## **Undecidable Problems**

#### Recall that:

- A language *L* is decidable,
- if there is a Turing machine (decider)
- that accepts L and halts on every input stri



## Undecidable Language L

There is no decider for L:

there is no Turing Machine which accepts L and halts on every input string

(the machine may halt and decide for some input strings)

For an undecidable language, the corresponding problem is undecidable (unsolvable):

> there is no Turing Machine (Algorithm) that gives an answer (yes or no) for every input instance

(answer may be given for some input instances)

# We have shown before that there are undecidable languages:



#### L is Turing-Acceptable and undecidable

Costas Busch - LSU

We will prove that two particular problems are unsolvable:

Membership problem

Halting problem



Corresponding language:

 $A_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing machine that} \\ acceptsstring w \}$ 

## **Theorem:** $A_{TM}$ is undecidable

(The membership problem is unsolvable)

## **Proof: Basic idea:** We will assume that $A_{TM}$ is decidable; We will then prove that every Turing-acceptable language is also decidable A contradiction!

Costas Busch - LSU

## Suppose that $A_{TM}$ is decidable



## et L be a Turing recognizable language

Let  $M_L$  be the Turing Machine that acceptsL

## Ve will prove that L is also decidable:

we will build a decider for L



#### Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

## **Contradiction!!!!**

#### **END OF PROOF**

#### We have shown:



#### We can actually show:



## A<sub>TM</sub> is Turing-Acceptable

# Turing machine that accepts $A_{TM}$ 1. Run *M* on inputw If M accepts W then accept(M,w) ⟨**M** ,₩⟩-----



#### Corresponding language:

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that}$ halts on input string w }

# **Theorem:** *HALT*<sub>TM</sub> is undecidable

(The halting problem is unsolvable)

## **Proof: Basic idea:** Suppose that $HALT_{TM}$ is decidable; we will prove that every Turing-acceptable language is also decidable A contradiction!

Costas Busch - LSU



## .et L be a Turing-Acceptable language

## Let $M_L$ be the Turing Machine that acceptsL

# We will prove that L is also decidable: we will build a decider for L

### Decider for L



#### Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

#### **Contradiction!!!!**

## An alternative proof

## **Theorem:** *HALT*<sub>TM</sub> is undecidable (The halting problem is unsolvable)

**Proof: Basic idea:** Assume for contradiction that the halting problem is decidable; we will obtain a contradiction using a diagonilization technique

## Suppose that $HALT_{TM}$ is decidable





Construct machine  $H^{+}$ :



If Mhalts on input W Then Loop Forever Else Halt

### Construct machine *F* :



## If M halts on input $\langle M \rangle$ **Then** loop forever **Else** halt

## Run *F* with input itself



# If *F* halts on input $\langle F \rangle$ **Then** *F* loops forever on input $\langle F \rangle$ **Else** *F* halts on input $\langle F \rangle$

#### CONTRADICTION!!!

Costas Busch - LSU

OF PRO

#### We have shown:



#### We can actually show:



## HALT<sub>TM</sub> is Turing-Acceptable

## Turing machine that accepts $HALT_{TM}$ :



#### We showed:

