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Abstract

The exposome concept promotes use of omic tools for discovering biomarkers of exposure and 

biomarkers of disease in studies of diseased and healthy populations. A two-stage scheme is 

presented for profiling omic features in serum to discover molecular biomarkers and then for 

applying these biomarkers in follow-up studies. The initial component, referred to as an 

exposome-wide-association study (EWAS), employs metabolomics and proteomics to interrogate 

the serum exposome and, ultimately, to identify, validate and differentiate biomarkers of exposure 

and biomarkers of disease. Follow-up studies employ knowledge-driven designs to explore disease 

causality, prevention, diagnosis, prognosis and treatment.
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Introduction

Although the term ‘biomarker’ refers to any measurable state in a living organism, a useful 

biomarker can differentiate between biological states, particularly those represented by 

diseased and healthy populations. Useful biomarkers are diverse, ranging from simple 

physiological parameters, such as blood pressure, to complex patterns in genome scans. 

Discovery of new biomarkers is important for epidemiology, which seeks causes of diseases 

(NRC 1987) (hereafter ‘biomarkers of exposure’), as well as for diagnosis and treatment of 

diseases (BDWG 2001) (hereafter ‘biomarkers of disease’). Both avenues of inquiry have 

benefited from recognition that diseases represent aberrations in molecular processes 

involving the genome and subsequent omic phenomena (Gerszten & Wang 2008; Griffin et 

al. 2011), features of which can potentially serve as biomarkers (Holmes et al. 2008b). This 

paradigm has motivated movement away from knowledge-based (reductionist) approaches 

for discovering biomarkers and towards data-driven (omic) strategies (Zhang et al. 2011). 

Since phenotypic variation is caused by a combination of genetic (G) factors and 

environmental (E) exposures (representing all non-genetic influences) (Gibson 2008; Smith 

2011), biomarkers are needed to classify both dimensions of the GxE space. Certainly 

genome-wide association studies (GWAS) offer superb descriptions of the G matrix 

(Goldstein 2009; Hindorff et al. 2009). However, elaboration of the E matrix has been 

impeded by conceptual and methodological hurdles (Vineis 2004; Thomas 2010; Rappaport 
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2011; Smith 2011). The imbalance in coverage of G- and E-related risks spawned the 

concept of the ‘exposome’, representing all environmental exposures received by an 

individual during life (Wild 2005). By functionally defining the exposome as the set of all 

biologically-active chemicals in a person's blood – from both exogenous and endogenous 

processes – it is possible to harness omic tools for filling in much of the E matrix (Rappaport 

& Smith 2010). Thus, biomarker discovery should be an essential element in characterizing 

health-impairing exposures. Subsequent knowledge-based investigations can link 

biomarkers with exposure sources, establish causality, and investigate the systems biology 

of important toxicants and disease processes, thereby offering avenues for prevention, 

diagnosis and treatment of diseases (Nicholson 2006).

Whereas the genome gives rise to a programmed set of molecules (Zhu et al. 2012) in the 

blood, the exposome is functionally represented by the complementary set of chemicals 

derived from sources outside of genetic control, including the diet (Holmes et al. 2008a), 

pathogens (Tsai & Chung 2010), the microbiome (Nicholson et al. 2005), smoking (Smith et 

al. 2003), psychosocial stress (Epel et al. 2006), drugs (Hiemke 2008) and pollution (Vineis 

& Perera 2007). By conducting exposome-wide association studies, or EWAS, it should be 

possible to discover components of the exposome that, over time, cause complex chronic 

diseases. Since only about one third of these disease risks have been attributed to known risk 

factors (primarily smoking, diet and exercise) (Lopez et al. 2006), EWAS are essential for 

establishing a firm molecular basis for environmental causes of disease. Carefully conducted 

EWAS can also differentiate biomarkers of exposure from molecular signatures of disease 

pathology, referred to here as biomarkers of disease. This commentary will develop a 

structured approach for joining EWAS, designed for biomarker discovery, with subsequent 

inquiries focusing upon disease causality, diagnosis and treatment.

Disease pathways

Although omic processes are conceptualized as a linear series, i.e. genome (DNA) → 

transcriptome (RNA) → proteome (large molecules) → metabolome (small molecules) 

(Wenk 2005; Gerszten & Wang 2008; Zhu et al. 2012), there is considerable cross talk 

among them, often involving epigenetic events. For example, some proteins can activate or 

repress transcription processes (MacQuarrie et al. 2011) and small reactive molecules can 

modify DNA, RNA and functional proteins to produce mutations and epigenetic changes 

(Sturla 2007; Liebler 2008). Thus it is reasonable to ask which ‘omes’ offers the most 

promise for discovering useful biomarkers? Before attempting to answer this question, it is 

helpful to consider the molecular nature of the exposome and its position in the GxE space 

that gives rise to disease phenotypes. Here, I will extend the informative construct of Schadt 

et al. (2005) that modeled complex disease traits by interactions between the genome (G) 

and transcriptome (R). As shown in Figure 1A, Schadt et al. differentiated gene pathways 

that initiate disease traits (‘causal pathway’) from those representing secondary traits 

resulting from disease progression (‘reactive pathway’). Although the influence of the 

environment (E) is depicted in Schadt's model by an ethereal link to the causal 

transcriptome, the nature and molecular basis for environmental effects were not elaborated. 

To include functional measures of cellular status and regulatory processes, Figure 1B 

extends Schadt's model to incorporate the proteome (P) and metabolome (M). This extended 
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model, posits that the primary biologic mechanism for implementing molecular signals of E 

is via M and P. In this depiction, M represents all small molecules and metals in the 

systemic circulation, regardless of their origins. Since it includes many reactive species, M 

can affect G (via mutation and epigenetic modifications), R (via epigenetic modifications) 

and P (via post-translational modifications). Of course, R is a major contributor to P, which 

can also affect G and R through epigenetic mechanisms. Thus, M, P, and R are all linked 

with each other, and with E generally, leading to correlated features in subject's omic 

profiles and the associated networks at a given time. Since connections among G, R, P and 

M exist in both the causal and reactive pathways in Figure 1B, the full transcriptome is 

represented by R = Rc + Rr, the proteome by P = Pc + Pr and the metabolome by M = Mc + 

Mr. As will be shown, this mingling of causal and reactive omes complicates differentiation 

between biomarkers of exposure and biomarkers of disease.

EWAS and applications of biomarkers

Figure 1B clarifies the role that EWAS can play in differentiating between biomarkers of 

environmental exposures (causal pathway) and biomarkers of disease (reactive pathway). 

Since biologically-active molecules are transported to and from cells and tissues by serum, 

the serum represents a reservoir of chemicals derived from both xenobiotic processes and all 

cellular genomes. In addition, serum is archived in many epidemiologic studies, including 

large prospective cohorts that offer particular advantages for comparisons of incident disease 

cases and controls (Collins 2004; Ollier et al. 2005; Pischon et al. 2008). Thus, it makes 

sense to focus on serum for characterizing exposomes and for linking exposures with 

disease. Indeed, one can envision a serum exposome, elaborated by measurements of M and 

P in serum or plasma. Prominent components of the serum exposome include lipids, sugars, 

nucleotides, amino acids and metabolites, reactive electrophiles (notably, reactive oxygen, 

nitrogen, chlorine and carbonyl species), drugs, metals, micronutrients, receptor-binding 

agents (e.g. hormones and xenoestrogens) and inflammatory markers (cytokines, 

chemokines, eicosanoids, vasoactive amines and growth factors) (Rappaport & Smith 2010; 

Li et al. 2011). Although the transcriptome (R) reflects effects of environmental factors 

(Gibson 2008), and with sufficient cataloguing of reference chemicals might offer clues 

regarding important exposures (Lamb 2007), it would generally be of secondary interest in 

identifying molecular biomarkers.

Figure 2 offers a protocol for conducting EWAS and follow-up studies, which borrows some 

characteristics from previous work (Hanash et al. 2008; Koulman et al. 2009; Kitteringham 

et al. 2009; Patel et al. 2010; Zhang et al. 2011). The protocol includes an initial data-driven 

phase to discover biomarkers, followed by a knowledge-driven phase to address hypotheses 

regarding disease causality and progression. Referring first to biomarker discovery, 

untargeted omic profiles (or semi-targeted profiles based upon large numbers of known 

analytes) would be compared between healthy and diseased subjects to seek features that 

consistently discriminate according to disease status. Because the serum exposome is 

staggeringly complex, a given EWAS would focus upon a class of omic features, such as, 

small polar molecules (Wang et al. 2011b), N-linked glycoproteins (Bones et al. 2011) or 

reactive electrophiles stabilized as adducts of human serum albumin (Li et al. 2011). Also, 
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several EWAS could investigate different classes of omic features with the same serum 

samples.

During the last decade, liquid-chromatography tandem mass spectrometry (LC-MS/MS) and 

nuclear magnetic resonance (NMR) spectroscopy have been increasingly used – along with 

multivariate statistics – to perform global analyses of small molecules and proteins in human 

serum (Hanash et al. 2008; Nordstrom & Lewensohn 2010; Roux et al. 2011; Calligaris et 

al. 2011). Although the scheme shown in Figure 2 anticipates that cross-sectional (case-

control) studies would provide serum for initial comparisons, samples from prospective 

cohorts would be preferred if they are available. In any case, given the high-dimensional 

data and associated false discovery rates, the strength of associations is enhanced when the 

same discriminating features are observed in independent studies.

The second step in the discovery phase involves unambiguous chemical identification of the 

discriminating features (Koulman et al. 2009). When mass spectral and chromatographic 

properties of these features match those in available databases, the identities can sometimes 

be determined relatively quickly by comparing accurate masses and retention times with 

reference standards. In other cases, identification requires laborious experiments involving 

high-resolution mass spectrometry, NMR, and synthesis of reference compounds. In any 

event, the identified molecules serve as candidate biomarkers for subsequent studies.

Since biomarkers can reflect either causal exposures or manifestations of disease 

progression (see Figure 1B), the discovery process concludes with targeted measurements of 

candidate biomarkers in archived serum from prospective-cohort studies, where specimens 

had been collected prior to diagnosis. Targeted analyses are amenable to high-throughput 

methods, appropriate for assays involving small quantities of serum from many subjects 

(Dieterle & Marrer 2008; Griffiths et al. 2010; Hanash et al. 2011). As shown in Figure 2, 

candidate biomarkers that remain associated with disease status would be regarded as 

biomarkers of exposure while those that don’t would be better suited for evaluating stages of 

disease progression and therapy (biomarkers of disease).

Biomarkers of exposure and disease that emerge from the discovery phase are worthy of 

additional inquiries, which harness knowledge-driven designs to investigate causality, 

prevention, diagnosis, prognosis and treatment of diseases (shown in the lower portion of 

Figure 2). Evidence that biomarkers of exposure are on the causal pathway (Hill 1965) 

would include a dose-response relationship (molecular epidemiology), correlation with 

identifiable sources of exposure and biotransformation (exposure biology) and links with 

additional omic and experimental models that provide mechanistic insights (systems 

biology). Likewise, the diagnostic and prognostic value of biomarkers of disease would be 

enhanced by knowledge of the systems biology, and drug development would benefit when 

biomarkers are measured in individuals at various stages of disease and under alternative 

therapeutic regimens (Baker 2005; LaBaer 2005; Dieterle & Marrer 2008).

Proof of concept studies

With the widespread availability of LC-MS/MS and NMR platforms, metabolomics and 

proteomics have been increasingly used to discover new biomarkers (Griffiths et al. 2010; 
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Gerszten et al. 2011). Because metabolomic methods currently enjoy a more mature state of 

standardization than proteomic methods, the avenues of research illustrated in Figure 2 will 

be illustrated with some recent studies of small molecules in serum or plasma from diseased 

and healthy subjects. To illustrate the breadth of diseases that have been investigated, Table 

1 reproduces a portion of a recent review by Nordstrom and Lewensohn (2010), which 

catalogued scores of metabolomic studies involving biofluids and tissue specimens. The 11 

publications summarized in Table 1 compare serum metabolomic profiles between cases and 

controls in investigations of neurologic, immunological and cardiovascular diseases and 

cancer. Despite the modest numbers of subjects (31–220 total case and control subjects), 

multiple discriminating features were observed in each of the studies. Because of high false-

discovery rates, this is to be expected and underscores the need for independent validation of 

discriminating features. Also, chemical identities were assigned to several discriminating 

features in 10 of the 11 studies and thus would serve as candidate biomarkers.

The metabolomic studies shown in Table 1 represent the first phase of EWAS, where 

discriminating features were sought in one or more cross-sectional studies of a human 

disease. To illustrate metabolomic applications that have proceeded further in the context of 

Figure 2, three additional investigations will be mentioned that validated candidate 

biomarkers in independent cross-sectional and/or prospective studies. The first, by Hazen 

and coworkers, began with untargeted metabolomics of polar molecules in plasma from two 

cross-sectional studies of cardiovascular disease (CVD) (Wang et al. 2011b). Of more than 

2000 features, 18 were associated with disease status in both sets of samples. Three of these 

were identified as choline and its two metabolites, betaine and trimethylamine N-oxide 

(TMAO). Targeted analyses of these candidate biomarkers in plasma from an independent 

sample of CVD patients showed atherosclerosis risks increasing with serum concentrations, 

particularly for TMAO, which displayed about a two-fold risk for the highest quartile of 

plasma levels compared to the lowest quartile. Experiments with mice showed that in vivo 

production of TMAO involved an intermediate step requiring gut microbes to metabolize 

choline to trimethylamine. This study indicates that TMAO is a potentially causal biomarker 

of dietary exposure to choline – which is derived from eggs, milk, red meat, poultry, seafood 

and lecithin (a prominent food additive) – and its interactions with the gut microbiome. 

Since both the diet and gut microbes vary significantly across human populations (Holmes et 

al. 2008a), TMAO could be an important biomarker for knowledge-driven studies of CVD.

The second study, by Gerszten and coworkers, investigated metabolite profiles as predictors 

of incident diabetes in serum from two large prospective cohort studies (Wang et al. 2011a). 

Based upon results from earlier cross-sectional studies, the investigators targeted 61 small 

polar molecules, notably amino acids and urea-cycle and nucleotide metabolites. Elevated 

levels of four branched-chain and aromatic amino acids (leucine, valine, phenylalanine and 

tyrosine) were significantly associated with incident diabetes in both cohorts up to 12 y 

before elevation of fasting glucose levels. Also, a three-amino acid panel (isoleucine, 

phenylalanine and tyrosine) predicted fourfold to sevenfold diabetes risks for the highest 

quartiles of measurements compared to the lowest quartiles in the two populations. This 

study strongly suggests that elevation of some amino acids in serum represents an early 

predictor of insulin resistance. Because these biomarkers of disease preceded clinical 
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symptoms of diabetes by several years, they could be useful for investigating disease 

mechanisms, diagnosis and therapy.

The final study highlights work by Ritchie and coworkers to discover biomarkers of 

colorectal cancer (CRC) (Ritchie et al. 2010a,b; Ritchie et al. 2011). Using untargeted 

measurements of several thousand small non-polar molecules in serum from three 

independent case-control studies, the investigators reported a set of 13 common features that 

were strongly associated with CRC. Although not unambiguously identified, these 13 

chemicals displayed mass spectral characteristics suggestive of a single class of 

gastrointestinal tract acids (GTAs) containing between 28 and 36 carbon atoms (Ritchie et 

al. 2010a). Because targeted follow-up analyses found lower levels of GTAs in CRC cases 

than in controls, the authors concluded that GTAs were protective of CRC, probably because 

they possess anti-inflammatory properties similar to those of the structurally similar 

resolvins and protectins that are products of omega-3 fatty acid metabolism (Ritchie et al. 

2010a; Ritchie et al. 2011). Results from additional cross-sectional studies of CRC patients 

showed that levels of GTAs were independent of tumor stage and did not return to normal 

values after surgical or drug interventions, while parallel measurements in controls showed 

significant reductions in GTA levels with age (Ritchie et al. 2010b). These results indicate 

that GTAs are potentially causal biomarkers of (protective) exposure that should be used in 

future investigations of causality and prevention of CRC and inflammatory bowel diseases.

Discussion

Biomarker discovery has grown dramatically over the last decade, mostly in the quest for 

biomarkers of disease that can guide development of drugs and diagnostic products. 

Although this research has been disappointing, in the sense that it has ushered relatively few 

commercial products through the validation pipeline (Baker 2005), it has vigorously 

embraced the omics revolution and thereby offers hope that whole new classes of 

biomarkers of disease will be found. Parallel developments of biomarkers of exposure have 

been more modest, not only because these biomarkers lack clear commercial interests, but 

also because knowledge-driven designs are still favored over omic tools for characterizing 

exposures. This is unfortunate because our current superficial understanding of 

environmental (i.e. non-genetic) causes of chronic diseases (Lopez et al. 2006) is unlikely to 

improve by investigating known or suspected risk factors with greater vigor. Given recent 

promotion of the exposome concept (Wild 2012) and its functional analog as the totality of 

bioactive chemicals in the blood (Rappaport & Smith 2010), it is now possible for 

epidemiologists to join the omics revolution, and thus for these two lines of biomarker 

discovery to converge. Models of disease pathways (Figure 1) provide insight into omic 

connections and also permit differentiation between bio-markers of exposure (causal 

pathway) and biomarkers of disease (reactive pathway).

This commentary offers a unified, structured scheme for using omics to discover biomarkers 

of both exposure and disease and then for exploiting these bio-markers in follow-up studies 

of disease causality, prevention, diagnosis, prognosis and treatment (Figure 2). The data-

driven component of the scheme, referred to as an EWAS, employs metabolomics and 

proteomics to interrogate components of the serum exposome in diseased and healthy 
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subjects and, ultimately, to identify and validate biomarkers of exposure and biomarkers of 

disease. Metabolomics and proteomics are highlighted because they represent identifiable 

molecular entities that reflect the interplay between genetic and environmental factors. 

Proof-of-concept EWAS have already identified promising new biomarkers of major 

chronic diseases, including cardiovascular disease, diabetes and cancer. Given the relentless 

advances in analytical platforms that are amenable to either untargeted profiling or high-

throughput, targeted analyses of small molecules and proteins, it is reasonable to anticipate a 

host of new biomarkers in the next decade. It should be exciting.
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Figure 1. 
Pathways showing influences of genetic (G) and environmental (E) factors on chronic 

diseases. A) Model of causal and reactive pathways due to effects of G and E on gene 

expression (R), as reported by Shadt et al. (Schadt et al. 2005). B) Model of causal and 

reactive pathways from (A) extended to include the proteome (P) and metabolome (M).
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Figure 2. 
Scheme for conducting exposome-wide-association studies (EWAS) to discover serum 

biomarkers of exposure and disease and for applying biomarkers to investigate disease 

causality, prevention, diagnosis, prognosis and treatment.
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Table 1

Summary of results from metabolomic investigations of serum/plasma from case-control studies, showing 

numbers of subjects, discriminating features and identified features, as reported by (Nordstrom & Lewensohn 

2010).

Disease Disease class No. of subjects Discrim. features Ident. features Reference

Huntington's disease Neurologic 50 15 15 (Underwood et al. 2006)

Parkinson's disease Neurologic 88 17 3 (Bogdanov et al. 2008)

Motor neuron disease Neurologic 58 76 0 (Rozen et al. 2005)

Celiac disease Immunologic 68 16 16 (Bertini et al. 2009)

Ischemia Cardiovascular 31 5 5 (Barba et al. 2008)

Myocardial injury Cardiovascular 72 13 13 (Lewis et al. 2008)

Myocardial ischemia Cardiovascular 36 23 6 (Sabatine et al. 2005)

Myocardial ischemia Cardiovascular 39 4 4 (Lin et al. 2009)

Renal cell carcinoma Cancer 129 14 14 (Gao et al. 2008)

Pancreatic cancer Cancer 190 3 3 (Beger et al. 2006)

Prostate cancer Cancer 220 10 10 (Osl et al. 2008)
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