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Reductions 
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Computable function      :  f

which for any input string      computes 

and writes it on the tape 

)(wfw

There is a deterministic Turing machine M
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Problem        is reduced to problem X Y

If we can solve problem       

then we can solve problem X

Y
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Language             

is reduced to 

language 

 

 

There is a computable  

function     (reduction) such that: f

BwfAw  )(

A

B

Definition: A B

w )(wf

Aw  Bwf )(
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If: Language      is reduced to 

     and language      is decidable 

Then:         is decidable   

Theorem 1: 

Proof: 

A B
B

A

Basic idea: 

Build the decider for  

using the decider for 

A

B
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Decider  

for B

Decider for A

)(wf
w

accept 

reject 

accept 

reject 

(halt) 

(halt) 

Input 

string 

BwfAw  )(

END OF PROOF 

Reduction 

YES YES 

NO NO 

From reduction: 
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Example: 

}languages same the accept that                     

 DFAs are  and :,{ 2121 MMMMEQUALDFA 

} language empty the                           

 accepts that DFA a is :{



 MMEMPTYDFA

is reduced to: 
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Turing Machine 

for reduction 

DFADFA EMPTYMEQUALMM 21,

f
21,MM  

M

MMf



21,

DFA 

We only need to construct: 

Reduction 
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21,MM  
M

MMf



21,

Let       be the language of DFA  

Let       be the language of DFA 
1L

2L
1M

2M

)()()( 2121 LLLLML 

construct DFA         

by combining       and      so that:   

M

DFA 

1M 2M

Turing Machine 

for reduction f

Reduction 
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 )(21 MLLL

)()()( 2121 LLLLML 

DFADFA EMPTYMEQUALMM 21,
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Decider 

Decider for 

M

Input 

string 

DFAEQUAL

21,MM
DFAEMPTY

YES 
YES 

NO 
NO 

Reduction 
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If: Language      is reduced to 

      and language      is undecidable 

Then:       is undecidable   

Theorem 2: 

A B

B
A

Proof: 

Using the decider for  

build the decider for A
B

Suppose       is decidable  B

Contradiction! 
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Decider  

for B

Decider for A

)(wf
w

accept 

reject 

accept 

reject 

(halt) 

(halt) 

Input 

string 

BwfAw  )(

Reduction 

END OF PROOF 

If       is decidable then we can build: B

CONTRADICTION! 

YES YES 

NO NO 
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Observation: 

 

To prove that language     is undecidable 

we only need to reduce  

a known undecidable language     to  

B

BA
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State-entry problem 

Input: M•Turing Machine 
•State q

Question: Does  M

•String w

enter state q
while processing input string      ? w

Corresponding language: 

} string input on  state enters                          

that machine Turing a is  :,,{

wq

MqwMSTATETM 

(while processing) 
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Theorem: 

(state-entry problem is unsolvable) 

Proof: Reduce 

              (halting problem)  

to 

              (state-entry problem) 

TMSTATE is undecidable 

TMHALT

TMSTATE
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Decider for 

YES 

NO 

wM,

state-entry problem  

        decider 

TMSTATE

Decider 
Reduction 

wqM ,,̂

TMHALT

YES 

NO 

Given the reduction, 

if                is decidable, 

then              is decidable 
TMSTATE

TMHALT

A contradiction! 

since 

is undecidable 

Halting Problem Decider 

TMHALT
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wM, Reduction wqM ,,̂

We only need to build the reduction: 

TMHALTwM , TMSTATEqwM ,,̂

So that: 
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M

qhalting  

states 

special 

halt state 

Rxx ,

For the reduction, construct       from       : 

A transition for every unused  

tape symbol      of  x

iq

iq

MM̂

M̂
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M̂ halts on state qM halts  

M
qhalting  

states 

special 

halt state 

M̂

iq
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M̂ halts on state      on input q

M halts on input  w

w

Therefore: 

Equivalently: 

END OF PROOF 

TMHALTwM , TMSTATEqwM ,,̂
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Blank-tape halting problem 

Input: MTuring Machine 

Question: Does  M halt when started with 

a blank tape? 

Corresponding language: 

}tape blank on started when halts                          

 that machin aTuring is  :{ eMMBLANKTM 
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Theorem: 

(blank-tape halting problem is unsolvable) 

Proof: Reduce 

              (halting problem)  

to 

              (blank-tape problem) 

TMBLANK is undecidable 

TMHALT

TMBLANK
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Decider for 

YES 

NO 

wM,

blank-tape problem  

        decider 

Decider 
Reduction 

M̂

TMHALT

YES 

NO 

Given the reduction, 

If                is decidable, 

then              is decidable TMHALT

A contradiction! 

since 

is undecidable 

Halting Problem Decider 

TMHALT

TMBLANK

TMBLANK
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wM, Reduction M̂

We only need to build the reduction: 

TMHALTwM , TMBLANKM ˆ

So that: 
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no 

yes 

M̂

Write       on tape  w

Tape is blank? 

Run 

with input 

Construct         from            : M̂ wM,

If      halts then     halts too 

M

w

M

Accept and halt 

M̂
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M̂ halts when started on blank tape 

M halts on input 

no 

yes 
M

Write       on tape  w

Tape is blank? 

Run 

with input w

M̂

w

Accept and halt 
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END OF PROOF 

M̂ halts when started on blank tape 

M halts on input w

TMHALTwM , TMBLANKM ˆ

Equivalently: 
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If: Language      is reduced to 

      and language      is undecidable 

Then:       is undecidable   

Theorem 3: 

A B

B
A

Proof: 

Using the decider for  

build the decider for A
B

Suppose       is decidable  B

Contradiction! 

Then        is decidable B
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Suppose      is decidable B

Decider  

for B
s

accept 

reject 

(halt) 

(halt) 
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Suppose      is decidable B

Decider  

for B
s

accept 

reject 

(halt) 

(halt) 

Then       is decidable B

reject 

accept 

Decider for B
NO YES 

YES NO 
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Decider  

for B

Decider for A

)(wf
w

accept 

reject 

accept 

reject 

(halt) 

(halt) 

Input 

string 

BwfAw  )(

Reduction 

If       is decidable then we can build: B

CONTRADICTION! 

YES YES 

NO NO 
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Decider  

for B

Decider for A

)(wf
w

accept 

reject accept 

reject 

(halt) 

(halt) 

Input 

string 

BwfAw  )(

Reduction 

END OF PROOF 
CONTRADICTION! 

Alternatively: 

NO YES 

YES NO 
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Observation: 

 

To prove that language     is undecidable 

we only need to reduce  

a known undecidable language 

to 

or  B

(Theorem 2) 

(Theorem 3) 

B

A
B
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Undecidable Problems for  
Turing Recognizable languages 

•      is empty? L

L•      is regular? 

L•      has size 2? 

Let      be a Turing-acceptable language  L

All these are undecidable problems 
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•      is empty? L

L•      is regular? 

L•      has size 2? 

Let      be a Turing-acceptable language  L
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Empty language problem 

Input: MTuring Machine 

Question: Is  )(ML empty? 

Corresponding language: 

} language empty the accepts                   

that machine aTuring is  :{



 MMEMPTYTM

?)( ML
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Theorem: 

(empty-language problem is unsolvable) 

is undecidable 

Proof: Reduce 

              (membership problem)  

to 

              (empty language problem) 

TMA

TMEMPTY

TMEMPTY
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Decider for 

YES 

NO 

wM,

empty problem  

     decider 

Decider 
Reduction 

M̂
YES 

NO 

Given the reduction, 

if                is decidable, 

then          is decidable 

membership problem decider 

TMA

TMA
TMEMPTY

TMEMPTY

A contradiction! 

since 

is undecidable 
TMA
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wM, Reduction M̂

We only need to build the reduction: 

TMAwM , TMEMPTYM ˆ

So that: 
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•Write      on tape, and 

•Simulate      on input  
w

M w M w

M̂

s
Tape of       M̂

input string 

accepts     ? 

Louisiana?s

Construct         from            : M̂ wM,

yes 

Turing Machine 

Accept s

yes 
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The only possible accepted string 

Louisiana 

42 

s

42 

•Write      on tape, and 

•Simulate      on input  
w

M w M waccepts     ? 

Louisiana?s

yes 

Turing Machine M̂

Accept s

yes 
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accepts  }Louisiana{)ˆ(MLM w

does not 

accept 
M w )ˆ(ML

43 43 43 

•Write      on tape, and 

•Simulate      on input  
w

M w M waccepts     ? 

Louisiana?s

yes 

Turing Machine M̂

Accept s

yes 
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Therefore: 

accepts M w )ˆ(ML

Equivalently: 

TMEMPTYM ˆ

END OF PROOF 

TMAwM ,
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•      is empty? L

L•      is regular? 

L•      has size 2? 

Let      be a Turing-acceptable language  L
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Regular language problem 

Input: MTuring Machine 

Question: Is  )(ML a regular language? 

Corresponding language: 

language} regular a accepts                       

that machine aTuring is  :{ MMREGULARTM 
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Theorem: 

(regular language problem is unsolvable) 

is undecidable 

Proof: Reduce 

                (membership problem)  

to 

                (regular language problem) 

TMA

TMREGULAR

TMREGULAR
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Decider for 

YES 

NO 

wM,

regular problem  

      decider 

Decider 
Reduction 

M̂
YES 

NO 

Given the reduction, 

If                 is decidable, 

then          is decidable 

membership problem decider 

TMA

TMA

TMREGULAR

A contradiction! 

since 

is undecidable 
TMATMREGULAR
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wM, Reduction M̂

We only need to build the reduction: 

TMAwM , TMREGULARM ˆ

So that: 
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s
Tape of       M̂

input string 

Construct         from            : M̂ wM,

50 50 50 50 

•Write      on tape, and 

•Simulate      on input  
w

M w M w

Accept s

accepts     ? 

?kkbas 

yes yes 

Turing Machine M̂
)0 some (for k
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accepts }0:{)ˆ(  nbaML nnM w

does not 

accept 
M w )ˆ(ML

not regular 

regular 

51 51 51 51 51 

•Write      on tape, and 

•Simulate      on input  
w

M w M w

Accept s

accepts     ? 

?kkbas 

yes yes 

Turing Machine 

)0 some (for k
M̂

Costas Busch - LSU 
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Therefore: 

accepts M w )ˆ(ML

Equivalently: 

TMREGULARM ˆ

END OF PROOF 

 is not regular 

TMAwM ,
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•      is empty? L

L•      is regular? 

L•      has size 2? 

Let      be a Turing-acceptable language  L
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Does          have size 2 (two strings)? 

Size2 language problem 

Input: MTuring Machine 

Question: )(ML

Corresponding language: 

strings} two exactly accepts                        

that machine aTuring is  :{2 MMSIZE TM 

?2|)(| ML
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Theorem: 

(size2 language problem is unsolvable) 

is undecidable 

Proof: Reduce 

                (membership problem)  

to 

                (size 2 language problem) 

TMA

TMSIZE2

TMSIZE2
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Decider for 

YES 

NO 

wM,

size2 problem  

     decider 

Decider 
Reduction 

M̂
YES 

NO 

Given the reduction, 

If                 is decidable, 

then          is decidable 

membership problem decider 

TMA

TMA

A contradiction! 

since 

is undecidable 
TMA

TMSIZE2

TMSIZE2



Costas Busch - LSU 57 

wM, Reduction M̂

We only need to build the reduction: 

TMSIZEM 2ˆ 

So that: 

TMAwM ,
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s
Tape of       M̂

input string 

Construct         from            : M̂ wM,

58 58 58 58 58 

•Write      on tape, and 

•Simulate      on input  
w

M w M w

Accept s

accepts     ? 

?}Rouge,Baton{s

yes yes 

Turing Machine M̂
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accepts }Rouge,Baton{)ˆ( MLM w

does not 

accept 
M w )ˆ(ML

2 strings 

0 strings 

M̂

59 59 59 59 59 59 

•Write      on tape, and 

•Simulate      on input  
w

M w M w

Accept s

accepts     ? 

?}Rouge,Baton{s

yes yes 

Turing Machine 
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Therefore: 

accepts M w )ˆ(ML

Equivalently: 

TMSIZEM 2ˆ 

END OF PROOF 

 has size 2 

TMAwM ,


