =Xxi pt;i(xi) (Ft;i(xi))2 (11)It is obvious that pt+1;i(xi) = pt;i(xi) i� F(i)(xi) = 0 or pt;i(xi) = 0. Thereforewe obtain:Corollary:For proportionate selection the UMDA stays in equilibriumi� VA = 0.The response to selection is zero if the additive variance is zero. UMDA onlyexploits the additive genetic variance. It is interesting to note that this resultis also used as a rule of thumb in livestock breeding. Up to now no rigorousmathematical proof is available.The corollary also implies that UMDA is not a global optimization methodfor di�cult �tness functions. This problem has already been discussed for genepool recombination in [13].The following theorem is a correct version of Fisher's Fundamental Theoremof Natural Selection [8], restricted to populations in linkage equilibrium.Theorem4. For UMDA with proportionate selection the response to selectionis given by R(t) = VA(t)�f (t) +Xx �q(x) f(x)� �f(t) � nXi=1 Ft;i(xi)! (12)where �q(x) = qt+1(x) � qt(x) is the di�erence of the frequencies of genotypex.Proof: Xx �q(x) nXi=1 Ft;i(xi) = nXi=1 Ft;i(xi)Xxjxi �q(x)= nXi=1 Ft;i(xi)�pi(xi)= nXi=1 pt;iF 2t;i(xi)= �f (t)Here �pi(xi) = pt+1;i(xi)� pt;i(xi). Equation (9) was used for the last step. ByusingPx�q(x)f(x) = R(t) and Px�q(x) = 0; the conjecture is obtained. 2Corollary:The realized heritability of any algorithm based on univariate marginaldistributions can be estimated by b(t) � VA(t)V (t) : (13)



Proof: We haveR(t) � VA(t)�f (t) = VA(t)V (t) V (t)�f (t) = VA(t)V (t) S(t): 2VA(t)=V (t) is called heritability in the narrow sense in livestock breeding [7],abbreviated by h2n. Estimating hn is one of the most di�cult parts in the scienceof livestock breeding.4 A simple UMDA implementationIn order to implement UMDA, estimates for the marginal distributions are nec-essary. Especially the computation of Ft;i(xi) in Equation 9 is fairly computingintensive. Independently of the theory presented in this paper a simple algorithmhas been already proposed in [2]. In this algorithm the univariate marginal fre-quencies are updated according topt+1;i(xi) = pt;i(xi) + �(rt;i(xi)� pt;i(xi)) (14)where rt;i(xi) are the marginal frequencies of the selected points and � is a con-trol parameter. The resulting algorithm we call the simple univariate marginaldistribution algorithm (SUMDA). SUMDA{ STEP0: Set t = 1. Set p1;i(xi).{ STEP1: Generate N new points according to the distribution qt+1(x) =Qni pt;i(xi).{ STEP2: Select M � N points according to a selection schedule. Computethe marginal frequencies rt;i(xi) of the selected set.{ STEP3: Update the marginal frequencies according to equation (14). Sett = t + 1.{ STEP4: If not terminated, go to STEP1Note that � inuences the speed of convergence. The smaller �, the less theconvergence speed. Before we show some computational results, we qualitativelyanalyze the algorithm. We simplify the notation pt;i(xi) � p(t) and rt;i(xi) �r(t). We start with the simplest case.Theorem5. Assume that r(t) � c with 0 � c � 1. Thenp(t+ 1) = p(1)(1� �)t � c(1� �)t + c t = 0; 1; : : : (15)The proof is straightforward and will be omitted. We obviously havelimt!1p(t) = cIn a real algorithm r(t) will oscillate. A qualitative analysis of the SUMDAalgorithm has been �rst made in [11].



Theorem6. If the di�erence Equation (14) can be approximated by the di�er-ential equation dp(t)dt = � (r(t)� p(t)) ; (16)the solution is given byp(t) = p(1)e��t + �e��t Z t0 r(� )e��d� (17)If r(t) � c one obtains an approximation of equation (15). But in real simu-lations one observes that SUMDA often consists of two phases. In the �rst phase(0 � t � t1) r(t) more or less randomly oscillates about a mean < r(t) >t10 . Ifp(t) gets more focused, then r(t) changes accordingly.In table 1 we give numerical results for the linear function ONEMAX. Notehow � inuences the convergence speed. Because the size of the population, N ,is very large, the speed of convergence is almost independent of the size of theproblem n. For di�cult multi modal �tness functions the success of SUMDAdepends on the parameter � and N . We have to omit this discussion here. But itshould be obvious that SUMDA su�ers from the problem, all algorithms usingmarginal distributions only have: they are not able to handle higher order geneinteractions. n = 30 n = 30 n = 60 n = 90t �p std(p) �p std(p) �p std(p) �p std(p)10 0.726 0.049 0.952 0.024 0.887 0.086 0.834 0.12220 0.893 0.025 0.997 0.001 0.993 0.005 0.985 0.01430 0.963 0.009 1.000 0.000 1.000 0.001 0.999 0.001Table 1. SUMDA: N = 1024;� = 0:1; n = 30;� = 0:25 else5 Conditional distributionsGene pool recombination with two parent mating and uniform crossover as wellas the two marginal distribution algorithms UMDA and SUMDA exploit theadditive genetic variance mainly. The suitability of these algorithms for solvingoptimization problems with strongly interacting genes at di�erent loci seemslimited.An extension of univariate marginal distribution algorithms are multivariateones. Unfortunately it is di�cult to generate the probabilty p(x) of genotype xfrom multivariate marginal distributions. We demonstrate the problem with anexample. For n = 4 loci for instance, we may use p(x) = p(x1; x2) p(x3; x4). Butthen four of the six bivariate distribution are left out. There are methods to solve



this problem by using a system of equations as constraints, but the number ofmultivariate distributions scales exponentially. Therefore it seems easier to useconditional distributions p(xijx1; : : : ; xi�1; xi+1; : : : ; xn) to reconstruct interac-tions between the variables. We use the notationx�i := (x1; : : : ; xi�1; xi+1; : : : ; xn):Then p(xijx�i) is the probability of xi given x�i. Besag [3] has proven that the ndi�erent conditional distributions p(xijx�i), i = 1; : : : ; n, completely determinethe joint distribution p(x). In our algorithmwe will use conditional distributionsp(x1; : : : ; xmjxm+1; : : : ; xn). In order to keep the description simple we will startwith an algorithm using p(xijx�i) only.There are a number of methods in statistics that estimate conditional dis-tributions. We selected regression tree methods because they are reasonablyaccurate and computationally cheap. Algorithms for classi�cation and regres-sion trees date back to Sonquist and Morgan [17] and have been improved byBreiman et al.[4], see also [5] [14].It turns out that the estimation of conditional distributions is very di�cult.We are not able to describe our conditional distribution algorithm CDA here.It uses tree regression to estimate conditional distributions, and the Metropolis-Hastings algorithm to correct the estimates. In order to speed up the compu-tation we use a cluster algorithm to compute the conditional distributions forcorrelated variables. Furthermore we scale the probability distribution p(x) inorder to concentrate its mass near the optima of f(x).In the next Section we give �rst numerical results.6 Numerical resultsDeceptive problems have been introduced by Goldberg [9] as a challenge togenetic algorithm. For these functions genetic algorithms will converge to sub-optimal points. To overcome this problem, a radically di�erent type of geneticalgorithm called a messy genetic algorithm has been devised and tested by Gold-berg and his coworkers. In a messy genetic algorithm the interaction of genes istested with substrings in a primordial phase. Of crucial importance is the ini-tialization. The interested reader should consult [10] for a recent update of themessy genetic algorithm applied to deceptive problems.Our conditional distribution algorithmCDA tries to determine the importantinteractions more globally with well-known statistical techniques. The implemen-tation of CDA is much more di�cult than a genetic algorithm or an algorithmusing univariate marginal distributions only.For our numerical experiments we used the following deceptive functions.f3(d;x) = [n=3]�1Xi=0 g3(d; x3i+1; x3i+2; x3i+3) (18)(19)



where g3(d; x1; x2; x3) = 8>><>>:1� d; Pxi = 0;1� 2 d;Pxi = 1;0; Pxi = 2;1; Pxi = 3: (20)(21)The function f5 is de�ned similarly to f3. The function f(5;3) has clusters ofthree and �ve interacting variables. By using an exponential transformation themarginal distributions of the clusters are independent from each other.n func N � eval50 f3; d = 0:1 1000 (4; 25) 5700050 f5;Goldberg 1000 (4; 45) 12100050 f5; d = 0:1 2000 (4; 45) 71000050 f(5;3); d = 0:1 1000 (4; 45) 911000100 f3; d = 0:1 1000 (5; 35) 100000100 f5; d = 0:1 4000 (5; 45) 4960000200 f3; d = 0:1 1000 (5; 45) 500000Table 2. Numerical results for CDAPreliminary numerical results are presented in the Table 2. They clearly showthat the algorithm is able to solve large deceptive problems. But the algorithmis at this stage more a conservative statistical estimation procedure than anoptimization algorithm. It will take some time and lots of numerical experimentsto end up with an e�cient and reliable optimization algorithm.Our results are not directly comparable to [10], because there a a deceptivefunction with a �tness value of 0:58 for the local optimum x = (0; 0; 0; 0; 0)is used. We have used a �tness value of 0:9. Goldberg's deceptive function issubstantially easier to solve, because the di�erence between the global and thelocal optimum is larger. Our algorithm needs for Goldberg's deceptive functionof n = 50 about 1=6 function evaluations compared to our deceptive function.Nevertheless, Goldberg's messy genetic algorithm seems to need substantiallyless function evaluations than our algorithm. But in our opinion, the messy ge-netic algorithm uses the cluster size as a priori information! Furthermore, theinteracting variables are supposed to be contiguously located. Our algorithm de-tects all interactions without prior information. This is shown with the functionf(5;3). Here clusters of size 3 and size 5 alternate, unknown to the algorithm.From our statistical experience we believe that it is impossible to detect allimportant gene interactions by simply manipulating substrings like it is donein the messy genetic algorithm. Whether our conjecture is true the future willshow, when experiments with a variety of deceptive functions are made.
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