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CS FOCUS

The IEEE Computer 
Society’s lineup of 13 
peer-reviewed technical 

magazines covers cutting-edge 
topics ranging from software 
design and computer graphics 
to Internet computing and secu-
rity, from scientifi c applications 
and machine intelligence to 
cloud migration and microchip 
design. Here are highlights from 
recent issues.

Computer

Disinformatics: The 
Discipline behind Grand 
Deceptions
In light of the misinformation 
proliferated on social media, 
Out of Band columnist Hal Ber-
ghel believes a new discipline 
should be created in academia 
to further study and analyze 
deception—a discipline he has 

termed “disinformatics.” Dis-
informatics reveals itself at the 
intersection of technology, pro-
paganda, and miscreants. It’s the 
glue that holds together modern 
faux news outlets, AM talk radio, 
Twitterstorms, and sundry other 
sorts of sociopolitical babble. 
“It’s ideologically grounded in 
postmodern logic and episte-
mology (for example, truth is 
what makes the public strong in 
body and spirit) and rests upon 
a foundation of informal logical 
fallacies and falsehoods,” claims 
Berghel. Read more in the Janu-
ary 2018 issue of Computer. 

Computing in Science & 
Engineering

CoFlaVis: A Visualization 
System for Pulverized Coal 
Flames
One of the problems with which 
researchers of diff erent domains, 
such as chemistry and fl uid 
dynamics, are concerned is the 
optimization of coal combus-
tion processes to increase the 
effi  ciency, safety, and cleanli-
ness of such systems. The coal 

Magazine 
Roundup
by Lori Cameron
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combustion process is reproduced 
by using complex simulations that 
normally produce highly complex 
data comprising many characteris-
tics. Such datasets are employed by 
scientists to validate their hypoth-
eses or to present new hypotheses, 
and the data analysis is mostly 
restricted to time-consuming work-
fl ows only capable of a portion of 
the data’s full spectrum. To support 
the experts, interactive visualiza-
tion and analysis tools have been 
developed by diff erent suppliers 
to manage and understand multi-
variate data. This article from the 
November/December 2017 issue of 
Computing in Science & Engineer-
ing demonstrates how one of these 
tools can improve data exploration 
of pulverized coal combustion. 

IEEE Annals of the History 
of Computing 

The “IBM Family”: American 
Welfare Capitalism, Labor, 
and Gender in Postwar 
Germany
This article from the October–
December 2017 issue of IEEE 
Annals of the History of Comput-
ing examines corporate labor and 
gender relations from a transatlan-
tic perspective. It argues that the 
gendered communication of IBM’s 
Thomas Watson Sr. shaped labor 
relations in his company’s West 
German subsidiary. In the United 
States, Watson acted as a business 
progressive, expanding internation-
ally, opening professional careers 
to young women, and implement-
ing welfare capitalist measures. 
When IBM took tighter control of 
its foreign operations after World 

War II, Watson sought to imple-
ment welfare capitalist measures 
in the subsidiaries abroad. With his 
wife Jeanette by his side, he pre-
sented himself as the caring “pater 
familias.” German IBM employees 
embraced Watson’s conservative 
rhetoric of the IBM family but con-
tinued to join national unions and 
formed a works council, thwarting 
the major welfare capitalist goal of 
averting labor organization. Against 
such local labor practices, gendered 
communication undergirded a loyal 
workforce even in critical situa-
tions, an overlooked factor contrib-
uting to the company’s success.

IEEE Cloud Computing 

Intelligent Resource 
Management in Blockchain-
Based Cloud Datacenters
Nowadays, more and more compa-
nies migrate business from their own 
servers to the cloud. With the infl ux 
of computational requests, datacen-
ters consume tremendous energy 
every day, attracting great attention 
in the energy effi  ciency dilemma. 
In this article from the November/
December 2017 issue of IEEE Cloud 
Computing, researchers investigate 
the energy-aware resource manage-
ment problem in cloud datacenters, 
where green energy with unpredict-
able capacity is connected. Via pro-
posing a robust blockchain-based 
decentralized resource management 
framework, they save the energy 
consumed by the request scheduler. 
Moreover, they propose a reinforce-
ment learning method embedded 
in a smart contract to further mini-
mize the energy cost. Because the 
reinforcement learning method 

is informed from the historical 
knowledge, it relies on no request 
arrival and energy supply. Experi-
mental results on Google cluster 
traces and real-world electricity 
price show that their approach is 
able to reduce datacenters’ costs 
signifi cantly compared with other 
benchmark algorithms.

IEEE Computer Graphics 
and Applications 

Visual Communication 
and Cognition in Everyday 
Decision-Making
The role of visual communication 
has quickly changed, and with the 
infl uence and evolution of new 
materials and technology, new 
commercial art and graphic design 
approaches have been created. 
From cuneiform (a writing system 
that dates back to Mesopotamia 
that used a stylus to imprint mark-
ings on clay tablets) to Johannes 
Gutenberg’s development of metal 
movable type and the start of the 
printing revolution, materials and 
technology created opportuni-
ties for visual communication to 
reach more people and share more 
diverse messaging faster than 
ever before. Learn more in this 
article from the November/Decem-
ber 2017 issue of IEEE Computer 
Graphics and Applications. 

IEEE Intelligent Systems 

Robust Tracking of Soccer 
Robots Using Random Finite 
Sets
As in most multirobot systems 
applications, maintaining a good 
estimation of the other robots’ 
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positions is crucial in soccer robot-
ics. Classical approaches use a 
vector representation of the robots’ 
positions and Bayesian fi lters to 
propagate them over time. How-
ever, these approaches suff er from 
the data association problem. To 
tackle this issue, this article from 
the November/December 2017 
issue of IEEE Intelligent Systems 
presents a new methodology for 
the robust tracking of robots based 
on the Random Finite Sets frame-
work, which doesn’t require any 
explicit data association. More-
over, the proposed methodology 
is able to integrate information 
shared by teammate robots, their 
positions, and their estimations 
of the other robots’ positions. The 
proposed method is able to reduce 
the errors of the estimated robots’ 
positions by about 35 percent.

IEEE Internet Computing 

Nowcasting of Earthquake 
Consequences Using Big 
Social Data
Messages posted to social media 
in the aftermath of a natural disas-
ter have value beyond detecting the 
event itself. Mining such deliber-
ately dropped digital traces allows 
a precise situational awareness to 
help provide a timely estimate of 
the disaster’s consequences on the 
population and infrastructures. Yet, 
to date, the automatic assessment 
of damage has received little atten-
tion. In this article from the Novem-
ber/December 2017 issue of IEEE 
Internet Computing, the authors 
explore feeding predictive models 
by tweets conveying on-the-ground 
social sensors’ observations to 

nowcast the perceived intensity of 
earthquakes.

IEEE Micro

Ultra-Low-Power Processors
Society’s increasing use of con-
nected sensing and wearable com-
puting has created robust demand 
for ultra-low-power (ULP) edge 
computing devices and associ-
ated system-on-chip (SoC) archi-
tectures. In fact, the ubiquity 
of ULP processing has already 
made such embedded devices the 
highest-volume processor part in 
production, with an even greater 
dominance expected in the near 
future. The Internet of Everything 
calls for an embedded processor 
in every object, necessitating bil-
lions or trillions of processors. At 
the same time, the explosion of 
data generated from these devices, 
in conjunction with the traditional 
model of using cloud-based ser-
vices to process the data, will place 
tremendous demands on limited 
wireless spectrum and energy-
hungry wireless networks. Smart, 
ULP edge devices are the only 
viable option that can meet these 
demands. Learn more in this article 
from the November/December 2017 
issue of IEEE Micro.

IEEE MultiMedia 

Deep Learning Triggers a New 
Era in Industrial Robotics
The pattern recognition capabili-
ties of deep learning have pushed 
the limits in various fi elds—and 
industrial robotics is no exception. 
Deep learning alone will not solve 
all the problems encountered in 

industrial robotics, but it will cer-
tainly improve the perception capa-
bilities of robotics systems, given 
its power to recognize complex 
real-world patterns robustly. In this 
article from the October–December 
2017 issue of IEEE MultiMedia, the 
author examines robotics applica-
tions in deep learning.

IEEE Pervasive Computing

What Will We Wear After 
Smartphones?
With wearable computing research 
recently passing the 20-year 
mark, this survey from the Octo-
ber–December 2017 issue of IEEE 
Pervasive Computing looks back 
at how the fi eld developed and 
explores where it’s headed. Accord-
ing to the authors, wearable com-
puting is entering its most exciting 
phase yet, as it transitions from 
demonstrations to the creation of 
sustained markets and industries, 
which in turn should drive future 
research and innovation.

IEEE Security & Privacy 

The Future of Digital 
Forensics: Challenges 
and the Road Ahead
Today’s huge volumes of data, 
heterogeneous information and 
communication technologies, and 
borderless cyberinfrastructures 
create new challenges for security 
experts and law enforcement agen-
cies investigating cybercrimes. 
This article from the November/
December 2017 issue of IEEE Secu-
rity & Privacy explores the future of 
digital forensics, with an empha-
sis on these challenges and the 
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advancements needed to effectively 
protect modern societies and pur-
sue cybercriminals.

IEEE Software 

Safe, Secure Executions 
at the Network Edge: 
Coordinating Cloud, Edge, 
and Fog Computing
System design where cyber-
physical applications are securely 
coordinated from the cloud may 
simplify the development process. 
However, all private data are then 
pushed to these remote “swamps,” 
and human users lose actual con-
trol as compared to when the 
applications are executed directly 
on their devices. At the same time, 
computing at the network edge 
is still lacking support for such 
straightforward multidevice devel-
opment, which is essential for 
a wide range of dynamic cyber-
physical services. This article 
from the January/February 2018 
issue of IEEE Software proposes 
a novel programming model as 
well as contributes the associated 
secure-connectivity framework for 
leveraging safe coordinated device 
proximity as an additional degree 
of freedom between the remote 
cloud and the safety-critical net-
work edge, especially under uncer-
tain environment constraints. 

IT Professional

The Economics of  
“Fake News”
False information has economic, 
political, and social consequences. 
The authors of this article from the 
November/December 2017 issue 

of IT Professional analyze the real 
and perceived costs and benefits 
to those that engage in the creation 
and platform support of false 
information. Special consideration 
is given here to digital advertising 
ecosystems that provide a 
supportive environment for “fake 
news” creation. Fake news is 
one type of false information. 
The authors discuss the context 
of fake-news consumption and 
suggest that fake-news creators, 
consumers, and various arbiters 
can reinforce each other and form a 
vicious circle. The article proposes 
mechanisms to break the circle 
and alter the cost-benefit structure 
of engaging in this activity.

Computing Now

The Computing Now website 
(computingnow.computer.org) fea-
tures up-to-the-minute computing 
news and blogs, along with arti-
cles ranging from peer-reviewed 
research to opinion pieces by indus-
try leaders. Read the latest Guest 
Editors’ Introduction on advancing 
multimedia content distribution at 
tinyurl.com/y9yu5adj. 

IEEE Computer Society’s Conference Publishing 
Services (CPS) is now offering conference program 
mobile apps! Let your attendees have their conference 
schedule, conference information, and paper listings in 
the palm of their hands. 

The conference program mobile app works for 
Android devices, iPhone, iPad, and the Kindle Fire.

For more information please contact cps@computer.org

CONFERENCES
in the Palm of Your Hand

Read your subscriptions  
through the myCS  
publications portal at 

http://mycs.computer.org
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EDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTE

B ig data analytics is the use of advanced 
techniques to extract patterns, trends, 
and other insights from very large, 

diverse datasets that have one or more of the fol-
lowing characteristics: high volume, high velocity, 
or high variety. Vast amounts of data are generated 
from sensors, devices, video and audio, websites, 
and social media, and much of it requires close to 
real-time processing. Techniques such as text ana-
lytics, machine learning, data mining, natural lan-
guage processing, and predictive analysis can help 
researchers and organizations access previously 
unavailable data sources and be able to gain new 
insights in applications ranging from healthcare 
and natural disaster response to fraud detection 
and traffi  c management. The March 2018 issue of 
ComputingEdge explores these topics and more. 

In Computer’s “The Future of Data Manage-
ment,” Microsoft Research’s David B. Lomet imag-
ines a data-immersive world 50 years from now 
and what we can do to prepare for this new data-
management landscape.

The author of IT Professional’s “The Problem 
of Personalization: AI-Driven Analytics at Scale” 
discusses how chief data offi  cers can realize the 
personalization opportunities off ered by massive 
amounts of available customer data and a variety 
of other big data sources.

In IEEE Internet Computing’s “Big, Linked 
Geospatial Data and Its Applications in Earth 
Observation,” the authors posit that geospatial 
application development will become much easier 
if the terabytes of Earth observation data—cur-
rently stored in private archives—are freely avail-
able on the web. 

The authors of IEEE Cloud Computing’s 
“Orchestrating BigData Analysis Workfl ows” argue 
that current big data analysis tools and workfl ow 
management orchestrators must evolve to a great 
degree before they can support the requirements 
of domain-specifi c big data workfl ow applications. 

In IEEE Pervasive Computing’s “Population-Scale 
Pervasive Health,” the author discusses research 
attempts to harness large-scale data that has already 
been collected through commercial devices and 
web applications to study human behaviors and the 
links between the data and health and well-being. 

In IEEE Internet Computing’s “In Defense of Map-
Reduce,” the author presents a critical analysis of 
the datafl ow operators provided by MapReduce and 
Spark, both of which are used in big data analytics. 

Finally, the author of IT Professional’s “Big 
Data and Big Money: The Role of Data in the 
Financial Sector” discusses the relevance of big 
data approaches to the fi nancial sector, outlining 
challenges to adoption and future opportunities 
for technology development. 

This ComputingEdge issue also includes arti-
cles on topics other than big data analytics:

• In IEEE Security & Privacy’s “Silver Bullet Talks 
with Nicole Perlroth,” Gary McGraw interviews 
a New York Times cybersecurity journalist 
who has covered stories on Russian election 
hacking eff orts and more.

• IEEE Software’s “Should Architects Code?” 
argues that involving  software architects 
in carefully selected implementation tasks 
can yield positive returns on investment for 
architects and their teams. 

Big Data Analytics
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COMPUTING: THE NEXT 50 YEARS

Data management is driven by the ever-shrinking 
size and cost of a bit of storage, resulting in an 
increasing volume of data from which we can 
create value. We’ve grown accustomed to tera-

bytes of data (with occasional petabytes), and exabytes 
are looming. Lower costs of data acquisition, storage, and 
management translate to increased data-driven opportu-
nities. In turn, cloud vendors are growing their datacenter 
infrastructure at an astounding rate. Data needs to always 
be accessible and available, and must be easy to request. 
Online retailing with diverse shoppers, products, ven-
dors, and means of delivery is an iconic example of this.

So, what does this mean for data management, and can 
we project what the world of data will look like in 50 years? 
As the famed saying goes, making predictions is di�  cult, 
especially about the future. Making a 50-year prediction 
is a fool’s errand, but we can identify some long-term 
trends and possibilities. Let’s � rst look back 50 years, both 
for inspiration and as a sanity check.

In the late 1960s, data management mainly meant busi-
ness data processing. Online data management arrived 
around then (with some rounding), enabled by disk drives, 
and online transaction processing (OLTP) was born. Then, 
two great abstractions appeared that have served the 

data-management community well 
and should be relevant for the next 
50 years: (1) transactions and (2) re-
lational data models and algebra. 

In a transaction, a user has the illusion that he is act-
ing alone on the data. The result of the actions of all con-
current transactions is as if each transaction were exe-
cuted serially without concurrency. If each transaction 
is correct in isolation, the overall result will be correct. 
Relational algebra transformed a collection of informal 
data-engineering operations into a mathematically sound 
closed system working on aggregated data (relations). 
We could then speak precisely of correct transformations 
and answers, equivalent but faster executions, and so on. 
Particularly important were ways to bring data together 
(joins) that permitted separating physical data formats 
from logical views and enabled diverse physical formats 
(column, row, hierarchical, tree, semistructured, and so 
on) to be treated within this algebra. Looking ahead, these 
two fundamental abstractions should continue to serve 
the data-management community well. 

However, large portions of data management have 
needs that go beyond these abstractions. For example, 
dirty data and representation diversity are huge barriers 
to coherent access and manipulation of data from multi-
ple sources. Web search solves this problem when human 
eyes are the target and “good enough” is good enough, 
but not when the target is another machine and when 

The Future of Data 
Management
David B. Lomet, Microsoft Research

Fifty years from today, we will live in a data-

immersive world, doing things we have never 

done before.

r10nxt.indd   12 9/12/17   5:31 PM
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logical precision is a requirement. A 
new (well-paid) � eld called data sci-
ence has evolved to cope with this. 

Sensors produce astoundingly large 
data� ows that might need close to real-
time processing and data reduction. 
Machine learning is being applied to 
ever-larger datasets to exploit the data 
for pro� t and for health, science, and 
the planet. Disasters happen, result-
ing in a need for data-disaster survival 
and for real-time, location-based in-
formation relevant to emergency re-
sponders. Social networks need data 
management at a global scale that is 
responsive to users everywhere, con-
sistent, and available, with low la-
tency and easy-to-use interfaces. New 
levels of well-being are possible when 
large parts of our environment can 
exploit data to serve us better—this is 
part of the promise of the Internet of 
Things (IoT).  

We need to successfully grow the 
size and number of datacenters, which 
will transform the data-management 
landscape. Cloud vendors automate 
system operations, provide mechanisms 
for data security, assure data availability, 

and will shorten latency via edge serv-
ers, which will perhaps eventually be 
built into the Internet-switching in-
frastructure. Integrating geograph-
ically distributed data, applications, 
and disaster protection might well be 
enabled by this same infrastructure. 
However, the speed of light makes 
some latency unavoidable, and the 
CAP theorem (consistency, availabil-
ity, and the resilience to network parti-
tions) suggests that “having it all” will 
remain a challenge. But never under-
estimate clever engineering.

A revolution is beginning on how 
we query data. Computer cognoscenti 
might be able to cope with formal lan-
guages, but most users can’t. For an 
end user, some queries can frequently 
be derived from context (for example, 
restaurants near your current loca-
tion). But more sophisticated queries 
will increasingly be expressed at least 
partially verbally using increasingly 
conversational natural language. We 
are starting to see this with Cortana, 
Siri, and Alexa. The capability of this 
technology should steadily increase, 
and its use will eventually become 

second nature. The challenge is to turn 
conversational query into formal lan-
guage query—but this will come.

Fifty years ago, we entered a data-
assisted world. Today, the world 
is data-dependent—we can’t 

check out at a store if their data sys-
tems are down. Fifty years from today, 
we will live in a data-immersive world, 
doing things we have never done before 
via data’s ubiquitous integration into 
every facet of our lives. This has al-
ready begun. Enjoy the ride. 

DAVID B. LOMET is a principal 

researcher at Microsoft Research 

and currently serves as the fi rst vice 

president and treasurer of the IEEE 

Computer Society. Contact him at 

lomet@microsoft.com.

Want to know more about the Internet?
This magazine covers all aspects of Internet computing, from programming and standards to security and networking.

www.computer.org/internet
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COMPUTING: THE NEXT 50 YEARS

Data management is driven by the ever-shrinking 
size and cost of a bit of storage, resulting in an 
increasing volume of data from which we can 
create value. We’ve grown accustomed to tera-

bytes of data (with occasional petabytes), and exabytes 
are looming. Lower costs of data acquisition, storage, and 
management translate to increased data-driven opportu-
nities. In turn, cloud vendors are growing their datacenter 
infrastructure at an astounding rate. Data needs to always 
be accessible and available, and must be easy to request. 
Online retailing with diverse shoppers, products, ven-
dors, and means of delivery is an iconic example of this.

So, what does this mean for data management, and can 
we project what the world of data will look like in 50 years? 
As the famed saying goes, making predictions is di�  cult, 
especially about the future. Making a 50-year prediction 
is a fool’s errand, but we can identify some long-term 
trends and possibilities. Let’s � rst look back 50 years, both 
for inspiration and as a sanity check.

In the late 1960s, data management mainly meant busi-
ness data processing. Online data management arrived 
around then (with some rounding), enabled by disk drives, 
and online transaction processing (OLTP) was born. Then, 
two great abstractions appeared that have served the 

data-management community well 
and should be relevant for the next 
50 years: (1) transactions and (2) re-
lational data models and algebra. 

In a transaction, a user has the illusion that he is act-
ing alone on the data. The result of the actions of all con-
current transactions is as if each transaction were exe-
cuted serially without concurrency. If each transaction 
is correct in isolation, the overall result will be correct. 
Relational algebra transformed a collection of informal 
data-engineering operations into a mathematically sound 
closed system working on aggregated data (relations). 
We could then speak precisely of correct transformations 
and answers, equivalent but faster executions, and so on. 
Particularly important were ways to bring data together 
(joins) that permitted separating physical data formats 
from logical views and enabled diverse physical formats 
(column, row, hierarchical, tree, semistructured, and so 
on) to be treated within this algebra. Looking ahead, these 
two fundamental abstractions should continue to serve 
the data-management community well. 

However, large portions of data management have 
needs that go beyond these abstractions. For example, 
dirty data and representation diversity are huge barriers 
to coherent access and manipulation of data from multi-
ple sources. Web search solves this problem when human 
eyes are the target and “good enough” is good enough, 
but not when the target is another machine and when 

The Future of Data 
Management
David B. Lomet, Microsoft Research

Fifty years from today, we will live in a data-

immersive world, doing things we have never 

done before.
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The Problem of 
Personalization
AI-Driven Analytics  
at Scale  

Seth Earley, Earley Information Science

D
uring the past decade, 
a steady stream of  
arm-waving pronounce-
ments has touted per-

sonalization as the holy grail 
of marketing programs. Orga-
nizations have been promised 
the ability to tap into billions of 
customer interactions and de-
mographic data, and obtain new 
insights that yield personalization 
that presents the correct product, 
content, or solution for users no 
matter what they are trying to do 
or what role they are in.

This concept has been the topic 
of many events, papers, and re-
search studies. It has spawned hun-
dreds of technology solutions and 
services, creating entire product 
landscapes aimed at addressing this 
challenge. For the chief analytics 
officer and chief data officer (CDO), 
putting “analytics at scale” into 
production is the key to realizing 
the personalization opportunities 
that massive amounts of available 
customer data and a variety of other 
big data sources can offer.

No Magic Bullet
Despite all this investment and 
technology, organizations con-
tinue to struggle with personal-
izing customer and employee 
interactions. Many projects pro-
vide meaningful results in test 
environments, only to fail in pro-
duction due to the high degree of 
human intervention required—
whether during hypothesis de-
velopment, data modeling, data 
preparation, or testing and fine-
tuning. It is simply impractical 
and unsustainable to drive many 
analytic applications because it 
takes too long to produce us-
able results in the majority of use 
cases.

However, new and innovative 
approaches to using artificial 
intelligence (AI) and machine 
learning (ML) now enable ac-
celerated personalization with 
fewer resources. The result 
is more practical and action-
able customer insights that can 
be put to work without acts of 
heroics.

Too Much Data, Too Few 
Insights …
Today’s applications, while pow-
erful in some ways, lack maturity 
in certain areas. In particular, they 
cannot generate and automatically 
test the large number of hypothe-
ses necessary to fully interpret the 
volume of data that is now being 
captured. The number of hypoth-
eses and models is therefore lim-
ited to humans’ capacity to repeat 
the process, leaving a majority of 
the possible analyses unexplored 
and on the virtual “cutting room 
floor.”

Take the example of optimiz-
ing inventory for an airline. The 
goal is to maximize revenue while 
not degrading the traveler expe-
rience to the degree that there is 
an impact on customer loyalty. A 
personalization scenario might 
consider a traveler’s recent expe-
riences along with purchase his-
tory to offer an upgrade to specific 
ticket holders. Traditional analytic  
processes (articulating, testing,  
and tuning various scenarios) are  
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not practical—disproportionate  
levels of resourcing and analysis  
are required to absorb and process 
the relevant data and construct mod-
els to achieve an optimized result.

… Not Enough Time and 
Attention
Customer spending on online 
channels is projected to con-
tinue on a growth trajectory (bit 
.ly/2sMlC9R). They are also trans-
acting more business via mobile 
devices1 and when on mobile 
devices, spending less time on  
e-commerce sites (bit.ly/2gfLmmZ). 
These trends all point to the need 
for increasing levels of personal-
ization, where customers can be 
presented with the most relevant 
choices on a device with limited 
real estate. Online retailers have 
more data for analysis and person-
alization insight, but the cycle time 
in which it can be applied is rapidly 
diminishing. As consumer and 
business buyers continue to mi-
grate their engagement to online 
experiences, the timeframes with-
in which these experiences occur 
require more effective and effi-
cient personalization. As shown in  
Figure 1, keeping pace with cus-
tomer decisions while dealing with 

more and more customer data is 
becoming increasingly difficult.

Over US$2.1 trillion dollars will 
be spent via online transactions 
globally in 2017, a 26 percent in-
crease in just two years. Depend-
ing on the type of device being 
used, the time to influence those 
decisions will shrink to just 5 to 7 
minutes. In that amount of time, 
customer insights must be applied 
to personalize buying experiences. 

Optimizing Personalization 
in Omni-Channel 
Marketing
An organization measuring the 
impact of various marketing chan-
nels, such as digital advertising 
response, social media, and out-
bound campaigns, might have the 
following inputs:

• customer satisfaction scores;
• likelihood to recommend;
• product or brand sentiment;
• performance measures, such as 

email click-through, website vis-
its, conversions, abandonment 
rates, and sales transaction met-
rics across categories; and

• customer demographics, such 
as age, gender, ethnicity, wealth, 
education, and geolocation.

The organization might use tracking  
URLs for attribution and then 
determine the correlation of mar-
keting campaigns with an increase 
in conversion events—whether an 
e-commerce transaction, a regis-
tration for content, or request for 
additional communications with 
a representative. Clickstream data 
provides additional signals to pre-
dict next actions or preferences 
linked to personas and use cases.

This mix will have a large num-
ber of inputs, coming from dif-
ferent systems. A conversion is 
the last step in a potentially long 
series of activities and interac-
tions. Each step can strengthen or 
weaken the customer’s perception 
of the brand and the relationship, 
ultimately predicting conversion 
potential.

Several important hypotheses 
can be developed and tested:

• What specific content is most 
effective in engaging across an 
omni-channel strategy?

• How does variation in tone 
(humorous versus factual, 
for example) impact the next 
behavior?

• How does that behavior change 
according to product line, 

Definition of Terms

Personalization describes the tailoring of a customer 
experience, or set of experiences, through the 

use of customer insights. These insights, collected 
from signals derived by analysis of customer data and 
a variety of other big data sources, must be available 
and actionable during a customer engagement to 
tailor the experience to individual tastes, needs, and 
behaviors.

Customer experience (CX) is the sum totality of how 
customers engage with your company and brand, 
not just in a snapshot in time, such as a website visit, 
but throughout the entire customer lifecycle. Karl 
Wirth, CEO of Evergage,1 suggests that there are  
four core principles of CX: remember, understand, 
help, surprise/delight. Personalization should touch  
on each.

Analytics at scale describes the ability to perform 
analysis of massive datasets, referred to as big data. 
The analysis yields connections that enable person-
alization, relating a wide range of different customer 
data points—from digital marketing response, to 
website and search behavior, to service and support 
interactions, to reviews/sentiment data, as well as 
demographic, firmographic, and geographic data.

Big data refers to high-velocity, high-volume, highly 
variable data sources and combines structured and 
unstructured data.

Reference
 1. K. Wirth, “Four Rules for Elevating Your Digital Customer 

Experience,” Evergage blog, 25 Jan. 2016; bit.ly/2xLkh65.
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channel, specific web property, 
demographic segment, or user 
intent?

• How do historical interactions 
impact the likeliness of future 
conversions?

The time and effort required to 
manually identify insights might 
not be justified by the uplift from 
applying those insights. Data 
modeling and hypothesis testing 
require development cycles that 
likely will not keep pace with the 
rate of change in the market-
place. Customer behaviors and 
trends change before results can 
be applied.

Even when modeling and test-
ing is done efficiently, data collec-
tion, cleansing, integration, and  
structuring may still require sig-
nificant effort prior to analysis. 
The preprocessing of data length-
ens the timeline and increases the 
overall cost and level of effort for 
customer analytics and person-
alization programs. The clock 
speed of analysis, insight, and ap-
plication cannot keep up with that 

of changing market dynamics and 
customer behaviors.

Nuances in insights can also be 
lost in translation from develop-
ment to production or from data 
science teams to production ana-
lyst teams. Figure 2 summarizes 
these challenges. Scaling from re-
search to production is challenging 
in every context and industry—
from pharmaceuticals to manu-
facturing—and the answer is the 
same: standardization of processes  
and reuse of components and 
models to yield the efficiencies and 
benefits from scale. In other words, 
a factory model for analytics needs 
to be designed and developed to 
achieve benefits from scale.

Craft Data Models and 
Artisan Data Scientists
Craft beer and artisan breads  
are lovingly created by skilled 
individuals who slowly and care-
fully produce their goods. Many 
of the personalization models at 
first-generation retail sites have 
been similarly hand crafted by 
the equivalent of data science 

artisans. If your budget is big 
enough, it is also possible to pur-
chase individually manufactured 
super cars for millions of dollars. 
Most of us are content with high-
quality manufactured products 
that are exceedingly well designed 
and produced. Data science, pre-
dictive analytics, and machine 
learning applications are similarly 
becoming more practical and af-
fordable, with capabilities that 
meet those of prior generations 
of applications costing orders of 
magnitude more.

What are the elements of mod-
ern personalization factories? A  
key element of achieving scal-
able personalization is the quality 
and provenance of data sources. 
Without harmonized data and 
consistent metadata, a great deal 
of work needs to go into cleaning 
up, performing extraction, trans-
lation, and load (ETL) functions, 
and making data usable for inte-
gration into analytic models. This 
is where the trouble usually starts. 
Data scientists end up spend-
ing a significant amount of their 

Figure 1. Global e-commerce sales ($billions) vs. time spent shopping (minutes) by device type. Keeping pace 
with customer decisions while dealing with more and more customer data is becoming increasingly difficult. 
(Source: Statista 2017)
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time performing highly manual 
information architecture (IA) 
work—cleaning, structuring, and 
integration tasks—instead of ac-
complishing the higher-value an-
alytical work that they were hired 
to do in the first place (Figure 3).

This data hygiene must be car-
ried out for data to be clean and 
trusted enough to be used to solve 
focused business problems, such 
as the digital marketing scenario 
described earlier.

Making Data Scientists’ 
Lives Easier
Sometimes, companies do not 
see an alternative to using data 
scientists for this task. The foun-
dational requirements include a 
comprehensive view of data accu-
racy, validation, quality, and con-
sistency to provide confidence in 
the output of personalization pro-
grams. These necessary elements 
should be part of the starting 
point for data scientists, not ele-
ments that they should be respon-
sible for. Instead, they should be 

the responsibility of the business 
functions producing the data and 
the IT organization that provides 
the necessary governance infra-
structure (in partnership with the 
business). In other words, fix the 
problems upstream through data 
stewardship and enterprise data 
standards rather than apply more 

costly remediation by scarce data 
science resources.

Development of consistent nam-
ing conventions and data defini-
tions to make information more 
findable and improve access and 
data availability is another of the 
essential infrastructure elements. 
Metadata must be harmonized 

Figure 2. The problem with personalization projects. (Source: Opera Solutions, 2017)
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intent?

• How do historical interactions 
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conversions?
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modeling and hypothesis testing 
require development cycles that 
likely will not keep pace with the 
rate of change in the market-
place. Customer behaviors and 
trends change before results can 
be applied.

Even when modeling and test-
ing is done efficiently, data collec-
tion, cleansing, integration, and  
structuring may still require sig-
nificant effort prior to analysis. 
The preprocessing of data length-
ens the timeline and increases the 
overall cost and level of effort for 
customer analytics and person-
alization programs. The clock 
speed of analysis, insight, and ap-
plication cannot keep up with that 

of changing market dynamics and 
customer behaviors.

Nuances in insights can also be 
lost in translation from develop-
ment to production or from data 
science teams to production ana-
lyst teams. Figure 2 summarizes 
these challenges. Scaling from re-
search to production is challenging 
in every context and industry—
from pharmaceuticals to manu-
facturing—and the answer is the 
same: standardization of processes  
and reuse of components and 
models to yield the efficiencies and 
benefits from scale. In other words, 
a factory model for analytics needs 
to be designed and developed to 
achieve benefits from scale.

Craft Data Models and 
Artisan Data Scientists
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are lovingly created by skilled 
individuals who slowly and care-
fully produce their goods. Many 
of the personalization models at 
first-generation retail sites have 
been similarly hand crafted by 
the equivalent of data science 

artisans. If your budget is big 
enough, it is also possible to pur-
chase individually manufactured 
super cars for millions of dollars. 
Most of us are content with high-
quality manufactured products 
that are exceedingly well designed 
and produced. Data science, pre-
dictive analytics, and machine 
learning applications are similarly 
becoming more practical and af-
fordable, with capabilities that 
meet those of prior generations 
of applications costing orders of 
magnitude more.

What are the elements of mod-
ern personalization factories? A  
key element of achieving scal-
able personalization is the quality 
and provenance of data sources. 
Without harmonized data and 
consistent metadata, a great deal 
of work needs to go into cleaning 
up, performing extraction, trans-
lation, and load (ETL) functions, 
and making data usable for inte-
gration into analytic models. This 
is where the trouble usually starts. 
Data scientists end up spend-
ing a significant amount of their 
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and optimized, with the removal of 
inconsistent and redundant terms 
and fields a part of data quality re-
mediation. A formal business glos-
sary and set of reference metadata 
(available in a catalogue, diction-
ary, or repository) is also part of 
these foundational requirements.

Many of the challenges related 
to creating clean data are assumed 
to be trivial because they are well 
understood. Although not mys-
terious, the challenges are by no 
means trivial and require changes 
to ownership, responsibility, pro-
cess, and ultimately the culture 
of the organization, with a shift 
in responsibility from IT to the 
business (or at least partnership 
with the business). A great deal of 
work, including management of 
both process and content, must 

occur to cross the gulf between 
a hypothesis and that hypothesis 
tested, confirmed, and applied as 
a business innovation. In a pro-
duction analytics environment, 
data and content preparation, 
application tuning, and configu-
ration will constitute the bulk of 
the work and require the great-
est effort. This is IA work, with-
out which personalization is not 
possible.

Rethinking Applied 
Analytics at Scale
Demand is exploding for scalable 
production solutions to personal-
ization, while customer decision 
windows continue to narrow and 
choices expand. Thus, data sci-
entists are increasingly looking 

for mechanisms to automate up-
stream data preparation and pro-
duction. Several issues need to be 
addressed:

• Multiple projects in the orga-
nization, conducted by mul-
tiple teams or departments, 
begin with the same data inputs, 
which, unless consolidated or 
centralized, might require the 
same preparation work, result-
ing in duplication of effort. The 
wasted effort slows responsive-
ness across the functions that 
support different stages of the 
customer journey, multiplying 
the impact of the inefficiency on 
the customer experience.

• After data is prepared and mod-
els tuned (for example, opti-
mizing offers for a particular 

segment), a lot of time and effort 
are required to go from the data 
science sandbox to operational-
izing the solution. Integrating 
the processes and technologies 
in the customer experience en-
vironment is a time-consuming 
step. One example is defining 
the correct offer components 
across segments and serving 
those up through content and 
commerce applications.

This disconnect occurs because 
the development environment and 
the production environment are 
very different. Data scientists are 
probably not defining the needs 
of personas in market segments 
and are certainly not creating 
the content and merchandizing 

offers. The technology environ-
ments are also different. Data sci-
entists might build a model using 
an analytic tool in the sandbox, 
and the IT department needs to 
recode variables and models using 
a more scalable toolset in Hadoop 
when the application goes into 
production.

Production data is more vari-
able than test data because it goes 
beyond the test datasets, and data 
scientists have to retest against 
the model. When the projects 
are in final production, many of 
the insights and know-how are 
fragmented between documents 
in different repositories, code in 
various application iterations, and  
in the tacit experience of the peo-
ple doing the work. As staff turns 
over, a great deal of this tacit 
knowledge is lost.

Platforms for AI-Driven 
Personalization
A platform approach to AI and 
ML techniques brings together 
many new, innovative personal-
ization capabilities, along with  
data and content processing. The 
platform enables greater scale 
for building and optimizing ana-
lytical models. Using these tech-
niques, an emerging approach 
combines key components of  
data preparation, data operation-
alization, and translation between 
business challenges and analyti-
cal models.

Multiple steps are required for 
raw data to travel the entire route 
from origin to insight, some of 
which can be aided by the plat-
form. First, it must be prepro-
cessed to normalize it, account for 
missing data, and review the data 
for accuracy. Second, a step called 
“feature engineering” is carried 
out to identify or generate vari-
ables. These steps need signifi-
cant human input because they 
are part of IA. The remaining  

A great deal of work must occur to cross the gulf 
between a hypothesis and that hypothesis tested, 
confirmed, and applied as a business innovation.
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steps are feature selection (choos-
ing a subset of all available fea-
tures to simplify the model and 
produce results more quickly), 
model building, and operational-
izing the insights.

Although not all aspects of fea-
ture engineering can be automated,  
various techniques can be used to 
generate many features system-
atically. Schema-driven feature  
generation captures the overall 
structure of various entities in a 
business, such as the customer, 
products, vendors, campaign con-
structs, and other objects. Patterns 
and behaviors can then be com-
pared over time, with reference  
groups, industry peers, or other 
datasets. Deep learning can also 
be used to create features without 
domain-specific knowledge, with 
human input based on domain 
knowledge used to expand the 
model by generating additional 
features.

With a combination of systematic 
feature engineering and automated 
and system-assisted model build-
ing, hundreds of predictive mod-
els can be created faster and more 
efficiently. The development-to- 
production stage can also be in-
creasingly automated through a 
platform approach. A semantic 
layer around models, data sources, 
and insights allows users to search 
and re-use inputs and results.

The end result is the “democra-
tization” of data science capabili-
ties across the enterprise, rather 
than those capabilities residing in 
a few well-staffed and well-funded 
departments. This capability frees  
data scientists to build more mod-
els and allows business intelli-
gence staff and business users to 
benefit from the power of data 
science insights on a day-to-day 
basis.

Through this process, data be-
comes a service that fuels algo-
rithms. The platform becomes 

an orchestration layer between 
the data and the technologies that 
solve business problems. Signals 
from the data are processed and 
interpreted in the orchestration 
layer, and algorithms operate on 
those signals to produce an out-
put to one or more technologies 
that act on the output. This sig-
nal processing/orchestration layer 
has sometimes been described in 
shorthand as a “signal layer.”

The signal layer brings together 
the processing of large volumes of 
data, including real-time behav-
iors from websites, social media, or 
sensors as well as operational and 
transactional information. This 
approach helps to standardize  
and consolidate sources, mak-
ing them more readily available 
to an analytics workbench in 
which algorithms are tuned and 
tested. The approach can also 
be used to package algorithms 
for export to production systems 
without loss of fidelity. Figure 4 
compares a signal-layer approach 
to the traditional stack for creat-
ing personalization models and 
insights.

Netflix recently enhanced its  
personalization functionality, which  
allows individual users to receive 

tailored programming sugges-
tions. This eliminates the need 
for multiple users in a household 
to share one set of recommen-
dations. By knowing something 
about the preferences of individu-
al users, Netflix can now correlate 
this information across millions 
of user “signals” and refine its 
recommendation engine based on 
the insights it gleans every min-
ute. Establishing this capability 
using a signal layer allows Net flix 
data scientists to continuously re-
ceive new customer insights and 
test hypotheses rather than have 
to rebuild analytical models for 
each hypothesis.

Getting more value from data and 
advanced approaches to applying  
data is a top challenge of chief 
marketing officers (CMOs; bit 
.ly/2ya3B78). However, many or-
ganizations lack the expertise in 
their marketing departments to 
exploit data assets using AI and 
ML. Leveraging a platform- and 
signal-layer approach can help 
CMOs make better use of scarce 
talent and reuse solutions that are 
developed across the enterprise. 
CDOs are tasked with improving 
and enriching data and increas-
ing the value from data assets  

Figure 4. Traditional vs. platform approach to personalization.
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and optimized, with the removal of 
inconsistent and redundant terms 
and fields a part of data quality re-
mediation. A formal business glos-
sary and set of reference metadata 
(available in a catalogue, diction-
ary, or repository) is also part of 
these foundational requirements.

Many of the challenges related 
to creating clean data are assumed 
to be trivial because they are well 
understood. Although not mys-
terious, the challenges are by no 
means trivial and require changes 
to ownership, responsibility, pro-
cess, and ultimately the culture 
of the organization, with a shift 
in responsibility from IT to the 
business (or at least partnership 
with the business). A great deal of 
work, including management of 
both process and content, must 

occur to cross the gulf between 
a hypothesis and that hypothesis 
tested, confirmed, and applied as 
a business innovation. In a pro-
duction analytics environment, 
data and content preparation, 
application tuning, and configu-
ration will constitute the bulk of 
the work and require the great-
est effort. This is IA work, with-
out which personalization is not 
possible.

Rethinking Applied 
Analytics at Scale
Demand is exploding for scalable 
production solutions to personal-
ization, while customer decision 
windows continue to narrow and 
choices expand. Thus, data sci-
entists are increasingly looking 

for mechanisms to automate up-
stream data preparation and pro-
duction. Several issues need to be 
addressed:

• Multiple projects in the orga-
nization, conducted by mul-
tiple teams or departments, 
begin with the same data inputs, 
which, unless consolidated or 
centralized, might require the 
same preparation work, result-
ing in duplication of effort. The 
wasted effort slows responsive-
ness across the functions that 
support different stages of the 
customer journey, multiplying 
the impact of the inefficiency on 
the customer experience.

• After data is prepared and mod-
els tuned (for example, opti-
mizing offers for a particular 

segment), a lot of time and effort 
are required to go from the data 
science sandbox to operational-
izing the solution. Integrating 
the processes and technologies 
in the customer experience en-
vironment is a time-consuming 
step. One example is defining 
the correct offer components 
across segments and serving 
those up through content and 
commerce applications.

This disconnect occurs because 
the development environment and 
the production environment are 
very different. Data scientists are 
probably not defining the needs 
of personas in market segments 
and are certainly not creating 
the content and merchandizing 

offers. The technology environ-
ments are also different. Data sci-
entists might build a model using 
an analytic tool in the sandbox, 
and the IT department needs to 
recode variables and models using 
a more scalable toolset in Hadoop 
when the application goes into 
production.

Production data is more vari-
able than test data because it goes 
beyond the test datasets, and data 
scientists have to retest against 
the model. When the projects 
are in final production, many of 
the insights and know-how are 
fragmented between documents 
in different repositories, code in 
various application iterations, and  
in the tacit experience of the peo-
ple doing the work. As staff turns 
over, a great deal of this tacit 
knowledge is lost.

Platforms for AI-Driven 
Personalization
A platform approach to AI and 
ML techniques brings together 
many new, innovative personal-
ization capabilities, along with  
data and content processing. The 
platform enables greater scale 
for building and optimizing ana-
lytical models. Using these tech-
niques, an emerging approach 
combines key components of  
data preparation, data operation-
alization, and translation between 
business challenges and analyti-
cal models.

Multiple steps are required for 
raw data to travel the entire route 
from origin to insight, some of 
which can be aided by the plat-
form. First, it must be prepro-
cessed to normalize it, account for 
missing data, and review the data 
for accuracy. Second, a step called 
“feature engineering” is carried 
out to identify or generate vari-
ables. These steps need signifi-
cant human input because they 
are part of IA. The remaining  

A great deal of work must occur to cross the gulf 
between a hypothesis and that hypothesis tested, 
confirmed, and applied as a business innovation.



18	 ComputingEdge�  March 2018
80 IT Pro  November/December 2017

DATA ANALYTICS

(bit.ly/2yabUzB). To do so, the 
CDO needs a mechanism to 
make data readily available and 
in a format that can be consumed 
and applied by business users. 
Tackling data preprocessing us-
ing a platform approach helps to 
achieve this objective.

T he objective of a prepro-
cessing approach is to pro-
cess the data independent 

of its future use, and then apply 
AI and ML in the signal layer to 
drive business application func-
tionality. The approach impacts 
data scientists’ time efficiency by 
making inputs independent of  
use cases and operationalizing 
analyses using standardized algo-
rithms that can be developed as 
libraries of AI functionality. The 
system captures learning for re-
use and avoids one-off data mod-
eling and algorithm-developing 
projects. As new insights are dis-
covered and feedback from opera-
tions is incorporated, the signal-
layer/platform approach becomes 
a continuous learning system for 
the enterprise, driven by the data 

variables as their impact on busi-
ness problems is discovered. 
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If the terabytes of Earth observation data currently stored in archives are 

published on the web using the linked data paradigm, data discovery, integration 

with other data sources, and the development of applications will become 

much easier.

Terabytes of geospatial data have been 
made freely available recently on the 
web. For example, data are available 

from gazetteers such as GeoNames, maps 
from geospatial search engines like Google 
Maps and OpenStreetMap, and user-contrib-
uted content from social networks such as  
Foursquare.

Some particularly important rich sources 
of open and free geospatial data are the satel-
lite programs of various countries, such as the 
Landsat program of the US and the Copernicus 
program of the European Union (EU). Satel-
lite images can be used in many applications 
with financial and environmental impact in 
areas such as emergency management, climate 
change, agriculture, and security. This poten-
tial has not been fully realized because satellite 
data are hidden in various archives operated by 
NASA, the European Space Agency, and other 
national space agencies. Therefore, application 
developers need to search in these archives to 
discover the needed data and integrate them 
into their applications. In this article, we show 
how to break these barriers by publishing this 
data in the Resource Description Framework 
(RDF), interlinking it with other relevant data, 
and making it freely available on the web to 
enable easy development of geospatial appli-
cations.

Big, Linked, and Open EO  
Data Lifecycle
The life of Earth observation (EO) data starts with 
the data’s generation in the ground segment of a 
satellite mission, where the management of this 
so-called payload data is an important activity. 
Figure 1 gives a high-level view of the lifecycle 
of big, linked EO data as we envisioned it in our 
work. Each phase of the lifecycle and its associ-
ated software tools is discussed in more detail in 
the following.

Ingestion, Processing, Cataloguing,  
and Archiving
Raw data, often from multiple satellite missions, 
are first ingested, processed, catalogued, and 
archived. This phase involves processing results 
in the creation of various standard products 
(Levels 1, 2, and so on, in EO jargon; raw data 
are Level 0), together with extensive metadata 
describing them.

Satellite Image Descriptor Extraction, KDD, 
and Semantic Annotation
We extended traditional image-processing 
methods to deal with the specificities of satel-
lite images and extract image descriptors — for 
example, texture features or spectral charac-
teristics of an image. Knowledge discovery and 
data mining (KDD) techniques combine image 
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Figure 1. The lifecycle of big, linked, open Earth observation (EO) data. The yellow dashed line indicates traditional 
processing chains in EO datacenters. The green circle captures our additions.

descriptors, image metadata, and 
auxiliary data (such as GIS data) to 
determine concepts from a domain 
ontology (for example, a forest, lake, 
fire, or burned area) that character-
ize an image’s content. Hierarchies 
of domain concepts are formalized 
using ontologies encoded in the Web 
Ontology Language, OWL-2, and are 
used to annotate standard products. 
Annotations are expressed in RDF 
and are made available as linked data 
so that they can be combined easily 
with other publicly available linked 
data sources (such as GeoNames, 
OpenStreetMap, and DBpedia) to 
allow for the expression of rich user 
queries.

Semantic Annotation
For encoding semantic annotations 
and publishing geospatial and tem-
poral linked data, we developed the 
data model stRDF and the query 
language stSPARQL. The model 
stRDF is an extension to the W3C 
standard RDF that allows the rep-
resentation of geospatial data that 

changes over time. It is accompanied 
by stSPARQL, an extension of the 
query language SPARQL 1.1 for que-
rying and updating stRDF data. Both 
stRDF and stSPARQL use the Open 
Geospatial Consortium (OGC) stan-
dards Well-Known Text (WKT) and 
Geography Markup Language (GML) 
for the representation of temporal 
and geospatial data. Both stRDF and 
stSPARQL have been implemented 
in the system Strabon (see http:// 
strabon.di.uoa.gr), which extends the 
well-known RDF store Sesame and 
uses PostgreSQL or MonetDB as the 
backend spatially- and temporally-
enabled database management sys-
tem. As shown by our experiments, 
Strabon is currently the most func-
tional and efficiently performing 
geospatial and temporal RDF store 
available.

In our work, we use stRDF to 
represent satellite image metadata 
(for example, time of acquisition or 
geographical coverage), knowledge 
extracted from satellite images (for 
example, a certain image pixel is 

a fire hotspot), and auxiliary geo-
spatial datasets encoded as linked 
data. We can then use stSPARQL to 
express in a single query an infor-
mation request such as the fol-
lowing: find an image taken by a 
Meteosat second-generation satellite 
on 25 August 2007 that covers the 
area of Peloponnese and contains 
hotspots corresponding to forest 
fires located within 2 km of a major 
archaeological site. Encoding this 
information request today in a typi-
cal interface of an EO data archive 
such as the Copernicus Open Access 
Hub (see https://scihub.copernicus.
eu) is impossible, because domain- 
specific concepts such as “forest fires” 
aren’t included in the archive meta-
data, and thus they can’t be used as 
search criteria. In Copernicus Open 
Access Hub and other similar web 
interfaces, search criteria include a 
hierarchical organization of avail 
able products (for example, high-res-
olution optical or synthetic aperture 
radar data), together with a temporal 
and geographic selection menu.
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With the KDD techniques, we 
can characterize satellite image 
regions with concepts from appro-
priate onto logies (for example, land-
cover ontologies with concepts such 
as water-body, lake, and forest; or 
environmental monitoring ontolo-
gies with concepts such as forest 
fire and flood). These concepts are 
encoded in OWL ontologies and are 
used to annotate EO products. In this 
way, we attempt to close the semantic 
gap that exists between user requests 
and searchable information available 
explicitly in the archive.

But even if semantic information 
was included in the archived anno-
tations, we would need to join it with 
information obtained from auxiliary 

data sources to answer the previous 
query. Although such open sources 
of data are available to EO datacen-
ters, they aren’t currently used to 
support sophisticated ways of end-
user querying in web interfaces such 
as the Copernicus Open Access Hub. 
In our work, we assume that auxil-
iary data sources, especially geospa-
tial ones, are encoded in stRDF and 
are available as linked geospatial 
data; thus, stSPARQL easily can be 
used to express information requests 
as in the previous example.

Transformation into RDF
This phase transforms vector or ras-
ter EO data from their standard for-
mats (for example, ESRI shapefile or 

NetCDF) into RDF. We advanced the 
state of the art in transforming EO data 
and geospatial data into RDF by devel-
oping GeoTriples (see https://github.
com/LinkedEOData/GeoTriples). Geo-
Triples is a tool that transforms vector 
data and their metadata into RDF and 
that natively supports many popu-
lar geospatial data formats, including 
shapefiles, spatially enabled DBMS, 
Keyhole Markup Language (KML), and 
GeoJSON.

Storage/Querying
This phase deals with storing all rel-
evant EO data and metadata on per-
sistent storage so that they’re readily 
available for querying in subsequent 
phases. In our work, we use MonetDB 

Semantic Catalogue for the TerraSAR-X Archive

The workflow for constructing a 
semantic catalogue for the Ter-

raSAR-X archive of Germany’s Aero-
space Center (DLR) can be summarized 
as follows. First, the TerraSAR-X prod-
ucts are obtained from the archive and 
stored separately into an image and 
metadata database. Then, each image is 
tiled into patches based on the resolu-
tion and pixel spacing extracted from 
the metadata database. For each patch, 
its quick-look is generated and stored 
into a quick-look database. Then, the 
primitive features from each tiled patch 
are extracted and stored into a primi-
tive feature database. The three data-
bases are implemented using MonetDB. 
Then, the features are grouped into 
categories from a predefined hierarchy 
(the DLR ontology) using an interac-
tive learning algorithm. These catego-
ries are used to populate the semantic 
catalogue.

As a proof of concept, this workflow 
has been applied to a big dataset contain-
ing 300 scenes from the DLR TerraSAR-
X archive (around 3 Tbytes of data). 
Applying the knowledge discovery and 
data mining (KDD) framework to this 

dataset resulted in detecting 850 seman-
tic classes with high precision and recall.1 
As an example, Figure A shows the visu-
alization of the information regarding the 
area of Venice that was introduced in the 
semantic catalogue using Sextant.

Figure A. Visualization of the information regarding the area of Venice that was introduced 
in the semantic catalogue using Sextant.

Forest mixed
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Figure 1. The lifecycle of big, linked, open Earth observation (EO) data. The yellow dashed line indicates traditional 
processing chains in EO datacenters. The green circle captures our additions.

descriptors, image metadata, and 
auxiliary data (such as GIS data) to 
determine concepts from a domain 
ontology (for example, a forest, lake, 
fire, or burned area) that character-
ize an image’s content. Hierarchies 
of domain concepts are formalized 
using ontologies encoded in the Web 
Ontology Language, OWL-2, and are 
used to annotate standard products. 
Annotations are expressed in RDF 
and are made available as linked data 
so that they can be combined easily 
with other publicly available linked 
data sources (such as GeoNames, 
OpenStreetMap, and DBpedia) to 
allow for the expression of rich user 
queries.

Semantic Annotation
For encoding semantic annotations 
and publishing geospatial and tem-
poral linked data, we developed the 
data model stRDF and the query 
language stSPARQL. The model 
stRDF is an extension to the W3C 
standard RDF that allows the rep-
resentation of geospatial data that 

changes over time. It is accompanied 
by stSPARQL, an extension of the 
query language SPARQL 1.1 for que-
rying and updating stRDF data. Both 
stRDF and stSPARQL use the Open 
Geospatial Consortium (OGC) stan-
dards Well-Known Text (WKT) and 
Geography Markup Language (GML) 
for the representation of temporal 
and geospatial data. Both stRDF and 
stSPARQL have been implemented 
in the system Strabon (see http:// 
strabon.di.uoa.gr), which extends the 
well-known RDF store Sesame and 
uses PostgreSQL or MonetDB as the 
backend spatially- and temporally-
enabled database management sys-
tem. As shown by our experiments, 
Strabon is currently the most func-
tional and efficiently performing 
geospatial and temporal RDF store 
available.

In our work, we use stRDF to 
represent satellite image metadata 
(for example, time of acquisition or 
geographical coverage), knowledge 
extracted from satellite images (for 
example, a certain image pixel is 

a fire hotspot), and auxiliary geo-
spatial datasets encoded as linked 
data. We can then use stSPARQL to 
express in a single query an infor-
mation request such as the fol-
lowing: find an image taken by a 
Meteosat second-generation satellite 
on 25 August 2007 that covers the 
area of Peloponnese and contains 
hotspots corresponding to forest 
fires located within 2 km of a major 
archaeological site. Encoding this 
information request today in a typi-
cal interface of an EO data archive 
such as the Copernicus Open Access 
Hub (see https://scihub.copernicus.
eu) is impossible, because domain- 
specific concepts such as “forest fires” 
aren’t included in the archive meta-
data, and thus they can’t be used as 
search criteria. In Copernicus Open 
Access Hub and other similar web 
interfaces, search criteria include a 
hierarchical organization of avail 
able products (for example, high-res-
olution optical or synthetic aperture 
radar data), together with a temporal 
and geographic selection menu.

Knowledge discovery
and data mining

Image descriptor
extraction

Archiving

Cataloguing

Interlinking

Publishing

Quality
assurance

Storage/querying

Transformation
into RDF

Semantic
annotation

Search/browse/
explore/visualize

Ingestion

Processing



22	 ComputingEdge�  March 2018

Linked Data

90 www.computer.org/internet/ IEEE INTERNET COMPUTING

(see www.monetdb.org) for the stor-
age of raw image data and metadata; 
while we use the spatiotemporal RDF 
store system Strabon and the query 
language stSPARQL for storing/
querying semantic annotations and 
other types of linked, geospatial data 
possibly originating from transform-
ing EO products into RDF.

Often, relevant geospatial data 
are stored in geospatial relational 
databases (for example, PostGIS) 
and aren’t available as linked data. 
When these databases are frequently 
updated and/or are large, domain 
experts are discouraged from trans-
forming the data into RDF and then 
storing it in a triple store such as 
Strabon. For this reason, we devel-
oped the system Ontop-Spatial, 
which is a geospatial extension of 
the Ontology-Based Data Access 
system Ontop (see https://github. 
com/ConstantB/ontop-spatial). Ontop 
performs on-the-fly SPARQL-to-SQL 
translation on top of relational data-
bases using ontologies and mappings. 
Ontop-Spatial extends Ontop by 
enabling on-the-fly GeoSPARQL-to-
SQL translation on top of geospatial 
databases. Our experimental evalu-
ation showed that this approach is 
not only simpler for users (because 
it doesn’t require materialization of 
data), but is also more efficient in 
terms of query response time.

Quality Assurance
Before linked EO data are ready for 
publication, this step cleans the data 
by, for example, removing duplicates 
and so on. An important issue in this 
phase is entity resolution, which can 
also be viewed as part of the linking 
phase.

Publishing
This phase makes linked EO data pub-
licly available in the linked open data 
(LOD) cloud using well-known data 
repository technologies such as the 
Comprehensive Knowledge Archive 
Network (CKAN). In this way, others 

can discover and share this data, 
avoiding duplication of effort.

Interlinking
This is an important phase in the 
linked EO data lifecycle, because 
much of linked data’s value comes 
through connecting seemingly dispa-
rate data sources to each other. Until 
now, there hasn’t been much research 
or tools for interlinking linked EO 
data. If we consider other published 
linked datasets that aren’t from the 
EO domain, but have similar temporal 
and geospatial characteristics, the sit-
uation is the same. These datasets are 
typically linked only with owl:sameAs 
links and only to core datasets such 
as DBpedia or GeoNames. In addition, 
links are often created manually.

With our work, we advance the 
area of interlinking of linked open 
data by concentrating on the geo-
spatial, temporal, and measurement 
characteristics of EO data. Specifi-
cally, we address the problem of dis-
covering other types of geospatial or 
temporal semantic links. In linked EO 
datasets, it’s often useful to discover 
links involving topological relation-
ships, for example, A geo:sfContains 
F where A is the area covered by a 
remotely sensed multispectral image 
I, F is a geographical feature of inter-
est (field, lake, city, and so on), and 
geo:sfContains is a topological rela-
tionship from the topology vocabu-
lary extension of GeoSPARQL. The 
existence of this link might indicate 
that I is an appropriate image for 
studying certain properties of F.

We dealt with these issues by 
extending the well-known link dis-
covery tool Silk to discover precise 
geospatial and temporal links among 
spatiotemporal RDF data (see http://
silkframework.org).

Search/Browse/Explore/Visualize
This phase enables users to find, 
explore, browse, and visualize the 
data they need, and start developing 
interesting applications.

For this phase of the lifecycle, 
we developed the tool Sextant (see 
http: //sextant.di.uoa.gr). Sextant is 
a Web-GIS tool that produces maps 
by combining geospatial data from 
SPARQL endpoints and well-known 
GIS file formats. To achieve interop-
erability with other well-known GIS 
tools, Sextant is based on OGC stan-
dards for vector and raster data such 
as WKT, GML, KML, and GeoJSON. 
Sextant supports the creation of 
layers using the OpenGIS Web Map 
Service Interface Standard that’s a 
standard protocol for serving geore-
ferenced map images over the web, 
and the OGC Web Feature Service 
2.0 Interface Standard that defines 
interfaces for describing data manip-
ulation operations of geographic  
features.

Application Examples
The sidebar “A Semantic Catalogue 
for the TerraSAR-X Archive” show-
cases the lifecycle of big linked open 
EO data in a working application. 
In a related article, the lifecycle is 
presented with more details, and is 
applied to the case of wildfire moni-
toring using satellite images and 
related GIS data.1

More recently, the tools presented 
here were used in the Big Data Europe 
project (see www.big-data-europe.
eu) to develop a pilot application in 
the area of space and security, The 
pilot aims to enhance the process 
of detecting changes in land cover 
or land use from satellite images 
(for example, the construction or 
destruction of settlements) and cor-
relating them with the detection of 
geolocated events in news sites and 
social media. Interweaving remote 
sensing with social sensing consti-
tutes a key advancement in the space 
and security domain, where use-
ful information can be derived not 
only from EO products, but also from 
their combination with news arti-
cles and the user-generated content 
from social media. In the pilot, the 
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tool GeoTriples is used to transform 
geospatial data into RDF, Strabon is 
used to store linked geospatial data, 
and Sextant has been extended to 
function as a user-friendly graphical 
interface for the whole application.

B ig, linked, and open EO data can 
be managed using the technolo-

gies developed in the TELEIOS and 
Linked Open Earth Observation Data 
(LEO) projects. Our group’s work pre-
sented here concentrates more on 
linked open data and has only par-
tially addressed big data issues. The 
area of big data is where our current 
work concentrates. We’re reengineer-
ing GeoTriples, Strabon, and Ontop-
Spatial to take advantage of big data 
technologies Apache Hadoop and 
Spark and their recent extensions for 
big, geospatial data. All the tools pre-
sented here (Strabon, Ontop-Spatial,  
GeoTriples, Silk and Sextant) are 
available as open source.  
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(see www.monetdb.org) for the stor-
age of raw image data and metadata; 
while we use the spatiotemporal RDF 
store system Strabon and the query 
language stSPARQL for storing/
querying semantic annotations and 
other types of linked, geospatial data 
possibly originating from transform-
ing EO products into RDF.

Often, relevant geospatial data 
are stored in geospatial relational 
databases (for example, PostGIS) 
and aren’t available as linked data. 
When these databases are frequently 
updated and/or are large, domain 
experts are discouraged from trans-
forming the data into RDF and then 
storing it in a triple store such as 
Strabon. For this reason, we devel-
oped the system Ontop-Spatial, 
which is a geospatial extension of 
the Ontology-Based Data Access 
system Ontop (see https://github. 
com/ConstantB/ontop-spatial). Ontop 
performs on-the-fly SPARQL-to-SQL 
translation on top of relational data-
bases using ontologies and mappings. 
Ontop-Spatial extends Ontop by 
enabling on-the-fly GeoSPARQL-to-
SQL translation on top of geospatial 
databases. Our experimental evalu-
ation showed that this approach is 
not only simpler for users (because 
it doesn’t require materialization of 
data), but is also more efficient in 
terms of query response time.

Quality Assurance
Before linked EO data are ready for 
publication, this step cleans the data 
by, for example, removing duplicates 
and so on. An important issue in this 
phase is entity resolution, which can 
also be viewed as part of the linking 
phase.

Publishing
This phase makes linked EO data pub-
licly available in the linked open data 
(LOD) cloud using well-known data 
repository technologies such as the 
Comprehensive Knowledge Archive 
Network (CKAN). In this way, others 

can discover and share this data, 
avoiding duplication of effort.

Interlinking
This is an important phase in the 
linked EO data lifecycle, because 
much of linked data’s value comes 
through connecting seemingly dispa-
rate data sources to each other. Until 
now, there hasn’t been much research 
or tools for interlinking linked EO 
data. If we consider other published 
linked datasets that aren’t from the 
EO domain, but have similar temporal 
and geospatial characteristics, the sit-
uation is the same. These datasets are 
typically linked only with owl:sameAs 
links and only to core datasets such 
as DBpedia or GeoNames. In addition, 
links are often created manually.

With our work, we advance the 
area of interlinking of linked open 
data by concentrating on the geo-
spatial, temporal, and measurement 
characteristics of EO data. Specifi-
cally, we address the problem of dis-
covering other types of geospatial or 
temporal semantic links. In linked EO 
datasets, it’s often useful to discover 
links involving topological relation-
ships, for example, A geo:sfContains 
F where A is the area covered by a 
remotely sensed multispectral image 
I, F is a geographical feature of inter-
est (field, lake, city, and so on), and 
geo:sfContains is a topological rela-
tionship from the topology vocabu-
lary extension of GeoSPARQL. The 
existence of this link might indicate 
that I is an appropriate image for 
studying certain properties of F.

We dealt with these issues by 
extending the well-known link dis-
covery tool Silk to discover precise 
geospatial and temporal links among 
spatiotemporal RDF data (see http://
silkframework.org).

Search/Browse/Explore/Visualize
This phase enables users to find, 
explore, browse, and visualize the 
data they need, and start developing 
interesting applications.

For this phase of the lifecycle, 
we developed the tool Sextant (see 
http: //sextant.di.uoa.gr). Sextant is 
a Web-GIS tool that produces maps 
by combining geospatial data from 
SPARQL endpoints and well-known 
GIS file formats. To achieve interop-
erability with other well-known GIS 
tools, Sextant is based on OGC stan-
dards for vector and raster data such 
as WKT, GML, KML, and GeoJSON. 
Sextant supports the creation of 
layers using the OpenGIS Web Map 
Service Interface Standard that’s a 
standard protocol for serving geore-
ferenced map images over the web, 
and the OGC Web Feature Service 
2.0 Interface Standard that defines 
interfaces for describing data manip-
ulation operations of geographic  
features.

Application Examples
The sidebar “A Semantic Catalogue 
for the TerraSAR-X Archive” show-
cases the lifecycle of big linked open 
EO data in a working application. 
In a related article, the lifecycle is 
presented with more details, and is 
applied to the case of wildfire moni-
toring using satellite images and 
related GIS data.1

More recently, the tools presented 
here were used in the Big Data Europe 
project (see www.big-data-europe.
eu) to develop a pilot application in 
the area of space and security, The 
pilot aims to enhance the process 
of detecting changes in land cover 
or land use from satellite images 
(for example, the construction or 
destruction of settlements) and cor-
relating them with the detection of 
geolocated events in news sites and 
social media. Interweaving remote 
sensing with social sensing consti-
tutes a key advancement in the space 
and security domain, where use-
ful information can be derived not 
only from EO products, but also from 
their combination with news arti-
cles and the user-generated content 
from social media. In the pilot, the 

This article originally appeared in 
IEEE Internet Computing, vol. 
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ata analytics has become not only an essential part of 
day-to-day decision making, but also reinforces long-
term strategic decisions. Whether it is real-time fraud 
detection, resource management, tracking and preven-

tion of disease outbreak, natural disaster management or intel-
ligent traffic management, the extraction and exploitation of 
insightful information from unparalleled quantities of data (Big-
Data) is now a fundamental part of all decision making processes. 
Success in making smart decisions by analyzing BigData is pos-
sible due to the availability of improved analytical capabilities, 
increased access to different data sources, and cheaper and im-
proved computing power in the form of cloud computing. How-
ever, BigData analysis is far more complicated than the perception 
created by the recent publicity. For example, one of the myths is 
that BigData analysis is driven purely by the innovation of new 
data mining and machine learning algorithms. 

While innovation of new data mining and ma-
chine learning algorithms is critical, this is only one 
aspect of producing BigData analysis solutions. Just 
like many other software solutions, BigData analysis 
solutions are not monolithic pieces of software that 
are developed specifically for every application. In-
stead, they often combine and reuse existing trusted 
software components that perform necessary data 
analysis steps. Furthermore, in order to deal with 
the large variety, volume and velocity of BigData, 
they need to take advantage of the elasticity of cloud 
and edge datacentrer computation and storage re-
sources as needed to meet the requirements of their 
owners. More specifically, many BigData analysis 
solutions today are organised as data-driven work-
flows that combine existing and new data analysis 

steps (which we often refer to as workflow activities). 
The flow of information between the analysis 

activities in a BigData analysis workflow is dynam-
ic, meaning it is either determined by the data pro-
duced in earlier steps in the workflow (we refer to 
these as data flow dependencies) or by the structure 
of the BigData analysis solution that orchestrates 
the data analysis activities in the workflow (we re-
fer to such structural orchestrations as control flow 
dependencies). Another dynamic aspect of BigData 
analytics workflows is mapping data analysis steps/
activities to the variety of computing and storage 
resources of the cloud and edge data center(s) with 
changing performance. Dealing with these dynamic 
aspects become more challenging in BigData analy-
sis applications which need to support owner’s de-

Orchestrating BigData 
Analysis Workflows
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cision making requirements (specified in form of 
Service Level Agreements (SLA)) in real-time. Any 
delay in meeting their requirements can cause loss 
of life (such as in disaster prediction and response 
situations), money (for example, in banking security 
and fraud situations), or the environment (for in-
stance, in resource exploration). These are some of 
the real penalties for failing to meet the real-time 
data analysis requirements in such decision support 
applications. Computing infrastructures supported 
by cloud and edge resources can help in solving such 
problems to some degree by providing elastic and 
on-demand computing infrastructure. They can also 
create additional challenges due to the heteroge-
neous nature of different cloud and edge resources 
and the dynamically changing performance of their 
computing infrastructure. 

In this Blue Skies installment, we point out the 
requirement of orchestration systems that can assist 
in management and execution of such BigData analy-
sis workflows on a cloud and edge infrastructure. We 
also discuss current state of art and point out open 
issues in a later section before concluding the article. 

An example BigData analysis Workflow 
As an example of a BigData analysis workflow, con-
sider Real-Time Flood Modelling (RTFM) for de-
tecting and predicting a flooding event by analyzing 
tweets and sensor data, as depicted in Figure 1. The 
RTFM workflow is triggered from long-range fore-
casting (for example from UK Met Office DataPoint) 
and radar scans at multiple scales are initiated and 
passed to statistical processing models, updating 
probability based forecasts.  
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cloud datacenter and/or Edge resources. The workflow orchestration is a cross-cutting issue as it spans across all the layers 

(analysis activities, programming framework, and datacenters).
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ata analytics has become not only an essential part of 
day-to-day decision making, but also reinforces long-
term strategic decisions. Whether it is real-time fraud 
detection, resource management, tracking and preven-

tion of disease outbreak, natural disaster management or intel-
ligent traffic management, the extraction and exploitation of 
insightful information from unparalleled quantities of data (Big-
Data) is now a fundamental part of all decision making processes. 
Success in making smart decisions by analyzing BigData is pos-
sible due to the availability of improved analytical capabilities, 
increased access to different data sources, and cheaper and im-
proved computing power in the form of cloud computing. How-
ever, BigData analysis is far more complicated than the perception 
created by the recent publicity. For example, one of the myths is 
that BigData analysis is driven purely by the innovation of new 
data mining and machine learning algorithms. 

While innovation of new data mining and ma-
chine learning algorithms is critical, this is only one 
aspect of producing BigData analysis solutions. Just 
like many other software solutions, BigData analysis 
solutions are not monolithic pieces of software that 
are developed specifically for every application. In-
stead, they often combine and reuse existing trusted 
software components that perform necessary data 
analysis steps. Furthermore, in order to deal with 
the large variety, volume and velocity of BigData, 
they need to take advantage of the elasticity of cloud 
and edge datacentrer computation and storage re-
sources as needed to meet the requirements of their 
owners. More specifically, many BigData analysis 
solutions today are organised as data-driven work-
flows that combine existing and new data analysis 

steps (which we often refer to as workflow activities). 
The flow of information between the analysis 

activities in a BigData analysis workflow is dynam-
ic, meaning it is either determined by the data pro-
duced in earlier steps in the workflow (we refer to 
these as data flow dependencies) or by the structure 
of the BigData analysis solution that orchestrates 
the data analysis activities in the workflow (we re-
fer to such structural orchestrations as control flow 
dependencies). Another dynamic aspect of BigData 
analytics workflows is mapping data analysis steps/
activities to the variety of computing and storage 
resources of the cloud and edge data center(s) with 
changing performance. Dealing with these dynamic 
aspects become more challenging in BigData analy-
sis applications which need to support owner’s de-
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As an event progresses, streaming data sources 
(such as Twitter and ancillary data comparable to traf-
fic flows) can be processed to improve modelling fore-
casts of a rainfall event’s path and intensity.  Flood 
modelling ensembles must then be triggered and 
matched to known observations (for example from 
CCTV analysis or rain gauges) in a dynamic system.  
Flood model outputs are only part of the modelling 
process providing input into risk and impact mod-
els.  All of this is happening within a fluid, dynamic, 
evolving ecosystem where models are refined, re-run 
or abandoned as new information becomes available.  
In other words, the workflow includes several top-level 
data analytics activities. These include long-range 
forecasting, sensor data aggregation, Tweet analysis, 
flood modelling, CCTV image processing, and so on. 
Moreover, the execution of these activities need to be 
seamlessly coordinated such that real-time decision-
making performance objectives (for instance, mini-
mise event detection delay) are constantly achieved 
under various types of uncertainties (for example, 
changing data volume and velocity). Hence, the key to 
seamless execution of this new class of workflows is 
the issue of resource and data orchestration, which 
is quite complex due to complex BigData flow pat-
tern and the plethora of BigData programming 
frameworks, computational models, and infrastruc-
ture types (such as cloud datacenters and edge re-
sources) involved: 

1. The latency sensitive CCTV image processing 
activity can benefit by performing “edge analyt-
ics” on the video frames by exploiting the on-
board processor (edge resources) supported by 
current generation of CCTV cameras (such as 
Waggle platform). Using edge analytics tech-
niques has multiple benefits: (i) reduced network 
congestion achieved by filtering non-relevant 
events at the edge; and (iii) reduction in event 
detection latency (for example, detecting dan-
gerous water flow level by analysing real-time im-
ages on-board processors available within CCTV 
cameras) as sensors no longer need to send data 
to far off cloud datacenters.

2. The flood modelling activity, which does risk 
analysis by executing a complex hydrodynamic 
computational model in a message passing in-
terface data programming framework (OpenM-

PI), should be mapped to the cloud resources, 
because it is demanding of both storage (due to 
large historical rainfall records and ensemble 
city models) and computation (for simulating 
floods along large river reaches).

3. Workflow activities are inter-dependent and 
changes in execution characteristics of one ac-
tivity (at run-time) will influence others. For 
example, the step handling the flood modelling 
is dependent on input (on rain and water level 
thresholds) from the sensor aggregation activity 
(analysing data from diverse real-time sensors).

4. Tweet analysis activity requires distinct com-
putational models for anomaly detection (flood 
disasters are anomalous tweets), clustering to 
combine all the information from different 
tweets reporting flooded properties in a specific 
location, and classification to identify major 
events such as a flood. Moreover, these compu-
tational models require either a batch processing 
or stream processing data programming frame-
work, depending on data characteristics (histori-
cal vs. real-time tweets).  The activity needs to 
utilise specialised main memory NoSQL BigData 
framework and solid state storage resources avail-
able in the cloud datacenter to deal with Twitter’s 
data velocity and volume. 

To handle these complexities, the underlying 
Orchestration1 platform and techniques should be 
able to dynamically manage a workflow of activities 
(initially composed based on Domain expert inputs) 
on the resources available in the cloud datacenter 
(for example, Amazon Web Services) and on the 
edge (such as the Waggle platform) driven by pro-
cessing needs (for instance latency sensitive vs. 
non-latency sensitive), performance objectives (for 
example, minimise sensor stream processing latency 
vs. minimise flood model execution delay) and type 
of analytic tasks (CCTV image processing vs. flood 
modelling) relevant to activities. Current BigData 
workflow orchestration platforms (such as, Apache 
YARN, Apache Mesos, AWS Lambda, AWS IoT, 
Google Cloud Dataflow, Google TensorFlow) and re-
search assume either monolithic and purpose-built 
data analysis solutions that do not need to meet 
real-time decision support requirements (that is, 
no workflows, no dynamic orchestration of existing 
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and new data analysis activities, no implementation 
that can exploit both cloud datacenter and edge re-
sources, and no dynamic tuning of such implemen-
tations to meet the users’ real-time decision making 
requirements), or considers only solutions consist-
ing of data analysis workflows that have predictable 
performance (that is existing orchestration research 
ignores the complexities of resource and BigData 
management across cloud datacenter and edge re-
sources for data analytics workflows and does not 
deal with meeting real-time performance objectives 
as determined by owner’s SLA requirements).  

Last but not the least, the existing workflow 
composition frameworks such as OASIS TOSCA,2 
was developed for web services based workflows and 
allows workflow modelling and deployment speci-
fication up to two levels, software components and 
cloud services (that is, infrastructure). They do not 
allow composition of workflows at three different 
layers (see Figure 1) first at analytical activities, then 
at programming framework, and finally at datacen-
ter layer, nor  do they allow integration of dynamic 
QoS requirements of decision makers. 

Hence, the key research challenges that we 
perceive are the development of orchestration plat-
forms and techniques that can aid in dynamically 
composing workflows through an analytical work-
flow composition framework and developing a robust 
run-time algorithms that can automatically manage 
the allocation of the datacenter and edge resources 
to the analytic activities in response to unexpected 
changes in data volume, data velocity or other infra-
structure level issues (for example, congestion, avail-
ability, load-balancing, or anomalies, and so on.).

Understanding the BigData workflow 
Orchestration Challeneges 
To support such complicated and dynamically con-
figurable BigData workflow ecosystems, we need 
a new orchestration platforms and techniques for 
managing three layers: (i) sequence of data analy-
sis activities (the workflow) that needs to deal with 
real-time and historical datasets produced by dif-
ferent sources; (ii) heterogeneous BigData pro-
gramming frameworks; and (iii) the heterogeneous 
cloud and/or edge resources. The BigData workflow 
orchestration is a multi-level resource management 
and coordination process that spans across work-

flow activities, BigData programming frameworks 
and cloud/edge resources. It includes a range of 
programming operations, from workflow compo-
sition, mapping of workflow activities to BigData 
programming frameworks and cloud/edge resourc-
es, to monitoring their end-to-end run-time QoS 
and SLA statistics (for example, event detection 
delay, alert delay, load, availability, throughput, 
utilization, latency, etc.) for ensuring consistency 
and adaptive management. Briefly stated, major 
research challenges involved with developing or-
chestration platforms and techniques for BigData 
workflow applications include: 

Workflow composition: In a BigData analysis work-
flow (such as RTFM in Figure 1), workloads (data 
volume and velocity) pertaining to different activi-
ties are dependent on each other and changes in 
execution and data flow of one activity will influ-
ence others. For example, the flood modelling ac-
tivity is dependent on the real-time input on rain 
and water level thresholds from the sensor data 
aggregation and CCTV image processing activi-
ties. Hence, the hard challenges exist in developing 
workflow composition framework that can guide 
the domain experts (for example, flood modeller in 
a city council office) in specifying, understanding 
and managing the whole pipeline of activities, data 
and control flow inter-dependencies and their QoS 
and/or SLA objectives and measures.  For example, 
suppose we have two owners and/or decision mak-
ers for the workflow in Figure 1. The first owner 
is from a national disaster centre who is interested 
in information about any infrastructure damage, 
while another owner from the emergency man-
agement services (EMS) may be interested in in-
formation about human fatalities and injuries. In 
this case, the workflow in Figure 1 will dynamically 
need to compose different clustering activities (in-
frastructure damages vs human fatalities) that will 
both utilise the data flow from the anomaly detec-
tion activity. Hence, based on decision maker goal 
workflow composition pattern changes. Moreover, 
the problem is further complicated by the fact that 
type and mix of workflow activities, data and con-
trol flow inter-dependencies and their QoS and/or 
SLA measures varies significantly across different 
application domains (such as, real-time air pollution 
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As an event progresses, streaming data sources 
(such as Twitter and ancillary data comparable to traf-
fic flows) can be processed to improve modelling fore-
casts of a rainfall event’s path and intensity.  Flood 
modelling ensembles must then be triggered and 
matched to known observations (for example from 
CCTV analysis or rain gauges) in a dynamic system.  
Flood model outputs are only part of the modelling 
process providing input into risk and impact mod-
els.  All of this is happening within a fluid, dynamic, 
evolving ecosystem where models are refined, re-run 
or abandoned as new information becomes available.  
In other words, the workflow includes several top-level 
data analytics activities. These include long-range 
forecasting, sensor data aggregation, Tweet analysis, 
flood modelling, CCTV image processing, and so on. 
Moreover, the execution of these activities need to be 
seamlessly coordinated such that real-time decision-
making performance objectives (for instance, mini-
mise event detection delay) are constantly achieved 
under various types of uncertainties (for example, 
changing data volume and velocity). Hence, the key to 
seamless execution of this new class of workflows is 
the issue of resource and data orchestration, which 
is quite complex due to complex BigData flow pat-
tern and the plethora of BigData programming 
frameworks, computational models, and infrastruc-
ture types (such as cloud datacenters and edge re-
sources) involved: 

1. The latency sensitive CCTV image processing 
activity can benefit by performing “edge analyt-
ics” on the video frames by exploiting the on-
board processor (edge resources) supported by 
current generation of CCTV cameras (such as 
Waggle platform). Using edge analytics tech-
niques has multiple benefits: (i) reduced network 
congestion achieved by filtering non-relevant 
events at the edge; and (iii) reduction in event 
detection latency (for example, detecting dan-
gerous water flow level by analysing real-time im-
ages on-board processors available within CCTV 
cameras) as sensors no longer need to send data 
to far off cloud datacenters.

2. The flood modelling activity, which does risk 
analysis by executing a complex hydrodynamic 
computational model in a message passing in-
terface data programming framework (OpenM-

PI), should be mapped to the cloud resources, 
because it is demanding of both storage (due to 
large historical rainfall records and ensemble 
city models) and computation (for simulating 
floods along large river reaches).

3. Workflow activities are inter-dependent and 
changes in execution characteristics of one ac-
tivity (at run-time) will influence others. For 
example, the step handling the flood modelling 
is dependent on input (on rain and water level 
thresholds) from the sensor aggregation activity 
(analysing data from diverse real-time sensors).

4. Tweet analysis activity requires distinct com-
putational models for anomaly detection (flood 
disasters are anomalous tweets), clustering to 
combine all the information from different 
tweets reporting flooded properties in a specific 
location, and classification to identify major 
events such as a flood. Moreover, these compu-
tational models require either a batch processing 
or stream processing data programming frame-
work, depending on data characteristics (histori-
cal vs. real-time tweets).  The activity needs to 
utilise specialised main memory NoSQL BigData 
framework and solid state storage resources avail-
able in the cloud datacenter to deal with Twitter’s 
data velocity and volume. 

To handle these complexities, the underlying 
Orchestration1 platform and techniques should be 
able to dynamically manage a workflow of activities 
(initially composed based on Domain expert inputs) 
on the resources available in the cloud datacenter 
(for example, Amazon Web Services) and on the 
edge (such as the Waggle platform) driven by pro-
cessing needs (for instance latency sensitive vs. 
non-latency sensitive), performance objectives (for 
example, minimise sensor stream processing latency 
vs. minimise flood model execution delay) and type 
of analytic tasks (CCTV image processing vs. flood 
modelling) relevant to activities. Current BigData 
workflow orchestration platforms (such as, Apache 
YARN, Apache Mesos, AWS Lambda, AWS IoT, 
Google Cloud Dataflow, Google TensorFlow) and re-
search assume either monolithic and purpose-built 
data analysis solutions that do not need to meet 
real-time decision support requirements (that is, 
no workflows, no dynamic orchestration of existing 
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monitoring, real-time traffic congestion monitoring, 
remote patient monitoring, etc.). 

Workflow mapping: Mapping BigData workflow 
(graph of data analysis activities) to BigData pro-
gramming frameworks and cloud/edge resources 
demands selecting bespoke configurations from 
abundance of possibilities. Therefore, the mapping 
process for has to take into account diverse configu-
ration selection decision. For example, 

• BigData programming frameworks: Select opti-
mal configurations for each framework (for ex-
ample, in context of stream processing engine 
such as Apache Storm one needs to determine 
optimal mix and number of spouts, bolts, and 
worker instances to minimize data processing 
latency of stream processing activities) 

• Cloud resources: Consider configurations such 
as datacenter location, pricing policy, server 
hardware features, virtualization features, up-
stream/downstream network latency, a 

• Edge resources: Consider configurations such 
as Edge device (Raspberry Pi 3, UDOO board, 
esp8266) hardware features (for example, CPU 
power, main memory size, storage size) , up-
stream/downstream network latency, supported 
virtualization features, and so on. Above diverse 
configuration space coupled with conflicting 
(trade-off) QoS and SLA requirements leads to 
exponential growth of potential search space. At 
the mapping stage, orchestration platform needs 
to utilise scheduling resource allocation tech-
niques that can allow selection of optimal plat-
form (BigData frameworks) and infrastructure 
(cloud or edge) configurations for given different 
workflow components. These techniques also 
need to consider QoS or SLA requirements such 
as deployment costs, response time, data process-
ing speed, security level specified by decision 
makers depending on the application context. 
These constraints make the mapping problem of 
each workflow activity to BigData programming 
framework and datacenter layers NP-Complete. 
The mapping problem can be easily deducted 
toto a 0-1 Knapsack or bin-packing problem de-
pending on the constraints given by the decision 
maker and/or owner. 

Workflow QoS monitoring: After the deployment 
of BigData workflow applications it is important to 
monitor the run-time QoS and data flow across each 
activity in the graph, so that administrators and de-
velopers can track how application is performing. 
Much of the difficulty in QoS monitoring from the 
inherent scale and complexity of BigData workflow 
application. The problem is complicated because 
QoS metrics for workflow activities, BigData frame-
works, and cloud/edge resources, are not necessarily 
the same. For example, key QoS metrics are i) event 
detection and decision making delay for sensor data 
analysis activity; ii) tweet classification delay and 
accuracy for Tweet Analysis activity;  iii) through-
put and latency in distributed data ingestion frame-
works (Apache Kafka), iii) response time in batch 
processing frameworks (Apache Hadoop), (iv) read/
write latency and throughput for distributed file sys-
tem frameworks (for instance, Hadoop Distributed 
File system ); v) server utilization, throughput, and 
energy-efficiency for cloud resources; and (vi) net-
work stability, throughput optimality, routing delays, 
fairness in resource sharing, available bandwidth, 
etc. for the Edge resources. 

Therefore it is not clear how i) these QoS met-
rics could be defined and formulated coherently 
across workflow activities, BigData programming 
frameworks, and/or cloud/edge resources and  ii) the 
various QoS metrics should be combined to give a 
holistic view of data analysis flows. Moreover, to en-
sure workflow-level performance SLAs we must also 
monitor workload input metrics (data volume, data 
velocity, data variety and sources, types and mix of 
analytics queries) across diverse workflow activities.

Workflow dynamic reconfiguration: The dynamic 
reconfiguration of BigData workflows in the com-
plex  computing infrastructure (Cloud + Edge + 
multiple BigData frameworks) is complex research 
problem due to following run-time QoS prediction 
modelling uncertainties: 1) it is difficult to estimate 
activity-specific data flow behaviours in terms of 
data volume to be analysed, data velocity, data pro-
cessing time distributions, and I/O system behav-
iour and 2) without knowing the run-time changes 
to the flow  it is difficult to make decisions about 
the configuration of BigData programming frame-
works, cloud  and edge resources to be orchestrated 
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so that QoS targets across activities and workflow 
as whole are constantly achieved; 3) it is diffi-
cult to detect causes of QoS anomalies across the 
complex computing infrastructure due to hetero-
geneous data flow and QoS measures across mul-
tiple workflow activities and the availability, load, 
and throughput of cloud and/or edge resources can 
vary unpredictably due to failure or congestion of 
network links.  For example, in Figure 1, velocity 
of flooding related tweets can increase or decrease 
based on extent severity of the monsoon. Similarly, 
during rain gauge sensors can be instrumented to 
transmit information at much higher velocity and 
volume during monsoon.

Current State of the art
In this section, we will discuss the cur-
rent state of the art with respect to the 
four orchestration challenges in terms 
of workflow composition, mapping, 
QoS monitoring, and dynamic recon-
figurationto understand to what degree 
they are able to meet the new end-to-
end QoS and SLA requirements of Big-
Data workflow applications.

Workflow composition: Existing orchestation plat-
form such as Apache Oozie and Linkedin Azkaban 
supports composition of workflows, which can in-
clude multiple batch processing activities hence, 
does not suit the composition needs of complex 
workflows such as RTFM (see Figure 1) and others. 
On the other hand, platforms such as Apache YARN, 
Apache Mesos, Amazon IoT and Google Cloud 
Dataflow can support script-based composition of 
heterogeneous analytic activities on cloud datacen-
ter resources cannot deal with Edge resources. An-
other example of applying analytical techniques for 
composing BigData applications is the performance 
analysis of QoS models based on queuing networks 
and stochastic Petri nets as mentioned by Ardagna 
and colleagues.3 Other works aimed at analysing the 
Map Reduce paradigm using stochastic Petri nets as 
well as process algebras and Markov chains are.4,5 
Development like these tend to be greatly focused 
on a single programming paradigm, in this case Map 
Reduce (batch processing), and are therefore cannot 
be easily extended to multiple BigData programming 

frameworks and heterogeneous computing environ-
ments (Cloud + Edge). Workflow modelling and de-
ployment specification frameworks and languages 
such as TOSCA,2 OPENSTACK Heat, AWS Cloud 
Formation template and WS-CDL6 can assist in web 
services based workflows for software components 
and Cloud service. However, BigData workflows are 
quite complex as each analytical activity itself is a 
workflow in itself. Moreover, to support decision 
making process, workflow specification should inte-
grate contextual information, which can be dynami-
cally edited by decision maker. 

Workflow mapping: Existing BigData workflow or-
chestration platforms (Apache YARN, Mesos, and 

Apache Spark) are designed for homogeneous clus-
ters of cloud resources (agnostic to Edge resources). 
These orchestrators expect workflow administrators 
to determine the number and configuration of allo-
cated cloud resource types and provide appropriate 
software-level configuration parameters for each Big-
Data programing frameworks to which one or more 
analytic activities are mapped to. Branded price 
calculators are available from public cloud provid-
ers (Amazon, Azure) and academic projects (Clou-
drado), which allow comparison of cloud resource 
leasing costs. However, these calculators cannot rec-
ommend or compare configurations across BigData 
processing frameworks driven diverse QoS measures 
across workflow activities. In a narrow domain, re-
cent efforts7-10 have attempted to automate the con-
figuration selection of Hadoop frameworks (batch 
processing) over heterogeneous cloud-based virtual-
ized hardware resources. Multiple approaches11 have 
applied optimization  and performance measurement 
techniques for mapping web applications to cloud 
by selecting optimal virtual machine configuration 

After the deployment of BigData 
workflow applications it is important to 
monitor the run-time QoS and data flow 

across each activity in the graph.
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monitoring, real-time traffic congestion monitoring, 
remote patient monitoring, etc.). 

Workflow mapping: Mapping BigData workflow 
(graph of data analysis activities) to BigData pro-
gramming frameworks and cloud/edge resources 
demands selecting bespoke configurations from 
abundance of possibilities. Therefore, the mapping 
process for has to take into account diverse configu-
ration selection decision. For example, 

• BigData programming frameworks: Select opti-
mal configurations for each framework (for ex-
ample, in context of stream processing engine 
such as Apache Storm one needs to determine 
optimal mix and number of spouts, bolts, and 
worker instances to minimize data processing 
latency of stream processing activities) 

• Cloud resources: Consider configurations such 
as datacenter location, pricing policy, server 
hardware features, virtualization features, up-
stream/downstream network latency, a 

• Edge resources: Consider configurations such 
as Edge device (Raspberry Pi 3, UDOO board, 
esp8266) hardware features (for example, CPU 
power, main memory size, storage size) , up-
stream/downstream network latency, supported 
virtualization features, and so on. Above diverse 
configuration space coupled with conflicting 
(trade-off) QoS and SLA requirements leads to 
exponential growth of potential search space. At 
the mapping stage, orchestration platform needs 
to utilise scheduling resource allocation tech-
niques that can allow selection of optimal plat-
form (BigData frameworks) and infrastructure 
(cloud or edge) configurations for given different 
workflow components. These techniques also 
need to consider QoS or SLA requirements such 
as deployment costs, response time, data process-
ing speed, security level specified by decision 
makers depending on the application context. 
These constraints make the mapping problem of 
each workflow activity to BigData programming 
framework and datacenter layers NP-Complete. 
The mapping problem can be easily deducted 
toto a 0-1 Knapsack or bin-packing problem de-
pending on the constraints given by the decision 
maker and/or owner. 

Workflow QoS monitoring: After the deployment 
of BigData workflow applications it is important to 
monitor the run-time QoS and data flow across each 
activity in the graph, so that administrators and de-
velopers can track how application is performing. 
Much of the difficulty in QoS monitoring from the 
inherent scale and complexity of BigData workflow 
application. The problem is complicated because 
QoS metrics for workflow activities, BigData frame-
works, and cloud/edge resources, are not necessarily 
the same. For example, key QoS metrics are i) event 
detection and decision making delay for sensor data 
analysis activity; ii) tweet classification delay and 
accuracy for Tweet Analysis activity;  iii) through-
put and latency in distributed data ingestion frame-
works (Apache Kafka), iii) response time in batch 
processing frameworks (Apache Hadoop), (iv) read/
write latency and throughput for distributed file sys-
tem frameworks (for instance, Hadoop Distributed 
File system ); v) server utilization, throughput, and 
energy-efficiency for cloud resources; and (vi) net-
work stability, throughput optimality, routing delays, 
fairness in resource sharing, available bandwidth, 
etc. for the Edge resources. 

Therefore it is not clear how i) these QoS met-
rics could be defined and formulated coherently 
across workflow activities, BigData programming 
frameworks, and/or cloud/edge resources and  ii) the 
various QoS metrics should be combined to give a 
holistic view of data analysis flows. Moreover, to en-
sure workflow-level performance SLAs we must also 
monitor workload input metrics (data volume, data 
velocity, data variety and sources, types and mix of 
analytics queries) across diverse workflow activities.

Workflow dynamic reconfiguration: The dynamic 
reconfiguration of BigData workflows in the com-
plex  computing infrastructure (Cloud + Edge + 
multiple BigData frameworks) is complex research 
problem due to following run-time QoS prediction 
modelling uncertainties: 1) it is difficult to estimate 
activity-specific data flow behaviours in terms of 
data volume to be analysed, data velocity, data pro-
cessing time distributions, and I/O system behav-
iour and 2) without knowing the run-time changes 
to the flow  it is difficult to make decisions about 
the configuration of BigData programming frame-
works, cloud  and edge resources to be orchestrated 
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(CPU Speed, RAM Size, cloud location, etc.) based 
on diverse QoS requirements (throughput, availability, 
cost, reputation, etc.). However, the configuration 
space, QoS, and SLA requirements for mapping 
workflow activities to BigData programming frame-
works and cloud/edge resources is fundamentally 
different from selecting virtual machine configura-
tion for web applications.

Workflow QoS monitoring: BigData Cluster-wide 
monitoring frameworks (Nagios, Ganglia, Apache 
Chukwa, Sematex, DMon, SequenceIQ) provide 
information about QoS metrics (cluster utilization, 
CPU utilization, memory utilization and nature of 
application: disk-, network-, or CPU-bound) of vir-
tualized resources that may belong to public or pri-
vate cloud. These monitoring frameworks12 do not 
support workflow activity-level QoS metrics and/
or SLAs, which is essential for BigData workflows 
where change in processing capability of one ana-
lytical activity can affect all the activities in the 
downstream.  In the public cloud computing space, 
monitoring frameworks (Amazon CloudWatch used 
by Amazon Elastic Map Reduce) typically monitor 
cloud (agnostic to Edge) VM resource as a black 
box, and so cannot monitor activity-level QoS met-
rics and/or data flow. Techniques presented by Al-
hamazani and colleagues13 and frameworks such as 
Monitis14 and Nimsoft15 can monitor QoS metrics 
of web applications hosted on the cloud. Complex 
event processing and content-based routing applica-
tions hosted on clouds. In summary, none of the ex-
isting QoS monitoring frameworks and techniques 
can (i) monitor and integrate data (workload input 
and performance metrics, disruptive events, SLAs 
at the platform level, SLAs at the infrastructure) 
across each activity of the workflow running on mul-
tiple BigData processing frameworks and underly-
ing hardware (Cloud + Edge) resources or (ii) detect 
root causes of workflow activity-level SLA violations 
and failures across the multiple BigData processing 
frameworks and hardware resources based on data 
flow and QoS metrics logs. 

Workflow dynamic reconfiguration: Current gen-
eration BigData orchestration platforms (YARN, 
Mesos, Amazon EMR) offer no guarantees about 
handling failures at workflow-level and/or resource 

level, nor can they automatically scale or de-scale 
the platform in response to changes in data volume, 
velocity or variety, or query types, which can affect 
the resource requirements of activities within a Big-
Data workflow. There are very few current research 
works that are trying to address the automatic scal-
ing of single BigData processing framework, batch 
processing16 and stream processing.17 Database 
community have mostly worked on optimising the 
query execution performance considering both in-
terleaved18,19 and parallel executions20,21 via both 
black-box approaches such online and offline ma-
chine learning and white-box approaches for ana-
lytical modelling of SQL and/or NoSQL BigData 
processing frameworks. Existing orchestrators in 
cloud community that can do online or dynamic 
reconfiguration have been built specifically for in-
teractive multi-tier web applications.4,5 However, 
most of the techniques utilised by them cannot be 
directly applied to predict data flow metrics (data 
volume, data velocity, stream operator processing 
time distributions, query types) or workflow activ-
ity-specific QoS metrics (batch processing response 
time, stream processing latency, data ingestion la-
tency, Tweet analysis accuracy) as BigData work-
flows are fundamentally different from multi-tier 
web applications. To make dynamic reconfiguration 
in the execution of BigData workflow applications, 
their run-time resource requirements and data flow 
changes needs to be predicted including any pos-
sible failure occurrence. These requirements need 
to be computed based on inter and intra dataflow 
of the workflows but also on the user’s contextual 
requirements.

s the concluding remark, current BigData 
analysis tools and workflow management or-

chestrators have to evolve to great degree before they 
can support the requirements of domain-specific 
BigData workflow applications. Most of these work-
flows applications are not just monolithic solution 
but a complex interaction of several BigData pro-
gramming frameworks, multiple data sources, and 
heterogeneous Cloud/Edge resources. Each of these 
applications need to orchestrated to support real 
time requirements of decision makers expressed in 
terms of Service Level Agreements.  
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No prior work has developed workload and re-
source performance models to enable contention-
free scaling and de-scaling of BigData processing 
frameworks and hardware (Cloud+Edge) resources. 
In other words, there is no support for new genera-
tionBigData workflows’ requirements particularly 
for time-sensitive ones (that is, no workflows, no dy-
namic orchestration of existing and new data analy-
sis steps, no (Cloud+Edge)-based implementation, 
and no dynamic tuning of such implementations to 
meet the  owner’s decision making requirements), or 
considers only solutions consisting of data analysis 
workflows that have predictable performance, which 
is assumed to be sufficient for its  owners (that is, ex-
isting research ignores the complexities of cloud and 
edge resource management for data analysis work-
flows and does not deal with meeting performance 
targets as determined by owner’s requirements). 

Therefore, it is essential that future research 
consider (1) BigData workflow analysis solutions 
based on data-driven workflows, (2) mapping such 
workflows to BigData programming frameworks and 
Cloud/Edge resources, and (3) manage such map-
pings and resources to meet specific owner’s require-
ments (or contexts). More specifically, the research 
community must aim to design new frameworks and 
novel platforms and techniques that enable deci-
sion making by allowing the orchestration of their 
execution in a seamless manner allowing dynamic 
resource reconfiguration at runtime.  
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(CPU Speed, RAM Size, cloud location, etc.) based 
on diverse QoS requirements (throughput, availability, 
cost, reputation, etc.). However, the configuration 
space, QoS, and SLA requirements for mapping 
workflow activities to BigData programming frame-
works and cloud/edge resources is fundamentally 
different from selecting virtual machine configura-
tion for web applications.

Workflow QoS monitoring: BigData Cluster-wide 
monitoring frameworks (Nagios, Ganglia, Apache 
Chukwa, Sematex, DMon, SequenceIQ) provide 
information about QoS metrics (cluster utilization, 
CPU utilization, memory utilization and nature of 
application: disk-, network-, or CPU-bound) of vir-
tualized resources that may belong to public or pri-
vate cloud. These monitoring frameworks12 do not 
support workflow activity-level QoS metrics and/
or SLAs, which is essential for BigData workflows 
where change in processing capability of one ana-
lytical activity can affect all the activities in the 
downstream.  In the public cloud computing space, 
monitoring frameworks (Amazon CloudWatch used 
by Amazon Elastic Map Reduce) typically monitor 
cloud (agnostic to Edge) VM resource as a black 
box, and so cannot monitor activity-level QoS met-
rics and/or data flow. Techniques presented by Al-
hamazani and colleagues13 and frameworks such as 
Monitis14 and Nimsoft15 can monitor QoS metrics 
of web applications hosted on the cloud. Complex 
event processing and content-based routing applica-
tions hosted on clouds. In summary, none of the ex-
isting QoS monitoring frameworks and techniques 
can (i) monitor and integrate data (workload input 
and performance metrics, disruptive events, SLAs 
at the platform level, SLAs at the infrastructure) 
across each activity of the workflow running on mul-
tiple BigData processing frameworks and underly-
ing hardware (Cloud + Edge) resources or (ii) detect 
root causes of workflow activity-level SLA violations 
and failures across the multiple BigData processing 
frameworks and hardware resources based on data 
flow and QoS metrics logs. 

Workflow dynamic reconfiguration: Current gen-
eration BigData orchestration platforms (YARN, 
Mesos, Amazon EMR) offer no guarantees about 
handling failures at workflow-level and/or resource 

level, nor can they automatically scale or de-scale 
the platform in response to changes in data volume, 
velocity or variety, or query types, which can affect 
the resource requirements of activities within a Big-
Data workflow. There are very few current research 
works that are trying to address the automatic scal-
ing of single BigData processing framework, batch 
processing16 and stream processing.17 Database 
community have mostly worked on optimising the 
query execution performance considering both in-
terleaved18,19 and parallel executions20,21 via both 
black-box approaches such online and offline ma-
chine learning and white-box approaches for ana-
lytical modelling of SQL and/or NoSQL BigData 
processing frameworks. Existing orchestrators in 
cloud community that can do online or dynamic 
reconfiguration have been built specifically for in-
teractive multi-tier web applications.4,5 However, 
most of the techniques utilised by them cannot be 
directly applied to predict data flow metrics (data 
volume, data velocity, stream operator processing 
time distributions, query types) or workflow activ-
ity-specific QoS metrics (batch processing response 
time, stream processing latency, data ingestion la-
tency, Tweet analysis accuracy) as BigData work-
flows are fundamentally different from multi-tier 
web applications. To make dynamic reconfiguration 
in the execution of BigData workflow applications, 
their run-time resource requirements and data flow 
changes needs to be predicted including any pos-
sible failure occurrence. These requirements need 
to be computed based on inter and intra dataflow 
of the workflows but also on the user’s contextual 
requirements.

s the concluding remark, current BigData 
analysis tools and workflow management or-

chestrators have to evolve to great degree before they 
can support the requirements of domain-specific 
BigData workflow applications. Most of these work-
flows applications are not just monolithic solution 
but a complex interaction of several BigData pro-
gramming frameworks, multiple data sources, and 
heterogeneous Cloud/Edge resources. Each of these 
applications need to orchestrated to support real 
time requirements of decision makers expressed in 
terms of Service Level Agreements.  
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Population-Scale Pervasive 
Health
Tim Althoff, Stanford University

O ur everyday behavior is critical 
to our health. An estimated 60 

percent of the human health condition 
is determined by behavioral factors—
including exercise, sleep, and diet—as 
well as social and environmental fac-
tors.1 Historically, these behavioral, 
social, and environmental factors have 
been difficult to measure and quan-
tify. Scientists and clinicians typically 
relied on (guided) self-reports, which 
are subjective and often biased. Addi-
tionally, the assessments have been 
typically limited to participants recall-
ing static health information (such as 
their weight or health conditions) and 
summarizing health-related behaviors 
and activities over limited time periods. 
These measurement limitations have 
led to reduced ecological validity and 
often a sparseness of data about highly 
dynamic health-related behaviors, such 
as physical activity.

Pervasive computing and pervasive 
health research could transform this 
landscape and fill in the measurement 
“gaps.” Ubiquitous sensors, both in 
the environment and in our personal 
devices, clothing, and bodies, can 
continuously collect data, allowing 
for dynamic measurement and more 
nuanced and robust investigation of 
health-related behaviors, activities, and 
physiological signals from our bodies. 
Connecting this data to health outcomes 
could unveil a great deal of which behav-
iors are predictive of, or even causally 
responsible for, our well-being.

In particular, population-scale per-
vasive health research attempts to har-
ness such data, which has already been 
collected through commercial devices 
and web applications (see the “Ubiqui-
tous Sensing” sidebar), to study human 
behaviors and the links between that 
data and health and well-being. Lever-
aging these existing datasets enables 

studies of behaviors and health at an 
unprecedented scale (in terms of num-
ber of subjects), resolution (regarding 
the number and granularity of activities 
tracked), and duration (length of obser-
vation period) relatively inexpensively 
and quickly.

Population-scale pervasive health 
research can complement more 

UBIQUITOUS SENSING

Current commercial mobile and wearable devices include many of the sensors and 
techniques used in health research (including accelerometer, gyroscope, location, 
heart-rate, and skin-conductance sensors and activity classification algorithms, smart 
notifications, and report capabilities). Furthermore, many smartphone apps let the user 
self-report activities and conditions that are challenging to capture automatically, such 
as the consumption of food, alcohol, and caffeine or the user’s emotional status. Today, 
smartphones are used by 69 percent of the adult population in developed countries and 
46 percent of the adult population in developing economies, with adoption rates grow-
ing rapidly.1 Social media posts, as well as web search queries, can also reveal a great 
amount about individuals’ behaviors, health, and well-being.2 For example, individuals 
share and discuss goals, behaviors, sicknesses, diagnoses, and mental health challenges 
on platforms including Facebook, Reddit, Twitter, and Instagram.2–5
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traditional pervasive computing and 
pervasive health research by highlight-
ing the possibilities, opportunities, and 
challenges that arise from analyzing 
behavior and health data at scale. Here, 
I identify lessons learned from my own 
work and from other excellent contri-
butions to the field and current chal-
lenges in this research area.

LESSONS LEARNED
Although there are great advantages 
in leveraging large-scale datasets for 
individual and population health, 
there are limitations to this approach 
as well. Unlike typical “in-person” 
experimental studies or cohort stud-
ies, researchers often have limited 
or no control over what data is col-
lected or how it has been collected. 
Furthermore, the data is typically 
observational and thus without any 
randomization into different con-
ditions or treatments. This makes 
identification of causal relationships 
fundamentally challenging.

To overcome these challenges, inter-
disciplinary teams of researchers are 
developing specialized computational 
methods and tools, often drawing on 
data mining, social network analysis, 
and causal inference research, with the 
aim of obtaining unconfounded and 
actionable conclusions that are neces-
sary to make any impact on healthcare 
and public policy. Following are les-
sons learned from leveraging existing 
devices and data for population-scale 
pervasive health research.

The Power of Scale
Leveraging widely used devices and 
applications allows for studies at 
unprecedented scale, much beyond 
what is feasible in more traditional lab-
oratory or cohort settings. For example, 
leveraging data collected through a 
popular smartphone activity-tracking 
application (Argus by Azumio), I 
worked with Rok Sosič, Jennifer Hicks, 
Abby King, Scott Delp, and Jure Les-
kovec to study and compare physical 
activity patterns at a planetary scale 
across 717,000 people from over 110 

countries.2 The scale of such datasets 
enables new insights based on compari-
sons across subpopulations of various 
kinds—for example, based on demo-
graphic attributes including gender, age, 
weight status, and country of origin.

In the past, many of these compari-
sons were extremely expensive if not 
infeasible. For example, until recently, 
we had no large-scale database of 
objective physical activity measures 
spanning multiple countries. How-
ever, using the data from Argus, we 
were able to estimate the distribution 
of physical activity levels within coun-
tries, on a global scale.2 This analysis, 
for the first time, revealed patterns of 
worldwide activity inequality. In some 
countries the gap between “activity 
rich” and “activity poor” people was 
much larger than in other countries, 
and the size of this gap was found to be 
a strong predictor of obesity incidence 
in the respective countries. Further-
more, it had been well established that 
men tend to be more physically active 
than women, on average. However, 
our analyses revealed that in countries 
such as Sweden and Ukraine the gender 
gap was almost negligible, whereas in 
countries such as Saudi Arabia and the 
US the gap was substantial. Such gaps 
could have detrimental consequences 
for women’s health.

The large number of people tracking 
their exercise through a wearable device 
further enables us to study population-
scale phenomena, such as the viral 
spread of Pokémon Go. Because many 
wearable users of devices such as the 
Microsoft Band have agreed to share 
their data for research, Ryen White, 
Eric Horvitz, and I were able to con-
duct a study of Pokémon Go’s impact 
on 83,000 people’s physical activity 
(without this data, such a study could 
have required a massive participant 
recruiting and data collection enter-
prise).3 We found that playing Poké-
mon Go led to significant increases in 
physical activity over a period of 30 
days, with particularly engaged users 
increasing their activity by 1,473 steps a 
day on average, a more than 25 percent 

increase compared with their prior 
activity level. Although these activity 
increases were often short-lived, Poké-
mon Go was able to reach low-activity  
populations—whereas four lead-
ing mobile health apps we looked at 
for comparison largely drew from an 
already very active population.

Natural Experiments  
and Causal Inference
A fundamental challenge with obser-
vational (that is, non-experimental) 
studies is using correlational data to 
infer causality. Understanding the 
causes of health outcomes is necessary 
for improving as opposed to merely 
predicting such outcomes. Accurately 
inferring causality from observational 
data is difficult because different con-
ditions likely were not assigned ran-
domly, leading to confounding and 
biased estimates.

To circumvent this, researchers 
increasingly apply matching methods, 
which match every treated unit to one 
or more non-treated units with simi-
lar observable characteristics (exact, 
almost-exact, distance- or propensity-
score-based).4,5 By matching treated 
units to similar, non-treated units, 
matching enables a comparison of 
outcomes among treated and non-
treated units to estimate the effect of 
the treatment-reducing bias due to 
confounding.

However, there might exist unob-
served variables that we cannot control 
for, even when this would be desirable. 
Although sensitivity analyses can allevi-
ate such concerns in part, it might be 
more promising to attempt to identify 
variation in the data that could be used 
as an instrument or natural experiment 
to overcome the limitations of obser-
vational data. For example, research-
ers can leverage weather variation, 
changes in built environments due to 
relocation, or other potentially exog-
enous events such as strikes of public 
transport workers or closings of parks, 
to disentangle various effects. In some 
of my own work on the social influ-
ence effects on exercising behavior, we 
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leveraged random variation capturing 
the delay in the formation of friendship 
connections (how long did it take for 
the receiver of a friendship request to 
press “accept”?) to disentangle intrinsic 
motivation to exercise more from actual 
social influence.4 This allowed us to 
demonstrate a causal, positive effect of 
online friendship connections on offline 
physical activity.

Large-scale data facilitates the use 
of such methods. For example, events 
such as user relocation or strikes are 
quite rare. However, in large data, we 
might still observe enough of these 
events to enable statistically meaning-
ful analyses. Identifying these instru-
ments and natural experiments in large 
data typically requires a mix of domain 
expertise (for example, knowing what 
events would cause plausibly exogenous 
variation in the treatment assignment) 
as well as data mining methods.

Population Bias
User populations of wearable and 
tracking devices, smartphones, and web 
applications might not be representative 
of national populations, even when they 
are very large. In fact, we have found 
that the users of popular wearables  
and tracking apps tend to be biased 
toward young, more affluent, gender-
skewed populations.2–4,6,7 For exam-
ple, some of the datasets from fitness 
wearables we have studied were skewed 
towards male users, while mobile appli-
cations focused on weight loss were 
skewed towards a female user base.

Researchers can check their findings 
for robustness against these biases—
for example, by stratification into sub-
groups (for example, by age, gender, 
and income level)2–4,7 or by reweight-
ing the sample to match a target pop-
ulation.2 In fact, as long as the data 
provides sufficient support for all rel-
evant subgroups, reweighting methods 
can approximate nationally represen-
tative populations. Being able to vali-
date findings across many subgroups 
to investigate heterogeneous treatment 
effects can be an advantage over rep-
resentative yet small study populations 

(which might be statistically underpow-
ered for such analyses).

The study population can also 
be compared to traditional medical 
research data—for example, data from 
the National Health and Nutrition 
Examination Survey (www.cdc.gov 
/nchs/nhanes) or from the World Health 
Organization’s Global Health Observa-
tory (www.who.int/gho/en)—on key 
behavioral or health covariates such as 
the timing or length of sleep or the vol-
ume and intensity of physical activity. 
Such data is often available on a sub-
population level, but it’s often based 
on subjective survey measures, which 
could be vastly different from sensor-
defined objective measures, limiting 
comparisons.

As smartphones and other mobile or 
wearable devices become more preva-
lent, we can expect population bias to 
decrease. Furthermore, this drawback 
is not specific to population-scale perva-
sive health studies; it also applies to all 
scientific studies that largely draw from 
WEIRD (Western, Educated, Industri-
alized, Rich, and Democratic) subjects. 
Leveraging widely used devices and 
applications might even help in under-
standing historically less-represented 
populations.

Engagement and Retention
Participant engagement and retention 
often diminish quickly. This holds 
true in traditional in-lab or in-person 
studies but can be exacerbated in com-
mercial device and app settings where 
subjects are unpaid, are not bound by 
a study protocol, and quickly move 
on when they do not perceive a clear 
value. These dynamics are observed 
widely and were at the heart of many 
articles about Pokémon Go. The 
mobile game was spectacularly suc-
cessful with 28.5 million daily users 
shortly after release, but after a few 
months, approximately 80 percent 
of them had moved on.8 These num-
bers highlight both the unprecedented 
promise of large-scale behavioral 
interventions and great challenges in 
retaining engagement levels.3

An important consequence of low 
user retention rates is that researchers 
studying the same application at dif-
ferent times may in fact study different 
user populations. These populations 
are all worth studying. For example, 
early adopters are key to developing 
early prototypes into mature appli-
cations, while the coming and going 
of short-term users may help us bet-
ter understand the appeal and value 
propositions of our applications. Fur-
thermore, even after a historical drop-
off in engagement, millions of people 
around the world still play Pokémon 
Go, allowing us to better understand 
whether and when such games could 
lead to sustained behavior change.3,7

Multisite Studies to  
Disentangle Individual  
Behavior and the Environment
Many existing mobile health and social 
media datasets cover a large number 
of geographical locations.9 Some even 
have global coverage.2 This means that 
users of the same device or application 
can reside in vastly different environ-
ments. While this can complicate com-
parative analyses between the users, it 
also creates an unprecedented oppor-
tunity to study the effect of different 
environments on human behavior. To 
what degree is an individual’s behavior 
truly individual or dictated by one’s 
environment?

For example, cities without preva-
lent and safe sidewalks and footpaths 
or close-by stores, schools, and parks 
make it much harder to be physically 
active. The multisite nature of large-
scale datasets let us disentangle indi-
vidual behavior and environmental 
influences (requiring adequate control 
of potential confounders), and might 
enable us to design cities more condu-
cive to their inhabitants’ health.2

Augmenting Large Sensor  
Data with Context
Although continuous sensor data 
paints a rich picture of our behaviors, 
much of this data is useless without 
context. If somebody records very few 
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traditional pervasive computing and 
pervasive health research by highlight-
ing the possibilities, opportunities, and 
challenges that arise from analyzing 
behavior and health data at scale. Here, 
I identify lessons learned from my own 
work and from other excellent contri-
butions to the field and current chal-
lenges in this research area.

LESSONS LEARNED
Although there are great advantages 
in leveraging large-scale datasets for 
individual and population health, 
there are limitations to this approach 
as well. Unlike typical “in-person” 
experimental studies or cohort stud-
ies, researchers often have limited 
or no control over what data is col-
lected or how it has been collected. 
Furthermore, the data is typically 
observational and thus without any 
randomization into different con-
ditions or treatments. This makes 
identification of causal relationships 
fundamentally challenging.

To overcome these challenges, inter-
disciplinary teams of researchers are 
developing specialized computational 
methods and tools, often drawing on 
data mining, social network analysis, 
and causal inference research, with the 
aim of obtaining unconfounded and 
actionable conclusions that are neces-
sary to make any impact on healthcare 
and public policy. Following are les-
sons learned from leveraging existing 
devices and data for population-scale 
pervasive health research.

The Power of Scale
Leveraging widely used devices and 
applications allows for studies at 
unprecedented scale, much beyond 
what is feasible in more traditional lab-
oratory or cohort settings. For example, 
leveraging data collected through a 
popular smartphone activity-tracking 
application (Argus by Azumio), I 
worked with Rok Sosič, Jennifer Hicks, 
Abby King, Scott Delp, and Jure Les-
kovec to study and compare physical 
activity patterns at a planetary scale 
across 717,000 people from over 110 

countries.2 The scale of such datasets 
enables new insights based on compari-
sons across subpopulations of various 
kinds—for example, based on demo-
graphic attributes including gender, age, 
weight status, and country of origin.

In the past, many of these compari-
sons were extremely expensive if not 
infeasible. For example, until recently, 
we had no large-scale database of 
objective physical activity measures 
spanning multiple countries. How-
ever, using the data from Argus, we 
were able to estimate the distribution 
of physical activity levels within coun-
tries, on a global scale.2 This analysis, 
for the first time, revealed patterns of 
worldwide activity inequality. In some 
countries the gap between “activity 
rich” and “activity poor” people was 
much larger than in other countries, 
and the size of this gap was found to be 
a strong predictor of obesity incidence 
in the respective countries. Further-
more, it had been well established that 
men tend to be more physically active 
than women, on average. However, 
our analyses revealed that in countries 
such as Sweden and Ukraine the gender 
gap was almost negligible, whereas in 
countries such as Saudi Arabia and the 
US the gap was substantial. Such gaps 
could have detrimental consequences 
for women’s health.

The large number of people tracking 
their exercise through a wearable device 
further enables us to study population-
scale phenomena, such as the viral 
spread of Pokémon Go. Because many 
wearable users of devices such as the 
Microsoft Band have agreed to share 
their data for research, Ryen White, 
Eric Horvitz, and I were able to con-
duct a study of Pokémon Go’s impact 
on 83,000 people’s physical activity 
(without this data, such a study could 
have required a massive participant 
recruiting and data collection enter-
prise).3 We found that playing Poké-
mon Go led to significant increases in 
physical activity over a period of 30 
days, with particularly engaged users 
increasing their activity by 1,473 steps a 
day on average, a more than 25 percent 

increase compared with their prior 
activity level. Although these activity 
increases were often short-lived, Poké-
mon Go was able to reach low-activity  
populations—whereas four lead-
ing mobile health apps we looked at 
for comparison largely drew from an 
already very active population.

Natural Experiments  
and Causal Inference
A fundamental challenge with obser-
vational (that is, non-experimental) 
studies is using correlational data to 
infer causality. Understanding the 
causes of health outcomes is necessary 
for improving as opposed to merely 
predicting such outcomes. Accurately 
inferring causality from observational 
data is difficult because different con-
ditions likely were not assigned ran-
domly, leading to confounding and 
biased estimates.

To circumvent this, researchers 
increasingly apply matching methods, 
which match every treated unit to one 
or more non-treated units with simi-
lar observable characteristics (exact, 
almost-exact, distance- or propensity-
score-based).4,5 By matching treated 
units to similar, non-treated units, 
matching enables a comparison of 
outcomes among treated and non-
treated units to estimate the effect of 
the treatment-reducing bias due to 
confounding.

However, there might exist unob-
served variables that we cannot control 
for, even when this would be desirable. 
Although sensitivity analyses can allevi-
ate such concerns in part, it might be 
more promising to attempt to identify 
variation in the data that could be used 
as an instrument or natural experiment 
to overcome the limitations of obser-
vational data. For example, research-
ers can leverage weather variation, 
changes in built environments due to 
relocation, or other potentially exog-
enous events such as strikes of public 
transport workers or closings of parks, 
to disentangle various effects. In some 
of my own work on the social influ-
ence effects on exercising behavior, we 
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steps on a given day, is it because of the 
person’s age, weight, recent surgery, 
non-walkable neighborhood, scorch-
ing climate, or preference for other 
activities? While smaller, in-person 
studies let us collect such information 
through surveys and other measures, 
much of this critical context is miss-
ing in already-collected, large-scale 
datasets from phones and wearables. 
Thus, to unleash the true power of 
these datasets, researchers need to 
augment the data with contextual  
information.

A common approach for data aug-
mentation is to leverage an individual’s 
geolocation, often available through 
self-report, GPS, cell tower location, and 
IP addresses. This enables augmenting 
the sensor data with population-level 
census or health outcome data.

Beyond location, researchers have 
brought in valuable context to sen-
sor data through combinations with 
web search and online social network 
data. For example, Web search queries 
allowed differentiation of Pokémon 
Go players from non-players in a large 
sample of wearable users.3 In another 
study, web search queries enabled 
the non-intrusive measurement of 
cognitive performance from already- 
collected search query logs, which 
could then be related to wearable-based 
sleep measurements.6 In both studies, 
users had connected their web search 
account (Bing) to their wearable device 
(Microsoft Band) and agreed to share 
their data for research purposes. Com-
binations with online social network 
data enabled estimation of social influ-
ence effects in exercising behavior— 
that is, whether exposure to and inter-
actions with online friends would 
have an effect on someone’s physical 
activity levels (spoiler alert: it did!).4,7 
Social network data might be available 
if the network is part of the mobile 
application itself, when the application 
imports external social network data 
(from Facebook, for example), or when 
users share their activities and behav-
iors on public sites such as Twitter, Ins-
tagram, or Reddit.5,9

Real-world impact ranges across 
many settings, including clinical and 
population health, city and commu-
nity design, and commercial devices 
and applications. Many of the datasets 
currently studied are collected by large 
technology companies. These compa-
nies might be receptive to suggestions 
that will improve the lives of their users, 
and they often have the resources to 
translate ideas and prototypes into 
practice. However, without support of 
these companies (for example, due to 
misaligned incentives or goals or a lack 
of resources), it can be difficult to act 
on any inferences made. Still, there are 
great opportunities to explicitly design 
the online space including search and 
social network tools for improved 
health and well-being.4–7,9,10

However, significant challenges exist 
in moving from passive sensing to act-
ing on data inferences and interacting 
with users. One might be able to detect 
traces of depression and self-harm,5,10 
cyberchondria, or fatigue levels severely 
increasing accident risk. But how 
should one act on this information? 
If a user did not ask for it explicitly, 
it might be inappropriate or unethi-
cal to bring up this information. Fur-
thermore, well-being objectives might 
even conflict with short-term commer-
cial interests of technology companies 
(for example, some social media posts 
might drive significant engagement but 
could negatively influence self-worth 
and depression). In all these cases, user 
experience and ethics research are vital 
for the appropriate implementation and 
complementation of big data studies.

Data Sharing, Privacy, and Ethics
Scientific progress in population-scale 
pervasive health studies critically relies 
on the availability of data. Currently, 
researchers often gain access to large 
datasets through industry collabora-
tions or through web scraping of social 
media sites. Although many of these 
collaborations have been fruitful, data 
is rarely shared with outside research-
ers, limiting reproducibility and scien-
tific progress.

RESEARCH OPPORTUNITIES
There are several research directions for 
increasing the effectiveness and scope 
of population-scale pervasive health 
research. These relate to developing 
more sophisticated computational 
methodology, acting on inferences 
made, and data sharing.

Improving Computational Tools
Large-scale behavioral data paired 
with powerful computational tools 
bring unprecedented affordances, 
many of which we likely have yet to 
uncover. Open research challenges 
include identification of useful signals 
and proxies in sensor and Web data to 
capture behaviors, relevant context, 
and outcomes. Several studies have 
used social media posts, messages, 
and badges as proxies for health out-
comes including weight loss, depres-
sion, and suicidal thoughts.5,10 Such 
proxies are potentially powerful, but 
we need to better understand how 
to appropriately identify them and 
to what degree they reflect clinical 
measures.

Many future datasets will be obser-
vational. Due to the large but uncon-
trolled nature of the data, it is easy to 
fall prey to spurious correlations (with 
very low p-values). Therefore, we need 
to develop improved computational 
tools for analysis as well as establish 
methods and protocols abiding by the 
highest scientific standards. This is 
particularly pressing in the realm of 
causal analyses for which, currently, 
few if any tools exist that are usable by 
non-experts. Furthermore, such tools 
should offer scalability and capabilities 
beyond simple binary treatment/control 
scenarios and low-dimensional covari-
ate spaces.

Acting on Inferences Made
The goal of population-scale pervasive 
health research is to translate infer-
ences from big data into the real world 
to improve people’s lives. This is par-
ticularly challenging for data mining 
researchers who can be far removed 
from the people they study.
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More data sharing is clearly desir-
able, but there are many challenges 
to share personal information about 
behaviors and health.11 For example, 
there is a need for methods and best 
practices to successfully de-identify 
data without introducing noise or bias 
into statistical analyses. In many cases 
anonymization techniques are open 
to reidentification attacks. There are 
promising avenues in privacy research 
based on randomized responses, dif-
ferential privacy, and homomorphic 
encryption, but these techniques are 
not yet used widely in practice or  
at scale.

Currently, behavioral and health 
data are largely kept in separate silos. 
Behavioral signals are predominantly 
in the hands of tech companies devel-
oping wearable devices and smart-
phone applications while health data 
typically resides within hospital insur-
ance systems. Great value will come 
from developing appropriate processes 
to combine this data to better under-
stand how complex behavioral pat-
terns cause or are caused by specific 
health outcomes. Large cohort stud-
ies hold great promise—such as the 
All of Us research program (https: 
//allofus.nih.gov), which seeks to collect 
and combine such data from over one 
million US volunteers. It will be impor-
tant to figure out how people’s existing 
devices can be leveraged effectively in 
these studies, and how researchers can 
provide valuable insights or financial 
incentives to motivate participants to 
share their personal data.

T here are great opportunities for 
cross-pollination between perva-

sive computing and population-scale 
pervasive computing research. For 
example, laboratory-based and in- 
person pervasive computing research 
can inform data mining researchers 
about what can be measured and cor-
related in more controlled settings, 
highlighting the human factors at play. 
Conversely, large-scale data mining can 
inform pervasive computing about what 

types of inferences are possible, inform-
ing our understanding of potential 
public health applications of pervasive 
health technology at scale. Furthermore, 
population-scale pervasive computing 
might change how epidemiological and 
population health research is conducted 
by enabling continuous, objective mea-
surements of dynamic behaviors and 
environmental factors.

Advances and proliferation of mobile 
and sensor technology are driving the 
creation of large behavioral datas-
ets. Population-scale pervasive health 
research leverages these datasets to 
enable a better understanding of the 
relationships between our behaviors, 
environment, and health outcomes, 
with great opportunities to impact 
health and well-being at population-
scale. 
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steps on a given day, is it because of the 
person’s age, weight, recent surgery, 
non-walkable neighborhood, scorch-
ing climate, or preference for other 
activities? While smaller, in-person 
studies let us collect such information 
through surveys and other measures, 
much of this critical context is miss-
ing in already-collected, large-scale 
datasets from phones and wearables. 
Thus, to unleash the true power of 
these datasets, researchers need to 
augment the data with contextual  
information.

A common approach for data aug-
mentation is to leverage an individual’s 
geolocation, often available through 
self-report, GPS, cell tower location, and 
IP addresses. This enables augmenting 
the sensor data with population-level 
census or health outcome data.

Beyond location, researchers have 
brought in valuable context to sen-
sor data through combinations with 
web search and online social network 
data. For example, Web search queries 
allowed differentiation of Pokémon 
Go players from non-players in a large 
sample of wearable users.3 In another 
study, web search queries enabled 
the non-intrusive measurement of 
cognitive performance from already- 
collected search query logs, which 
could then be related to wearable-based 
sleep measurements.6 In both studies, 
users had connected their web search 
account (Bing) to their wearable device 
(Microsoft Band) and agreed to share 
their data for research purposes. Com-
binations with online social network 
data enabled estimation of social influ-
ence effects in exercising behavior— 
that is, whether exposure to and inter-
actions with online friends would 
have an effect on someone’s physical 
activity levels (spoiler alert: it did!).4,7 
Social network data might be available 
if the network is part of the mobile 
application itself, when the application 
imports external social network data 
(from Facebook, for example), or when 
users share their activities and behav-
iors on public sites such as Twitter, Ins-
tagram, or Reddit.5,9

Real-world impact ranges across 
many settings, including clinical and 
population health, city and commu-
nity design, and commercial devices 
and applications. Many of the datasets 
currently studied are collected by large 
technology companies. These compa-
nies might be receptive to suggestions 
that will improve the lives of their users, 
and they often have the resources to 
translate ideas and prototypes into 
practice. However, without support of 
these companies (for example, due to 
misaligned incentives or goals or a lack 
of resources), it can be difficult to act 
on any inferences made. Still, there are 
great opportunities to explicitly design 
the online space including search and 
social network tools for improved 
health and well-being.4–7,9,10

However, significant challenges exist 
in moving from passive sensing to act-
ing on data inferences and interacting 
with users. One might be able to detect 
traces of depression and self-harm,5,10 
cyberchondria, or fatigue levels severely 
increasing accident risk. But how 
should one act on this information? 
If a user did not ask for it explicitly, 
it might be inappropriate or unethi-
cal to bring up this information. Fur-
thermore, well-being objectives might 
even conflict with short-term commer-
cial interests of technology companies 
(for example, some social media posts 
might drive significant engagement but 
could negatively influence self-worth 
and depression). In all these cases, user 
experience and ethics research are vital 
for the appropriate implementation and 
complementation of big data studies.

Data Sharing, Privacy, and Ethics
Scientific progress in population-scale 
pervasive health studies critically relies 
on the availability of data. Currently, 
researchers often gain access to large 
datasets through industry collabora-
tions or through web scraping of social 
media sites. Although many of these 
collaborations have been fruitful, data 
is rarely shared with outside research-
ers, limiting reproducibility and scien-
tific progress.

RESEARCH OPPORTUNITIES
There are several research directions for 
increasing the effectiveness and scope 
of population-scale pervasive health 
research. These relate to developing 
more sophisticated computational 
methodology, acting on inferences 
made, and data sharing.

Improving Computational Tools
Large-scale behavioral data paired 
with powerful computational tools 
bring unprecedented affordances, 
many of which we likely have yet to 
uncover. Open research challenges 
include identification of useful signals 
and proxies in sensor and Web data to 
capture behaviors, relevant context, 
and outcomes. Several studies have 
used social media posts, messages, 
and badges as proxies for health out-
comes including weight loss, depres-
sion, and suicidal thoughts.5,10 Such 
proxies are potentially powerful, but 
we need to better understand how 
to appropriately identify them and 
to what degree they reflect clinical 
measures.

Many future datasets will be obser-
vational. Due to the large but uncon-
trolled nature of the data, it is easy to 
fall prey to spurious correlations (with 
very low p-values). Therefore, we need 
to develop improved computational 
tools for analysis as well as establish 
methods and protocols abiding by the 
highest scientific standards. This is 
particularly pressing in the realm of 
causal analyses for which, currently, 
few if any tools exist that are usable by 
non-experts. Furthermore, such tools 
should offer scalability and capabilities 
beyond simple binary treatment/control 
scenarios and low-dimensional covari-
ate spaces.

Acting on Inferences Made
The goal of population-scale pervasive 
health research is to translate infer-
ences from big data into the real world 
to improve people’s lives. This is par-
ticularly challenging for data mining 
researchers who can be far removed 
from the people they study.

This article originally appeared in 
IEEE Pervasive Computing, vol. 
16, no. 4, 2017.
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Big Data Bites
Editor: Jimmy Lin, jimmylin@uwaterloo.ca

F riends, developers, researchers, lend me your 
ears! I come to praise MapReduce, not to bury it!

Google Fellow Luiz Barroso once famously 
said, “The datacenter is now the computer.” David 
Patterson1 then wondered: What’s the instruction 
set architecture for the datacenter computer? This 
was circa 2008, and of course by then we already 
knew the first answer: for MapReduce,2 the two 
instructions are MAP and REDUCE.

MapReduce represents a specific instance of 
a general class of data-parallel dataflow lan-
guages, in which computations are conceptualized 
as directed graphs, where vertices represent opera-
tions on records that flow along the directed edges. 
From this perspective, MAP and REDUCE are the 
two operators that MapReduce provides, which 
define particular configurations of the edges 
that flow into and out of vertices and specify the 
computations that occur at the vertices themselves.

Such a dataflow computation model dates 
back to the 1970s,3,4 but there’s one key dif-
ference: in today’s conception of dataflow lan-
guages, the focus is on data-parallelism. With 
perhaps the exception of sophisticated machine 
learning algorithms, the dataflow graphs today 
themselves are relatively simple. The challenges 
primarily lie in the requirement to process gazil-
lions of records, thus necessitating distributed 
processing across warehouse-scale clusters.

Dryad is usually credited with the development 
of the first general dataflow model for distributed 
data-parallel computations.5 It provides a rich 
vocabulary of operators that can be composed to 
form complex dataflow graphs and an execution 
engine for managing the specified computations. 
Over time, we’ve witnessed the development of 
alternative data-parallel dataflow languages that 
primarily differ in the vocabulary of operators that 
they provide to the developer. Examples include 
Cascading (www.cascading.org), Google’s Flume-
Java,6 Apache Flink (https://flink.apache.org), and 

of course, Apache Spark (https://spark.apache.
org), which is perhaps the most widely touted 
general-purpose replacement for MapReduce.

In this column, I present a critical analysis of 
the dataflow operators provided by MapReduce 
and Spark. To be precise, I’ll be specifically refer-
ring to the Hadoop implementation of MapRe-
duce, which is slightly different from Google’s 
original. My message is this: In the fashion-
driven world of big data where there’s a perpetual 
rush toward new and shiny objects along with a 
tendency to pooh-pooh everything that has come 
before, let’s not throw the MapReduce baby out 
with the bathwater!

There are aspects of the Hadoop MapReduce 
API that provide a well-conceived balance between 
flexibility and expressiveness, even if there are seri-
ous shortcomings with the overall implementation. 
In particular, comparisons with Spark are instruc-
tive for highlighting the distinction between logi-
cal and physical operators, and point to a gaping 
hole where MapReduce is incomplete. If we recog-
nize MAP and REDUCE as the physical operators 
that they really are, then comparing MapReduce to 
Spark is actually like comparing apples to oranges 
(quite contrary to popular portrayals by blogs, the 
tech press, and other superficial discussions).

Before I start getting hate mail from Spark fan-
boys, let me be perfectly clear: I really like Spark. 
On the whole, it represents a far superior imple-
mentation of MapReduce. Resilient Distributed 
Datasets (RDDs) and lazy transformations support 
pipelining, plan rewrites, and other optimizations 
difficult to implement in Hadoop. Caching of RDDs 
accelerates iterative algorithms while lineage infor-
mation provides robustness. Having a read-eval-
print loop (REPL) is a godsend. Language bindings 
beyond the Java Virtual Machine democratize data 
processing tools to the large community of Python 
and R users. Overall, Spark most definitely deserves 
the mantle as the successor to MapReduce.

In Defense of MapReduce

Jimmy Lin • University of Waterloo
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But I’m going to complain about 
the design of some of Spark’s data-
flow operators anyway. The discus-
sion in the rest of this column is fairly 
low level and borders on “inside base-
ball” minutiae, but by design (because 
that’s part of my critique). However, 
I’ll freely admit that this is mostly 
an academic exercise — although I 
do think the exercise is instructive 
in helping us better understand the 
design of big data analytics platforms 
in general.

At the end of this article, I’ll come 
back and discuss why none of this 
particularly matters, and why ques-
tions about low-level operator design 
are inconsequential as big data pro-
cessing becomes increasingly focused 
on higher-level abstractions for verti-
cally-informed data manipulation.

The Mappers
Let’s start with mappers in MapReduce. 
In Hadoop, a mapper is instantiated 
for every partition of the input data-
set — more precisely, each input split, 
which aligns with data blocks on the 
Hadoop Distributed File System (HDFS) 
in the canonical case. The mapper 
lifecycle begins with a setup method 
and ends with a cleanup method; in 
between the map method is called for 
each key-value pair in the input col-
lection. Specifically, the framework 
initializes a RecordReader, iteratively 
calls the reader to materialize the next 
key-value pair, and then calls the map 
method in the mapper.

In Spark, there are a few compa-
rable “map” transformations: filter, 
map, flatMap, and mapPartitions. 
Why do we need all of them? The 
map transformation takes f: T ⇒ U 
to transform inputs of type T to out-
puts of type U. Importantly, map in 
Spark produces exactly one output 
per input and thus is less flexible 
than the map method in MapReduce, 
which can generate zero, one, or more 
intermediate key-value pairs. This is 
why Spark additionally needs fil-
ter (to not generate any intermedi-

ate records) and flatMap (to generate 
a list of intermediate records, which 
the framework then flattens). Finally, 
mapPartitions is needed to provide 
the equivalent of what setup and 
cleanup do in MapReduce: mapPar-
titions takes f: Iterator[T] ⇒ 
Iterator[U], which allows develop-
ers to sneak in setup and cleanup.

From the perspective of a functional 
purist, I can argue that the MapReduce 
abstraction leaks in two ways. First, the 
mappers encapsulate per-record pro-
cessing, and the fact that the input col-
lection is divided into partitions: well, 
that’s an implementation detail. Hav-
ing setup and cleanup, in effect, hard 
codes the existence of some partition-
ing scheme and a particular physical 
organization. Second, having control 
over the mapper lifecycle allows the 
developer to retain state across map 
calls and engage in monkey business 
that breaks the functional abstraction.

With respect to the first point: data 
processing languages must operate in 
the real world, and in the real world 
programmers do need to manage their 
object lifecycles. The most common 
use for the setup method is to acquire 
an external resource (for example, a 
database connection) or load in side 
data (for example, a dictionary). The 
cleanup method is used to release 
these resources after all the records 
have been processed. Because it makes 
no sense to perform these heavy-
weight operations on a per-record 
basis, the filter, map, and flatMap 
transformations in Spark can’t handle 
this common design pattern.

It appears that the developers of 
Spark realized this fact somewhat 
later, as mapPartitions wasn’t in the 
original Spark API;7 see Apache JIRA 
ticket SPARK-341. Thus, both MapRe-

duce and Spark are adulterated in 
having abstractions that aren’t func-
tionally pure. In Spark, there’s actually 
also something called mapParti-
tionsWithIndex, which provides an 
integer value representing the index 
of the partition, which I react with a 
#facepalm (If you don’t get the meme, 
search the web. I especially love Cap-
tain Piccard doing it). You don’t need 
it in MapReduce because in the setup 
you have access to the Context object, 
which gives you a lot of reflection-
like information about the state of the 
mapper and the data it’s running on.

With respect to the second point —  
the ability in MapReduce to retain 
state across map calls and engage in 
monkey business — this actually allows 
you to do some neat optimizations that 
substantially increase performance 
via more efficient local aggregations, 
for example, what I’ve called the “in-
mapper combining” pattern.8,9 I sup-
pose someone might argue that such 
techniques are hacky and shouldn’t be 
allowed, but then, the same complaint 
surely would apply to Spark, because it 
has mapPartitions. Whatever sneaky 
monkey business you can do in MapRe-
duce, you can do in Spark also.

Here’s another way to think about 
it: the mapper in MapReduce is actu-
ally a physical operator, while trans-
formations in Spark aim to be logical 
operators. The conventional under-
standing is that a physical operator 
specifies a particular implementation, 
whereas a logical operator expresses 
the computation at a more abstract 
level (for example, relational opera-
tors in the case of SQL).

As discussed previously, map-
pers in MapReduce make explicit the 
sequence of computations (method 
calls) that occur while processing a  
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F riends, developers, researchers, lend me your 
ears! I come to praise MapReduce, not to bury it!

Google Fellow Luiz Barroso once famously 
said, “The datacenter is now the computer.” David 
Patterson1 then wondered: What’s the instruction 
set architecture for the datacenter computer? This 
was circa 2008, and of course by then we already 
knew the first answer: for MapReduce,2 the two 
instructions are MAP and REDUCE.

MapReduce represents a specific instance of 
a general class of data-parallel dataflow lan-
guages, in which computations are conceptualized 
as directed graphs, where vertices represent opera-
tions on records that flow along the directed edges. 
From this perspective, MAP and REDUCE are the 
two operators that MapReduce provides, which 
define particular configurations of the edges 
that flow into and out of vertices and specify the 
computations that occur at the vertices themselves.

Such a dataflow computation model dates 
back to the 1970s,3,4 but there’s one key dif-
ference: in today’s conception of dataflow lan-
guages, the focus is on data-parallelism. With 
perhaps the exception of sophisticated machine 
learning algorithms, the dataflow graphs today 
themselves are relatively simple. The challenges 
primarily lie in the requirement to process gazil-
lions of records, thus necessitating distributed 
processing across warehouse-scale clusters.

Dryad is usually credited with the development 
of the first general dataflow model for distributed 
data-parallel computations.5 It provides a rich 
vocabulary of operators that can be composed to 
form complex dataflow graphs and an execution 
engine for managing the specified computations. 
Over time, we’ve witnessed the development of 
alternative data-parallel dataflow languages that 
primarily differ in the vocabulary of operators that 
they provide to the developer. Examples include 
Cascading (www.cascading.org), Google’s Flume-
Java,6 Apache Flink (https://flink.apache.org), and 

of course, Apache Spark (https://spark.apache.
org), which is perhaps the most widely touted 
general-purpose replacement for MapReduce.

In this column, I present a critical analysis of 
the dataflow operators provided by MapReduce 
and Spark. To be precise, I’ll be specifically refer-
ring to the Hadoop implementation of MapRe-
duce, which is slightly different from Google’s 
original. My message is this: In the fashion-
driven world of big data where there’s a perpetual 
rush toward new and shiny objects along with a 
tendency to pooh-pooh everything that has come 
before, let’s not throw the MapReduce baby out 
with the bathwater!

There are aspects of the Hadoop MapReduce 
API that provide a well-conceived balance between 
flexibility and expressiveness, even if there are seri-
ous shortcomings with the overall implementation. 
In particular, comparisons with Spark are instruc-
tive for highlighting the distinction between logi-
cal and physical operators, and point to a gaping 
hole where MapReduce is incomplete. If we recog-
nize MAP and REDUCE as the physical operators 
that they really are, then comparing MapReduce to 
Spark is actually like comparing apples to oranges 
(quite contrary to popular portrayals by blogs, the 
tech press, and other superficial discussions).

Before I start getting hate mail from Spark fan-
boys, let me be perfectly clear: I really like Spark. 
On the whole, it represents a far superior imple-
mentation of MapReduce. Resilient Distributed 
Datasets (RDDs) and lazy transformations support 
pipelining, plan rewrites, and other optimizations 
difficult to implement in Hadoop. Caching of RDDs 
accelerates iterative algorithms while lineage infor-
mation provides robustness. Having a read-eval-
print loop (REPL) is a godsend. Language bindings 
beyond the Java Virtual Machine democratize data 
processing tools to the large community of Python 
and R users. Overall, Spark most definitely deserves 
the mantle as the successor to MapReduce.
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collection of key-value pairs. In 
fact, in Hadoop you call the Context.
write() method to actually emit 
intermediate key-value pairs. The map 
transformations filter, map, flat-
Map in Spark, on the other hand, don’t 
tie the framework to any particular 
implementation. There’s no reason, for 
example, why each input record can’t 
be processed by a separate thread, 
which might make sense if Spark were 
implemented in Erlang due to its sup-
port for lightweight threads.

But here’s where the rubber of clean 
abstraction design meets the road of 
real-world constraints: mapParti-
tions and mapPartitionsWithIndex 
in Spark hard code aspects of physi-
cal execution, which ruin the elegance 
of Spark transformations. The ability 
for developers to manipulate physi-
cal operators in MapReduce affords a 
high degree of flexibility (as is gener-
ally the case when physical operators 
are accessible); this control is ceded 
for cleaner logical operators in Spark, 
but unfortunately Spark isn’t able to 
completely deliver on elegance.

The Reducers
Now let’s turn our attention to reduc-
ers. The reducers in MapReduce have 
a signature of g: (T, Iterator[U]) 
⇒ Seq[(R, S)]. That is, the reducer g 
takes an object of type T (the interme-
diate key) and an iterator over values 
of type U (the values associated with 
that intermediate key), and returns 
any number of output key-value pairs 
(of any arbitrary type). In MapReduce 
there are also combiners, with the same 
signature. Combiners perform per-key 
aggregation on the output of the map-
pers, prior to the network shuffle. In 
reality, however, Hadoop also sneaks in 
combiner execution on the reduce end, 
post-shuffle. And oh, one more detail: 
the T’s are sorted (more on this later).

Similar to the mappers, developers 
can manage the reducer and combiner 
lifecycles via the setup and cleanup 
API hooks. To accomplish the equiva-
lent in Spark, you’d have to do some-

thing like groupByKey followed by 
mapPartitions. At that point, you’re 
basically just writing MapReduce in 
Spark, which is fine — but just don’t 
be hatin’ MapReduce. (Not to mention 
that a straight-up groupByKey isn’t 
particularly efficient because it doesn’t 
do map-side aggregation; of course, 
you can add in map-side aggregation, 
but then, my original point remains — 
it’s basically back to MapReduce.)

Okay, so in MapReduce we have 
reducers and combiners, and that’s it. 
Oh, there are also partitioners, which 
simply divide up the intermediate key 
space, but you can’t get away without 
having something like that (and Spark 
has partitioners also). In Spark, there’s 
a number of reduce-like operations 
(leaving aside joins and cogrouping for 
now): groupByKey, reduceByKey, and 
aggregateByKey. What do these all do?

The reduceByKey transformation 
takes g: V × V ⇒ V. In other words, 
V forms a commutative monoid with 
g as its associative binary operation 
(more precisely, a commutative semi-
group, because left unspecified is 
the identity element). Implicit in the 
semantics of reduceByKey is that g 
must be associative and commutative, 
because otherwise the execution sim-
ply wouldn’t be correct: Spark’s doc-
umentation was previously muddled 
(see SPARK-12844) but it has since 
been fixed. In contrast, a system like 
Summingbird renders the algebraic 
properties of the types explicit.10

Leaving issues with precise execu-
tion semantics aside, reduceByKey is 
actually quite restrictive, because the 
input and output types can’t change. 
This is both a plus and a minus. The 
positive is that Spark can take the 
function g that goes into reduceByKey  
and move it over to the map side, 
that is, before the network shuffle, 
in a completely transparent manner. 
So, there’s no need to explicitly write 
combiners — the framework optimizes 
for you. The downside is that all the 
values have to be type V and the func-
tion must also operate on that type.

What if I want to be a bit more 
flexible on the output type? This is 
where aggregateByKey comes in: the 
transformation takes f: U × V ⇒ U, 
g: U × U ⇒ U; in other words, f allows 
you to convert from type V (the input 
type) to type U (the output type) while 
performing intermediate aggregation, 
and g specifies how you combine val-
ues of type U together. With this setup, 
f automatically can be pushed over to 
the map side for efficient intermediate 
aggregation.

What if you still can’t get all the 
types to work out correctly? Well, 
then you’re back to groupByKey fol-
lowed by a map-like transforma-
tion — get the framework to group 
together all the values with the same 
intermediate key for you, and then 
apply whatever computation you 
want yourself. At that point, though, 
the framework can’t perform any 
optimizations behind the scenes, and 
performance will suffer because of the 
shuffling of lots of intermediate data 
across the network.

One way to think about these 
reduce-like operations in Spark is in 
terms of the tradeoff between simplic-
ity, flexibility, and performance. With 
reduceByKey, you get simplicity and 
performance, at the cost of flexibil-
ity. With aggregeteByKey, you gain 
a bit of flexibility at the cost of sim-
plicity, but still get good performance. 
With groupByKey, you get simplicity 
and maximum flexibility, but at the 
cost of performance. Contrast this 
with MapReduce, where you only get 
reducers and combiners, but there 
isn’t anything you fundamentally 
can’t do because you have low-level 
control over the physical execution. 
It’s not clear that the Spark panoply 
of reduce-like transformations is eas-
ier to understand or use.

What do we see if we compare 
reducers in MapReduce with reduce-
like transformations in Spark through 
the lens of the logical/physical dis-
tinction discussed previously? The 
reduce in MapReduce most definitely 
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describes a physical operator: keys 
arrive at the reducer in sorted order, 
which all but prescribes how the shuf-
fle group-by must be implemented. (In 
reality, it was closer to the other way 
around: the framework developers 
came up with an efficient sort-based 
shuffle grouping implementation, and 
then shrugged, “well, we might as 
well expose this in the API.”)

In contrast, the Spark reduce-
like transformations leave open the 
implementation, and indeed Spark 
can select between a hash-based and 
a sort-based shuffle scheme. In prac-
tice, however, hash-based shuffling 
suffers from scalability limitations 
beyond a certain point, and thus sort-
based shuffling has been the default 
since Spark 1.2. So, while reduce-like 
transformations are nominally logical 
operators in Spark, they’re severely 
constrained by the practicalities of 
execution performance. Once again, 
the rubber of clean design meets the 
road of implementation realities.

Other Spark 
Transformations
At this point, I’ve compared Spark’s 
map-like transformations with mappers 
in MapReduce and Spark’s reduce-like 
transformations with combiners and 
reducers in MapReduce, arguing that 
there’s a certain elegance in the sim-
plicity of MapReduce, particularly in 
providing developer access to physi-
cal operators, including the ability to 
explicitly manage object lifecycles. 
But Spark has many transformations 
beyond map-like and reduce-like trans-
formations, and this is where Spark 
really shines.

In Spark, joins are first-class 
citizens expressed concisely at the 
logical level. Spark transformations 
let the developer explicitly refer-
ence the two different RDDs that are 
participating in the join (inner, left, 
right, or full outer). In contrast, get-
ting MapReduce to do joins is a huge 
kludge. In essence, the developer 
must code up the actual physical 

join plan using only map and reduce, 
unless a SQL-on-Hadoop platform 
like Hive is used.

In a standard MapReduce reduce-
side join, because we can only map 
over a single input, to join R and S 
we’d have to mash together R and 
S in the input specification, and 
then in the mapper figure out if 
we’re dealing with a record from R 
or a record from S (for example, by 
examining the input path). The join 
key is emitted as the intermediate 
key with the record as the value; the 
framework brings all records with 
the same join key together in the 
reducers, where the join processing 
actually happens.

On the other hand, if we wanted to 
do a copartitioned sort−merge join, often 

called a map-side join in MapReduce par-
lance, the implementation is even uglier. 
Typically, we map over one of the collec-
tions (say, R) and inside the mapper read 
(directly from HDFS) records from the 
other collection (S). Yuck!

Here, Spark claims a mic-drop 
moment. A join is simply r.join(s). 
That’s it. The join is specified logi-
cally, and thus Spark is able to figure 
out the best physical join plan behind 
the scenes. Beyond joins, Spark’s set-
like operations (union, intersect, 
distinct, cartesian) also have no 
equal in MapReduce. It’s doable in 
MapReduce, but ugly.

So What Do We Really Need?
If MapReduce specifies two physical 
operators — partitioned per-record 
processing (map) and partitioned sort-
based shuffle grouping (reduce) — we 
might wonder what’s missing in its 
repertoire?

The major glaring hole in the design 
of MapReduce is the lack of operators 

that process two distinct datasets — which 
is why joins are so painful to implement. 
In particular, I see the need for two opera-
tors: a shuffle cogrouping operator (let’s 
call it coreduce) and a copartitioned, 
cogrouping operator (let’s call it comap). 
Both operators would take two collections 
of key-value pairs, R: (K, V1) and S: 
(K, V2), and guarantee that values with 
the same key from both collections are 
available for processing together, some-
thing like process(K, Iterator<V1>, 
Iterator<V2>). The coreduce operator 
would provide a general implementa-
tion via shuffling, whereas comap would 
assume that the input collections are 
copartitioned. With coreduce and comap, 
we can efficiently implement joins as well 
as the set-like transformations that Spark 
provides.

Interestingly, with map, comap, 
reduce, and coreduce, we arrive at 
something that’s pretty close to Spark’s 
actual physical operators. If we take a 
look at Figure 4 in the original Spark 
paper,7 the wide dependencies are 
essentially reduce and coreduce, and 
the narrow dependencies are essentially 
map and comap. Unfortunately, in 
Spark, you don’t have access to these. 
Often, I wish I did.

Given this discussion, we arrive 
at another way to think about the 
relationship between MapReduce and 
Spark in the context of data-paral-
lel dataflow languages: MapReduce 
provides two physical operators that 
specify exactly how to wire up a data-
flow graph for execution. The two 
physical operators are impoverished, 
which makes wiring up dataflow 
graphs to accomplish certain tasks 
(for example, joins) rather painful.

Spark, on the other hand, provides 
a set of logical transformations on col-
lections that afford different physical  

Once again, the rubber of clean design meets 
the road of implementation realities.
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collection of key-value pairs. In 
fact, in Hadoop you call the Context.
write() method to actually emit 
intermediate key-value pairs. The map 
transformations filter, map, flat-
Map in Spark, on the other hand, don’t 
tie the framework to any particular 
implementation. There’s no reason, for 
example, why each input record can’t 
be processed by a separate thread, 
which might make sense if Spark were 
implemented in Erlang due to its sup-
port for lightweight threads.

But here’s where the rubber of clean 
abstraction design meets the road of 
real-world constraints: mapParti-
tions and mapPartitionsWithIndex 
in Spark hard code aspects of physi-
cal execution, which ruin the elegance 
of Spark transformations. The ability 
for developers to manipulate physi-
cal operators in MapReduce affords a 
high degree of flexibility (as is gener-
ally the case when physical operators 
are accessible); this control is ceded 
for cleaner logical operators in Spark, 
but unfortunately Spark isn’t able to 
completely deliver on elegance.

The Reducers
Now let’s turn our attention to reduc-
ers. The reducers in MapReduce have 
a signature of g: (T, Iterator[U]) 
⇒ Seq[(R, S)]. That is, the reducer g 
takes an object of type T (the interme-
diate key) and an iterator over values 
of type U (the values associated with 
that intermediate key), and returns 
any number of output key-value pairs 
(of any arbitrary type). In MapReduce 
there are also combiners, with the same 
signature. Combiners perform per-key 
aggregation on the output of the map-
pers, prior to the network shuffle. In 
reality, however, Hadoop also sneaks in 
combiner execution on the reduce end, 
post-shuffle. And oh, one more detail: 
the T’s are sorted (more on this later).

Similar to the mappers, developers 
can manage the reducer and combiner 
lifecycles via the setup and cleanup 
API hooks. To accomplish the equiva-
lent in Spark, you’d have to do some-

thing like groupByKey followed by 
mapPartitions. At that point, you’re 
basically just writing MapReduce in 
Spark, which is fine — but just don’t 
be hatin’ MapReduce. (Not to mention 
that a straight-up groupByKey isn’t 
particularly efficient because it doesn’t 
do map-side aggregation; of course, 
you can add in map-side aggregation, 
but then, my original point remains — 
it’s basically back to MapReduce.)

Okay, so in MapReduce we have 
reducers and combiners, and that’s it. 
Oh, there are also partitioners, which 
simply divide up the intermediate key 
space, but you can’t get away without 
having something like that (and Spark 
has partitioners also). In Spark, there’s 
a number of reduce-like operations 
(leaving aside joins and cogrouping for 
now): groupByKey, reduceByKey, and 
aggregateByKey. What do these all do?

The reduceByKey transformation 
takes g: V × V ⇒ V. In other words, 
V forms a commutative monoid with 
g as its associative binary operation 
(more precisely, a commutative semi-
group, because left unspecified is 
the identity element). Implicit in the 
semantics of reduceByKey is that g 
must be associative and commutative, 
because otherwise the execution sim-
ply wouldn’t be correct: Spark’s doc-
umentation was previously muddled 
(see SPARK-12844) but it has since 
been fixed. In contrast, a system like 
Summingbird renders the algebraic 
properties of the types explicit.10

Leaving issues with precise execu-
tion semantics aside, reduceByKey is 
actually quite restrictive, because the 
input and output types can’t change. 
This is both a plus and a minus. The 
positive is that Spark can take the 
function g that goes into reduceByKey  
and move it over to the map side, 
that is, before the network shuffle, 
in a completely transparent manner. 
So, there’s no need to explicitly write 
combiners — the framework optimizes 
for you. The downside is that all the 
values have to be type V and the func-
tion must also operate on that type.

What if I want to be a bit more 
flexible on the output type? This is 
where aggregateByKey comes in: the 
transformation takes f: U × V ⇒ U, 
g: U × U ⇒ U; in other words, f allows 
you to convert from type V (the input 
type) to type U (the output type) while 
performing intermediate aggregation, 
and g specifies how you combine val-
ues of type U together. With this setup, 
f automatically can be pushed over to 
the map side for efficient intermediate 
aggregation.

What if you still can’t get all the 
types to work out correctly? Well, 
then you’re back to groupByKey fol-
lowed by a map-like transforma-
tion — get the framework to group 
together all the values with the same 
intermediate key for you, and then 
apply whatever computation you 
want yourself. At that point, though, 
the framework can’t perform any 
optimizations behind the scenes, and 
performance will suffer because of the 
shuffling of lots of intermediate data 
across the network.

One way to think about these 
reduce-like operations in Spark is in 
terms of the tradeoff between simplic-
ity, flexibility, and performance. With 
reduceByKey, you get simplicity and 
performance, at the cost of flexibil-
ity. With aggregeteByKey, you gain 
a bit of flexibility at the cost of sim-
plicity, but still get good performance. 
With groupByKey, you get simplicity 
and maximum flexibility, but at the 
cost of performance. Contrast this 
with MapReduce, where you only get 
reducers and combiners, but there 
isn’t anything you fundamentally 
can’t do because you have low-level 
control over the physical execution. 
It’s not clear that the Spark panoply 
of reduce-like transformations is eas-
ier to understand or use.

What do we see if we compare 
reducers in MapReduce with reduce-
like transformations in Spark through 
the lens of the logical/physical dis-
tinction discussed previously? The 
reduce in MapReduce most definitely 
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execution plans — in other words, it 
provides a higher level of abstraction. 
My nitpicky complaint, summarizing 
the previous discussion, is that these 
logical transformations are in some 
cases inelegant and adulterated with 
abstraction-breaking assumptions 
about physical execution.

Thus, comparing MapReduce to Spark 
is a bit like comparing apples to oranges. 
Better points of comparison are actually 
Pig11 and DryadLINQ,12 both of which 
provide high-level transformations  
for manipulating collections of records. 
However, a thorough analysis is perhaps 
better left for another column.

A s I intimated at the beginning of 
this column, although this discus-

sion might be interesting from an aca-
demic or historic perspective, none of 
these issues particularly matter. In the 
evolution of big data processing tech-
nologies, the broader trend is toward 
increasing levels of abstraction that 
isolate the data scientists from the 
particulars of execution. In the Spark 
ecosystem, for example, there’s a 
growing emphasis on DataFrames13 as 
the default abstraction for manipulat-
ing datasets, as opposed to raw trans-
formations on RDDs (which basically 
makes all discussion in this column 
irrelevant).

Today, these increasing levels of 
abstraction naturally segment into 
different verticals. As my colleague 
Ihab Ilyas opines, “data analytics 
will go vertical” — tackling specific 
market segments such as financial, 
pharmaceutical, healthcare, energy, 
the Internet of Things, and so on. I 
hear similar musings from inves-
tors: general infrastructure plays 
are becoming increasingly difficult 
in today’s already crowded space, 
and going vertical is one avenue for 
differentiation.

At a high level, this column is a 
navel-gazing critique about instruction-
set architectures for the datacenter com-
puter. If the reduced versus complex 

instruction-set computing (RISC versus 
CISC) wars of the 1980s are a guide, 
ultimately, it doesn’t matter,14 and peo-
ple only care about applications in the 
end. Well, not quite: people who write 
compilers still care — and if we follow 
this analogy, analytics infrastructure 
builders are the compiler writers of the 
21st century for datacenter computers.  
We’ll quibble about how high-level data 
science directives (such as “Train this 
machine-learning model!”) translate 
into physical execution on warehouse-
scale clusters; obviously important, but 
mostly relegated to a highly-specialized 
and esoteric craft. 
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Big Data and Big 
Money
The Role of Data in the 
Financial Sector

W
hen we think of in-
dustry sectors driv-
en by high tech, for 
some people, per-

haps, banking is not the first that 
comes to mind. However, when 
we consider the 3Vs of big data1—
volume, velocity, and variety—it 
is hard to think of many sectors 
whose requirements fit so nicely 
into the guidelines. For example, 
in April 2016 alone, the foreign 
exchange (ForEx) markets aver-
aged US$5.1 trillion per day.2 The 
ForEx markets provide real-time 
exchange rates between currencies 
across the world, facilitating global 
business and settlements.

In this article, I discuss the rele-
vance of big data approaches to the 
financial sector, outlining chal-
lenges to adoption as well as fu-
ture opportunities for technology 
development. Because of its trans-
action and money volumes, I focus 
on corporate banking (financial 
markets, corporate credit, trading, 
and so on), although many appli-
cation areas are also relevant to 
consumer finance.

Big Data in the  
Financial Sector
Let us first examine the relevance 
of the 3Vs to finance:

•	Volume is considered to reach 
big data levels at many Tbytes 
or even Pbytes of data. The fi-
nancial industry produces a 
huge volume of quotes, market 
data, and historical trade data. 
The New York Stock Exchange 
(NYSE) alone writes more than 
a Tbyte per day.3

•	Velocity suits big data when the 
speed of data storage or process-
ing is on the order of 105 trans-
actions per second or more.  
Generating data at this speed is 
no challenge for the financial  
markets. Moreover, the faster sys-
tems can process trade data, the 
faster they can manage trading.

•	Variety implies that big data al-
gorithms do well with various 
formats and data sources. In 
corporate banking, institutions 
work with reference data (about 
legal entities, for example), trade 
and market data, requests from 
clients (by electronic and voice 
means), and many other sources.

What makes the financial sec-
tor even more interesting from a 
big data standpoint is the constant 
stream of new regulations and re-
porting standards that bring new 
data sources and more complex 
metrics into financial systems. 

This makes the sector a very inter-
esting place for the data scientist.

The ForEx markets, as men-
tioned earlier, trade 24 hours per 
day, from morning in Sydney to 
evening in New York, except for 
a small window during the week-
end. Additionally, algorithmic 
trading has been used in the fi-
nancial markets for a long time in 
one form or another. The NYSE 
introduced its Designated Order 
Turnaround (DOT) system in the 
early 1970s for routing orders to 
trading desks, where the orders 
were executed manually. Now, al-
gorithmic trading systems break 
very large orders into smaller piec-
es that are executed automatically 
based on time, price, and volume, 
optimized for market parameters.

On a continuous basis, the pro-
cessing of large volumes of data 
is used for reporting purposes in 
financial institutions:

•	Banking and financial market 
regulations more and more of-
ten require the calculation of 
various complex metrics, such as 
XVA (valuation adjustments of 
derivative instruments, based on 
counterparty credit risk, cost of 
funding, margin, and so on). Such 
metrics are used, for example, to 
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set the minimal capital reserves of 
a bank, which directly influences 
the bank’s profitability.

•	Time-sequenced transactional 
data is analyzed to model mar-
ket and customer behavior. For 
example, mapping trade volume 
with time could help to predict 
the probability of a default on 
credit, saving a bank lost re-
sources on a loan.

Some large financial institutions 
have been slow to adopt big data ap-
proaches, but market research from 
PwC has clarified some of the or-
ganizational and cultural inhibitors 
to adoption in these institutions,4 
many of which are relevant in oth-
er industrial sectors as well. First, 
some financial-sector managers feel 
that big data algorithms solve tech-
nical problems, but not business 
problems. However, when the data 
is generated by the business, and 
the results are used by the business, 
it is clear that technology is sup-
porting the business. Some do not 
understand how to gain value from 
their datastreams, while some feel 
that big data approaches improve 
technical efficiency but do little for 
the bottom line. However, the deep 

analysis that big data approaches 
can provide can directly support 
business growth and improved ef-
fectiveness. The financial sector 
has not traditionally been a desti-
nation for data scientists, so some 
institutions have met with difficulty 
in finding and attracting the needed 
skills to their organizations. Finally, 
even when the will for transforma-
tion is in place, it might not be clear 
how and where to start transform-
ing an enterprise to utilize big data 
approaches.

However, banking is among the 
top industry sectors investing in 
big data analytics, according to a 
recent study from IDC,5 as Figure 1  
shows. Moreover, financial tech-
nology, or FinTech, companies are 
developing solutions and products 
for a range of banking needs for 
asset and wealth management; 
Figure 2 breaks out the propor-
tion of FinTech companies per 
area according to PwC.6 Follow-
ing this trend, there is a growing 
body of research and algorithm 
development around other uses of 
financial data for increasing busi-
ness effectiveness. We next exam-
ine a few of these.

Market Trading Patterns
Adaptive models of market trading 
patterns can provide input to in-
vestment strategies for buying and 

selling certain types of assets. This 
section explores one example.

Ex-dividend Day (also called 
X-Day) is the first trading day 
when the seller of a depository 
receipt (DR) has the right to re-
ceive the last dividend payout. 
Before X-Day, the buyer of the 
DR would receive the div idend 
payout. American DRs (ADRs) 
are financial instruments traded 
in the US market by non-Amer-
ican companies. As such, there 
is a dual tax burden on the divi-
dends: the US taxes and the tax 
withholding in the country that 
issued the ADR. As a result, in-
vestors are motivated to sell 
ADRs before X-Day and to buy 
after X-Day. Naturally, tax policy 
has a strong influence on the sta-
bility of the ADR market.

In recent work, Bi-Huei Tsai 
examined the ADR market to 
understand market trading vol-
umes.7 Analysis of such markets 
by such a class of algorithms 
could be used to suggest opti-
mal trading times based on re-
cent market volumes. The author 
analyzes excess ratios of ADR 
volume (the daily trading volume 
minus the “normal” daily trading 
volume) during the ex-dividend 
period (X-Day +/– 10 days), posi-
tively correlated to dividend taxes, 
providing a model of tax policy’s 

Figure 1. The 2016 market for big 
data analytics (US$130.1 billion). 
(Original data from IDC5)
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Big Data and Big 
Money
The Role of Data in the 
Financial Sector

W
hen we think of in-
dustry sectors driv-
en by high tech, for 
some people, per-

haps, banking is not the first that 
comes to mind. However, when 
we consider the 3Vs of big data1—
volume, velocity, and variety—it 
is hard to think of many sectors 
whose requirements fit so nicely 
into the guidelines. For example, 
in April 2016 alone, the foreign 
exchange (ForEx) markets aver-
aged US$5.1 trillion per day.2 The 
ForEx markets provide real-time 
exchange rates between currencies 
across the world, facilitating global 
business and settlements.

In this article, I discuss the rele-
vance of big data approaches to the 
financial sector, outlining chal-
lenges to adoption as well as fu-
ture opportunities for technology 
development. Because of its trans-
action and money volumes, I focus 
on corporate banking (financial 
markets, corporate credit, trading, 
and so on), although many appli-
cation areas are also relevant to 
consumer finance.

Big Data in the  
Financial Sector
Let us first examine the relevance 
of the 3Vs to finance:

•	Volume is considered to reach 
big data levels at many Tbytes 
or even Pbytes of data. The fi-
nancial industry produces a 
huge volume of quotes, market 
data, and historical trade data. 
The New York Stock Exchange 
(NYSE) alone writes more than 
a Tbyte per day.3

•	Velocity suits big data when the 
speed of data storage or process-
ing is on the order of 105 trans-
actions per second or more.  
Generating data at this speed is 
no challenge for the financial  
markets. Moreover, the faster sys-
tems can process trade data, the 
faster they can manage trading.

•	Variety implies that big data al-
gorithms do well with various 
formats and data sources. In 
corporate banking, institutions 
work with reference data (about 
legal entities, for example), trade 
and market data, requests from 
clients (by electronic and voice 
means), and many other sources.

What makes the financial sec-
tor even more interesting from a 
big data standpoint is the constant 
stream of new regulations and re-
porting standards that bring new 
data sources and more complex 
metrics into financial systems. 

This makes the sector a very inter-
esting place for the data scientist.

The ForEx markets, as men-
tioned earlier, trade 24 hours per 
day, from morning in Sydney to 
evening in New York, except for 
a small window during the week-
end. Additionally, algorithmic 
trading has been used in the fi-
nancial markets for a long time in 
one form or another. The NYSE 
introduced its Designated Order 
Turnaround (DOT) system in the 
early 1970s for routing orders to 
trading desks, where the orders 
were executed manually. Now, al-
gorithmic trading systems break 
very large orders into smaller piec-
es that are executed automatically 
based on time, price, and volume, 
optimized for market parameters.

On a continuous basis, the pro-
cessing of large volumes of data 
is used for reporting purposes in 
financial institutions:

•	Banking and financial market 
regulations more and more of-
ten require the calculation of 
various complex metrics, such as 
XVA (valuation adjustments of 
derivative instruments, based on 
counterparty credit risk, cost of 
funding, margin, and so on). Such 
metrics are used, for example, to 
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influence on the ADR market. 
Both traders and government tax 
authorities could use such mod-
els to create strategy.

Real-Time Credit Ratings
An application that isn’t specific 
to financial markets but has rel-
evance to banking for consumers 
and small and medium business-
es is processing data to produce 
credit scores for applicants in real 
time. For example, FinTech com-
panies such as Klarna, Lenddo, 
and Credit Karma provide ser-
vices related to online credit scor-
ing and verification. In recent 
work, Ying Wang, Siming Li, and 
Zhangxi Lin examine the poten-
tial for real-time credit scoring for 
e-commerce.8

Anyone who has applied for a 
significant amount of credit will 
be familiar with the timeline 
of the process. Traditionally, 
banks collect information about 
the applicant from both the ap-
plication form and other sources. 
Specialists analyze this informa-
tion to create a credit proposal 
for the client, which includes the 
interest rate and terms of repay-
ment. There might be some ne-
gotiation between the applicant 
and the bank, including tradeoffs 
between various loan parameters 
for better overall terms. After the 
credit contract is signed, the cli-
ent can engage in his or her fi-
nancial activity and further pay 
off the loan.

Not only do data collection and 
terms negotiation take time, but 
two factors complicate the pic-
ture. First, many of the central 
data stores used for credit rat-
ings are updated only monthly, 
so the client’s recent financial 
problems might not be known 
to the bank from such sources. 
Moreover, nonfinancial factors 
could play a role in the risk of 
default. The authors examined 
several such factors relating to a 

large e-commerce platform: fre-
quency of login to the platform, 
provision of additional contact 
data (including mobile telephone 
number), volume of transactions 
in the last month, number of suc-
cessful transactions overall, time 
as a client of the platform, the cli-
ent’s business sector, and so on. 
The authors use linear regression 
analysis over groups of these pa-
rameters on historical client data 
to derive a correlation between 
the probability of default and the 
various parameters. The result is 
a model that could facilitate real-
time credit ratings for the e-com-
merce platform, based on online 
behavior. Such parameters are 
not even present in traditional, 
central credit-rating databases.

Banking Becomes  
More High-Tech
The two examples described are 
by no means a limit to the applica-
tions of big data algorithms in the 
financial sector. Although no one 
can predict the future markets a 
hundred percent, deep analysis of 
historical data and current market 
parameters provide sophisticated, 
adaptive models of tendencies 
and behaviors in the markets. In 
turn, such models facilitate bet-
ter-informed and faster decisions 
by traders (including trading sys-
tems), financial institutions, and 
other players.

The opportunity for IT Pro’s 
readers is to develop new 
technologies and solutions 

for a fast-growing sector. Funding 
for FinTech more than doubled be-
tween 2014 and 2015,6 indicating 
both opportunity and a need for 
such products and solutions. The 
broad categories shown in Figure 
2 leave a great deal of room for in-
novation in product, process, and 
customer experience. It might not 
be long before banking comes to 

mind first when we think of indus-
try sectors driven by high tech. 
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N icole Perlroth covers cyberse-
curity for the New York Times 

and the Bits Blog. Before joining the 
San Francisco bureau in 2011, she 
was deputy editor at Forbes, where 
she covered venture capital and web 
start-ups. Perlroth is the recipient of 
several journalism rewards for her 
reporting on efforts by the Chinese 
government to steal military and in-
dustrial trade secrets.

According to rumor, the first pitch 
you ever did landed you on the front 
page of Sunday’s Post, so do tell.
Yes, at the time, I hadn’t done any-
thing in journalism. I didn’t work for 
a student paper or have ambitions of 
being a journalist. After Princeton, I 
took some jobs that a lot of gradu-
ates take. I was a consultant for a 

little while. I worked on Capitol Hill 
for a little while. I worked in mar-
keting for Coach, the handbag com-
pany, for a little while. And I just 
thought all of these jobs were com-
pletely mind-numbing. I just missed 
any kind of intellectual stimulation.

So I ended up taking one of those 
adult continuing-studies classes at 
NYU at night—a feature-writing 
class. The guy who taught it, a business 
columnist at the New York Post, said 
“you know you have some skills here, 
I think you should try freelancing.”

Actually, he gave me an assign-
ment. Some of your listeners may 
remember someone found rats 
doing cartwheels in the back of this 
Taco Bell/KFC. So he said, “Why 
don’t you do a freelance story for 
the New York Post about how it’s 
not just Taco Bell. All these expen-
sive restaurants probably have rat 
problems too.” So I said, “Okay.”

By day I’m working at this lux-
ury handbag company and by night 
I’m going through the Department 
of Health’s restaurant records to see 
which of these nice restaurants had 
rat problems. And I found that a res-
taurant that I really like had one of the 
most horrific health records I’d seen; 
it was horrendous. I couldn’t wrap my 
head around it because I’d just been 
there, and it was really clean.

So I called them and I said, “I 
happened upon your health record, 
and I really can’t parse this because 
I was just at your restaurant. It 
seemed pretty clean and sanitary to 
me.” And they said, “Well, thanks 
for calling. Actually, the health 
inspector came to our restaurant 
to do his review, and he ended up 
getting drunk at the bar and pass-
ing out for two hours. And we think 
he just made a bunch of stuff up on 
our report to justify to his supervi-
sor why it took him so long to do 
the inspection.” So I said, “You have 
got to be kidding. If only there were 
proof of this. We should get this 
guy.” And they said, “Well actually, 
we have a camera in the restaurant 
that caught some of this.”

So there was proof?
There was proof. I had no idea what 
kind of story I had. I sheepishly 
walk into the New York Post and say, 
“I’m really sorry I didn’t get to do 
this assignment the way you envi-
sioned it, but I did end up getting 
video footage of the health inspec-
tor drunk, passed out at the bar, 
and making up this whole report.” 
It went on the cover of the Sunday’s 
New York Post with a great headline 
that said something like “Rat Nap 
Inspector Snoozoo.”

After that I was hooked. The guy 
was fired. The Department of Health 
had to have new rules for inspections, 
and there had to be some follow up 
with the restaurants. To see the impact 
of something that started out as such a 
silly assignment was pretty cool.

I was going to ask you what got you 
into covering information security, 
but if you start with rats, why not 
just keep on going?
Exactly. I mean I didn’t choose infor-
mation security. While at Forbes,  
I was based in Silicon Valley, 
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covering venture capital during the 
heat-up ahead of Facebook’s IPO, 
including a lot of the investors and 
some of the private-share sales. So 
I got a few cover stories in Forbes. 
One day, I got a call from a blog edi-
tor at the New York Times, who said, 
“We’re looking at you for a job; it’s 
cybersecurity.” And I remember 
thinking, you want to take me off 
this gravy train to cover cyberse-
curity. I honestly didn’t think I was 
qualified. I told myself, well it’s an 
honor to get invited into the New 
York Times building and go to New 
York for these interviews, so I’ll just 
be myself and see what comes of it. 
But lo and behold, I ended up get-
ting the job, and the rest is history.

So how does venture capital com-
pare to the others you’ve covered?
Venture capital is interesting because  
it’s very self-promotional. I get a lot of 
calls from venture capitalists trying to 
get me to write them a glowing profile, 
which is similar in some ways to infor-
mation security because we constantly 
get pitched by cybersecurity firms or 
firms that want to slap the word cyber 
onto their website, looking for promo-
tion. Dealing with the self-promoters 
was very good training for me.

It’s no longer even the reporting 
and writing that’s the hardest part 
of my job these days. It’s the day 
after the story publishes, on Twitter. 
When you’re writing for a layperson 
audience, the technical audience is 
never going to be happy with how 
you’re covering information secu-
rity. Dealing with such a hypercriti-
cal, vocal, philosophical, almost 

religious-like community has been 
the hardest part; nothing prepared 
me for that.

You’ve been involved with some re-
ally big stories, including the recent 
“Russian Election Hacking Efforts, 
Wider Than Previously Known.”
As you know, you can look out ahead 
of the 2018 elections and see what’s 
being done to prevent another situ-
ation like the one we had in 2016. 
I started digging around and found 
that there were still many more 
unresolved issues from the 2016 
election than had been covered by 
the mainstream media.

One of the things that was so 
soothing after the election was we 
knew Russia had done a series of dis-
information campaigns. We knew  
about the propaganda efforts, 
although at that point, we didn’t 
know the extent of them. But for 
the most part, the intelligence 
report that came out last January 
delivered the message: Despite all 
those efforts to influence the 2016 
campaign, Russia stopped short of 
hacking the actual tallies.

What I’ve learned in the report-
ing is that this conclusion came pre-
dominantly from spies, spies that 
we have and digital intercepts of  
Russian communications. Someone 
likely told someone else, we didn’t 
hack the vote count, and they were 
really surprised that Trump had 
won without those efforts.

But no real forensic effort had 
been made to ensure that some of 
the systems that were hacked on the 
back end didn’t impact the votes.

One place that kept coming up 
in my conversations was Durham, 
North Carolina. The county used an 
electronic poll book vendor called VR 
Systems that we know, from a leaked 
NSA report, had successfully been 
hacked by the Russian GRU. A lot of 
the problems on Election Day fit the 
MO of someone trying to create chaos 
or prevent people from voting. Dur-
ham is a predominantly blue county 
in a swing state. As we dug deeper, 
we found that there were instances of 
people showing up with their regis-
tration cards and being told that they 
were no longer registered and they’ve 
been marked as inactive, or they voted 
early when they hadn’t, or they voted 
absentee when they hadn’t.

Fishy.
It was written off as a glitch, but no 
one had ever done a forensics inves-
tigation. Then I found out the county 
had hired a local security company 
to do some forensics investigation. I 
got my hands on that report; it was 
like an old cop report where they 
had gone to poll workers and writ-
ten, “at 6:09 I interviewed Judy from 
precinct number three.” But there 
was no actual forensics analysis. The 
US Department of Homeland Secu-
rity and FBI never analyzed the sys-
tems in Durham, because they have 
to be invited by the county and the 
state, and the state had rebuffed their 
efforts. I started unraveling this and 
realized that this tale was more com-
mon than we knew.

I hope that story gets more atten-
tion. It seems easy to cover spectac-
ular failures like the Equifax breach, 
because humans love to read about 
disasters. But how do we get cover-
age for important but not really sexy 
computer security stuff like soft-
ware security?
As far as software security, I think 
people are getting more inter-
ested in it. In the book I’m writ-
ing about the exploit market [This 
Is How They Tell Me the World Will 
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End], I’m hoping to end on soft-
ware security because there’s now 
more awareness of vulnerabilities 
and how big an impact human 
error and sloppiness can have. And 
there was a big focus on the Equi-
fax breach, at least initially, on the 
vulnerability.

Another thing that gave me hope 
was during Facebook’s IPO—I know 
this from my venture IP days—their 
philosophy was “move fast and break 
things.” And recently, while I was at 
Facebook headquarters, I saw that 
motto had been replaced: there were 
signs on the wall that said, “Move 
slowly and fix your sh*t.”

And the CSO at Facebook has had a 
good influence over there.
Oh yeah. And at Google, the amount 
of fuzzing that’s going on … they 
say that their motto since the 2010 
Chinese attack that happened there 
has been “never again,” that security 
and software security is extremely 
important to them. How that trick-
les down to Android I don’t know. 
But it’s something that’s getting 
talked about pretty seriously at the 
executive level at some tech compa-
nies, which is a good thing.

Do you think that CSOs are doomed 
to be the guy before the guy, or are 
you seeing forward progress?
I think that was the case in the past. 
But now that we’ve finally admitted 
that we’ve all been hacked, we want 
a veteran of serious nation-state 
attacks to protect our business 
because they understand that com-
pliance checklists aren’t going to 
cut it. I think that now it’s not the 
CSO that gets fired; it’s the CEO.

From your perspective, what one 
thing should we all do to encourage 
more women to join cybersecurity?
I don’t think we play up the sex appeal 
of cybersecurity enough. You’re  
not just coding; you’re playing cops 
and robbers. I talked earlier about how 
little intellectual stimulation there 

was in some of the jobs I’ve had. The 
cybersecurity world is full of intellec-
tual stimulation. It’s amazing—three 
days ago, I knew nothing about North 
Korean counterfeiting operations, 
but I had to go quickly study up on it 
because of the financially motivated 
attacks that North Korea has been 
launching to make up for the fact that 
it’s counterfeiting operations are no 
longer as effective.

There’s a real political bent to a lot 
of the nation-state attacks that we’re 
seeing. I don’t think people realize it’s 
not just code and it’s not just hack-
ers in their basements—there are 
real opportunities here to be on the 
front lines of history. And talk about 
employment security. You know the 
problem is only getting worse.

I actually met a young woman the 
other day who was going to Johns 
Hopkins, and she had sought out an 
internship related to cybersecurity 
for the summer. That was the first I’d 
heard of a freshman co-ed seeking out 
a job like this. Most people just fall 
into it. That was a nice thing to hear.

All right, very last question: where’s 
your favorite place to dive on the 
planet?
I’ve skydived in really ugly places, so 
New Jersey and Lodi, California—I 
couldn’t tell you which one was better.
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covering venture capital during the 
heat-up ahead of Facebook’s IPO, 
including a lot of the investors and 
some of the private-share sales. So 
I got a few cover stories in Forbes. 
One day, I got a call from a blog edi-
tor at the New York Times, who said, 
“We’re looking at you for a job; it’s 
cybersecurity.” And I remember 
thinking, you want to take me off 
this gravy train to cover cyberse-
curity. I honestly didn’t think I was 
qualified. I told myself, well it’s an 
honor to get invited into the New 
York Times building and go to New 
York for these interviews, so I’ll just 
be myself and see what comes of it. 
But lo and behold, I ended up get-
ting the job, and the rest is history.

So how does venture capital com-
pare to the others you’ve covered?
Venture capital is interesting because  
it’s very self-promotional. I get a lot of 
calls from venture capitalists trying to 
get me to write them a glowing profile, 
which is similar in some ways to infor-
mation security because we constantly 
get pitched by cybersecurity firms or 
firms that want to slap the word cyber 
onto their website, looking for promo-
tion. Dealing with the self-promoters 
was very good training for me.

It’s no longer even the reporting 
and writing that’s the hardest part 
of my job these days. It’s the day 
after the story publishes, on Twitter. 
When you’re writing for a layperson 
audience, the technical audience is 
never going to be happy with how 
you’re covering information secu-
rity. Dealing with such a hypercriti-
cal, vocal, philosophical, almost 

religious-like community has been 
the hardest part; nothing prepared 
me for that.

You’ve been involved with some re-
ally big stories, including the recent 
“Russian Election Hacking Efforts, 
Wider Than Previously Known.”
As you know, you can look out ahead 
of the 2018 elections and see what’s 
being done to prevent another situ-
ation like the one we had in 2016. 
I started digging around and found 
that there were still many more 
unresolved issues from the 2016 
election than had been covered by 
the mainstream media.

One of the things that was so 
soothing after the election was we 
knew Russia had done a series of dis-
information campaigns. We knew  
about the propaganda efforts, 
although at that point, we didn’t 
know the extent of them. But for 
the most part, the intelligence 
report that came out last January 
delivered the message: Despite all 
those efforts to influence the 2016 
campaign, Russia stopped short of 
hacking the actual tallies.

What I’ve learned in the report-
ing is that this conclusion came pre-
dominantly from spies, spies that 
we have and digital intercepts of  
Russian communications. Someone 
likely told someone else, we didn’t 
hack the vote count, and they were 
really surprised that Trump had 
won without those efforts.

But no real forensic effort had 
been made to ensure that some of 
the systems that were hacked on the 
back end didn’t impact the votes.

One place that kept coming up 
in my conversations was Durham, 
North Carolina. The county used an 
electronic poll book vendor called VR 
Systems that we know, from a leaked 
NSA report, had successfully been 
hacked by the Russian GRU. A lot of 
the problems on Election Day fit the 
MO of someone trying to create chaos 
or prevent people from voting. Dur-
ham is a predominantly blue county 
in a swing state. As we dug deeper, 
we found that there were instances of 
people showing up with their regis-
tration cards and being told that they 
were no longer registered and they’ve 
been marked as inactive, or they voted 
early when they hadn’t, or they voted 
absentee when they hadn’t.

Fishy.
It was written off as a glitch, but no 
one had ever done a forensics inves-
tigation. Then I found out the county 
had hired a local security company 
to do some forensics investigation. I 
got my hands on that report; it was 
like an old cop report where they 
had gone to poll workers and writ-
ten, “at 6:09 I interviewed Judy from 
precinct number three.” But there 
was no actual forensics analysis. The 
US Department of Homeland Secu-
rity and FBI never analyzed the sys-
tems in Durham, because they have 
to be invited by the county and the 
state, and the state had rebuffed their 
efforts. I started unraveling this and 
realized that this tale was more com-
mon than we knew.

I hope that story gets more atten-
tion. It seems easy to cover spectac-
ular failures like the Equifax breach, 
because humans love to read about 
disasters. But how do we get cover-
age for important but not really sexy 
computer security stuff like soft-
ware security?
As far as software security, I think 
people are getting more inter-
ested in it. In the book I’m writ-
ing about the exploit market [This 
Is How They Tell Me the World Will 
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Should Architects Code?
Eoin Woods

A FEW SOFTWARE architecture ques-
tions always light up the Twittersphere 
with controversy when asked:

• What is architecture, and is it just 
design?

• Do you need architecture in agile 
development?

• Should architects code?

I examined the fi rst two questions in 
previous columns1,2 and in this column 
address the third, which is an intriguing 
question without an obvious answer.

When people ask, “Should archi-
tects code?” or talk about “the coding 
architect,” they might be referring to 
anything from an architect or designer 
keeping a working knowledge of the 
technology in use (and being able to 
review and write code if necessary) to an 
architect spending signifi cant time writ-
ing a system’s production code.

Let’s assume that the question is sim-
ply whether the people performing the 
system’s architecture work should also 
develop some of the system’s production 
code.

Personal Motivations
Often, architecture work naturally 
diverts architects from spending large 
amounts of time developing a system’s 
production code. Architecture is a tech-
nical management activity that involves 
a range of work, not just coding. So what 
are some personal reasons for architects 
to continue coding work?

First, to lead a technical team, archi-
tects must build and maintain technical 

credibility so that other team members 
respect their opinions. Displaying strong 
coding skills can help build these techni-
cal credentials.

Second, architects should continue 
coding to maintain and improve their 
development skills—to not only achieve 
personal satisfaction but also set high 
yet realistic standards for others. Noth-
ing clarifi es expectations about “qual-
ity” and “craftsmanship” better than a 
well-written example.

Finally, many individuals became soft-
ware engineers because they like devel-
oping software. Coding can increase 
motivation while keeping skills current.

What Are the Benefi ts?
There are potential benefi ts to architects 
performing code development for their 
systems.

First, coding work offers a useful real-
ity check about the experience of work-
ing as a developer on the system. Are the 
technologies easy for developers to use? 
Is the build-and-release pipeline working 
effectively? Are there any serious impedi-
ments to developer effectiveness? By 
working as a developer, architects can get 
a good perspective on such questions.

Performing implementation work also 
lets architects see their architecture’s 
realization. This helps them more deeply 
understand their architectural decisions’ 
implications and spot possible problems 
and those inevitable places where the 
implementation strays from the plan.

Development work also helps archi-
tects stay current with their system’s 
technologies. Over time, technologies 
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get replaced or evolve. When archi-
tects stop coding regularly, they can 
lose sight of these important details.

What Are the Drawbacks?
Coding while performing architecture 
work poses some difficulties as well.

First, the architects’ priorities can 
become muddled—whereas their 
architecture work serves to make 
the team more effective, their devel-
opment work reflects more personal 
objectives. They must think about 
coding time in terms of its return on 
investment (ROI). The first few hours 
a week will likely yield a high ROI, 
but how about the 20th hour? By 
then, there are almost certainly other 
tasks architects should be doing to 
make the team more effective.

A project’s scale will affect the 
ROI estimation. The larger the 
team, the larger the delayed architec-
ture work’s impact. This is why I’ve 
reluctantly shrunk my coding time 
to almost zero on some projects—
too many other high-priority issues 
required my attention.

Second, development and archi-
tecture work differ fundamentally. 
Development work demands signifi-
cant periods of focused attention. 
Interruptions make developers less 
effective. In contrast, architecture 
work often involves reacting to ques-
tions or concerns and identifying 
and responding to risks or problems. 
It’s difficult to work in both ways  
at once.

Combined, these factors create the 
risk that a coding architect will block 
the project’s critical path. An archi-
tectural decision might not be made 
quickly because the architect is rac-
ing to finish a critical module. Or, 
an important feature might not be 
delivered because the architect was 
constantly interrupted while trying to 
finish an important part of the code.

A final factor that we architects 
might not want to admit is that, per-
haps, we aren’t as effective at coding 
as we used to be. Both technology 
and our individual skills change over 
time. If we’re not 100 percent focused 
on development tasks, are we truly 
still as productive as we once were?

How Can Architects  
Stay Involved?
By keeping their development work 
off the critical path, architects can 
mitigate problems caused by con-
flicting or changing priorities. To 
remain closely involved in their sys-
tem’s implementation while avoiding 
the problems I’ve discussed, archi-
tects can do the following:

• Fix bugs. Fixing defects can be 
instructive and directly valuable 
to the project. It provides insight 
into the developer experience and 
the strengths and weaknesses of 
the architecture and code.

• Refactor. Technical debt nearly 
always accumulates, so archi-
tects might tackle it in small, 
safe steps. They’ll quickly 
uncover any weaknesses in the 
architecture, implementation 
consistency, or tests.

• Investigate problems. Archi-
tects can get involved in debug-
ging and problem investigation. 
Whether it’s a performance 
problem, poor scalability, or a 
subtle intermittent error, they 
can offer a valuable perspective 
while learning about the quali-
ties their architecture provides.

• Test. Architects might well find 
that testing isn’t as thorough or 
sophisticated as they’d like. So, 
another opportunity for involve-
ment is to improve automated 
tests. This will let architects 
continue to code while helping 

to develop a shared understand-
ing with the team of how to test 
the system.

• Create architectural spikes. 
Perhaps the most obvious task 
to choose is carrying out the 
proof-of-concept exercises that 
support architectural decision 
making. Doing so can deepen 
architects’ knowledge of their 
decisions’ implications.

Architects should pair with devel-
opers whenever possible on these 
tasks. Not only can they share exper-
tise, but the architects can also learn 
from those closer to the state of the art.

It’s still important to keep an eye 
on the schedule, even for tasks off 
the critical path. If architects notice 
they’re running out of time or are 
about to be distracted by another 
priority, they must quickly reassign 
development tasks—no project man-
ager likes a surprise that has become 
difficult to mitigate.

S o, should architects code? My 
experience is that there’s gen-
erally a positive ROI when 

architects do carefully selected imple-
mentation work, whether it’s testing, 
refactoring, architectural spikes, or 
simply some part of the system where 
they’re the best person for the job. 
Provided the project’s scale allows it, 
doing some coding helps to root archi-
tecture work, keep architects’ tech-
nology knowledge up to date, and 
sometimes save their sanity!
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