Other Models of Computation

Models of computation:

- Turing Machines
- Recursive Functions
- Post Systems
-Rewriting Systems

Church's Thesis:

All models of computation are equivalent

Turing's Thesis:

A computation is mechanical if and only if
it can be performed by a Turing Machine

Church's and Turing's Thesis are similar:

Church-Turing Thesis

Recursive Functions

An example function:

We need a way to define functions

We need a set of basic functions

Basic Primitive Recursive Functions

Zero function:

$$
z(x)=0
$$

Successor function: $s(x)=x+1$

Projection functions: $p_{1}\left(x_{1}, x_{2}\right)=x_{1}$

$$
p_{2}\left(x_{1}, x_{2}\right)=x_{2}
$$

Building complicated functions:

Composition: $\quad f(x, y)=h\left(g_{1}(x, y), g_{2}(x, y)\right)$

Primitive Recursion:

$$
f(x, 0)=g_{1}(x)
$$

$$
f(x, y+1)=h\left(g_{2}(x, y), f(x, y)\right)
$$

Any function built from the basic primitive recursive functions is called:

Primitive Recursive Function

A Primitive Recursive Function: $\quad \operatorname{add}(x, y)$

$$
\operatorname{add}(x, 0)=x \quad \text { (projection })
$$

$\operatorname{add}(x, y+1)=s(\operatorname{add}(x, y))$
(successor function)

$$
\begin{aligned}
\operatorname{add}(3,2) & =s(\operatorname{add}(3,1)) \\
& =s(s(\operatorname{add}(3,0))) \\
& =s(s(3)) \\
& =s(4) \\
& =5
\end{aligned}
$$

Another Primitive Recursive Function:

mult (x, y)

$\operatorname{mult}(x, 0)=0$

$\operatorname{mult}(x, y+1)=\operatorname{add}(x, \operatorname{mult}(x, y))$

Theorem:
The set of primitive recursive functions is countable

Proof:
Each primitive recursive function can be encoded as a string

Enumerate all strings in proper order

Check if a string is a function

Theorem
there is a function that
is not primitive recursive

Proof:
Enumerate the primitive recursive functions

$$
f_{1}, f_{2}, f_{3}, K
$$

Define function $\quad g(i)=f_{i}(i)+1$

g differs from every f_{i}
g is not primitive recursive

END OF PROOF

A specific function that is not Primitive Recursive:

Ackermann's function:

$$
\begin{aligned}
& A(0, y)=y+1 \\
& A(x, 0)=A(x-1,1) \\
& A(x, y+1)=A(x-1, A(x, y))
\end{aligned}
$$

Grows very fast,
faster than any primitive recursive function

μ-Recursive Functions

$\mu y(g(x, y))=$ smallest y such that $g(x, y)=0$

Ackerman's function is a μ-Recursive Function

Post Systems

- Have Axioms
- Have Productions

Very similar with unrestricted grammars

Example: Unary Addition

Axiom:
 $$
1+1=11
$$

Productions:

$$
\begin{aligned}
& V_{1}+V_{2}=V_{3} \rightarrow V_{1} 1+V_{2}=V_{3} 1 \\
& V_{1}+V_{2}=V_{3} \rightarrow V_{1}+V_{2} 1=V_{3} 1
\end{aligned}
$$

A production:

$$
V_{1}+V_{2}=V_{3} \rightarrow V_{1} 1+V_{2}=V_{3} 1
$$

$$
1+1=11 \Rightarrow 11+1=111 \Rightarrow 11+11=1111
$$

ק

$$
V_{1}+V_{2}=V_{3} \rightarrow V_{1}+V_{2} 1=V_{3} 1
$$

Post systems are good for proving mathematical statements from a set of Axioms

Theorem:
A language is recursively enumerable if and only if
a Post system generates it

Rewriting Systems

They convert one string to another

- Matrix Grammars
- Markov Algorithms
- Lindenmayer-Systems

Very similar to unrestricted grammars

Matrix Grammars

Example:

$$
\begin{array}{ll}
P_{1}: & S \rightarrow S_{1} S_{2} \\
P_{2}: & S_{1} \rightarrow a S_{1}, S_{2} \rightarrow b S_{2} c \\
P_{3}: & S_{1} \rightarrow \lambda, S_{2} \rightarrow \lambda
\end{array}
$$

Derivation:
$S \Rightarrow S_{1} S_{2} \Rightarrow a S_{1} b S_{2} c \Rightarrow a a S_{1} b b S_{2} c c \Rightarrow a a b b c c$

A set of productions is applied simultaneously

$$
\begin{aligned}
& P_{1}: S \rightarrow S_{1} S_{2} \\
& P_{2}: S_{1} \rightarrow a S_{1}, S_{2} \rightarrow b S_{2} c \\
& P_{3}: S_{1} \rightarrow \lambda, S_{2} \rightarrow \lambda \\
& L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}
\end{aligned}
$$

Theorem:
A language is recursively enumerable if and only if
a Matrix grammar generates it

Markov Algorithms

Grammars that produce λ

Example:

$$
\begin{aligned}
& a b \rightarrow S \\
& a S b \rightarrow S \\
& S \rightarrow . \lambda
\end{aligned}
$$

Derivation:

$$
a a a b b b \Rightarrow a a S b b \Rightarrow a S b \Rightarrow S \Rightarrow \lambda
$$

$a b \rightarrow S$

$a S b \rightarrow S$
$S \rightarrow . \lambda$

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

In general: $\quad L=\{w: w \Rightarrow \lambda\}$

Theorem:

A language is recursively enumerable if and only if
a Markov algorithm generates it

Lindenmayer-Systems

They are parallel rewriting systems

Example: $\quad a \rightarrow a a$

Derivation: $\quad a \Rightarrow a a \Rightarrow a a a a \Rightarrow$ aaaaaaaa

$$
L=\left\{a^{2^{n}}: n \geq 0\right\}
$$

Lindenmayer-Systems are not general
As recursively enumerable languages

Extended Lindenmayer-Systems: $(x, a, y) \rightarrow u$

Theorem:
A language is recursively enumerable if and only if an
Extended Lindenmayer-System generates it

Computational Complexity

Time Complexity:
The number of steps during a computation

Space Complexity:
Space used during a computation

Time Complexity

-We use a multitape Turing machine
-We count the number of steps until a string is accepted
-We use the $O(k)$ notation

Example: $\quad L=\left\{a^{n} b^{n}: n \geq 0\right\}$

Algorithm to accept a string w :

- Use a two-tape Turing machine
-Copy the a on the second tape
- Compare the a and b

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Time needed:

- Copy the a on the second tape $O(|w|)$
-Compare the a and b
$O(|w|)$

Total time:

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

For string of length n
time needed for acceptance: $O(n)$

Language class: DTIME (n)

A Deterministic Turing Machine accepts each string of length n in time $O(n)$

DTIME (n)

$$
\left\{a^{n} b^{n}: n \geq 0\right\}
$$

$\{w w\}$

In a similar way we define the class

DTIME (T(n))

for any time function: $\quad T(n)$

Examples: $\operatorname{DTIME}\left(n^{2}\right), \operatorname{DTIME}\left(n^{3}\right), \ldots$

Example: The membership problem for context free languages
$L=\{w: w$ is generated by grammar $G\}$
$L \in \operatorname{DTIME}\left(n^{3}\right)$
(CYK - algorithm)

Polynomial time

Theorem: $\quad \operatorname{DTIME}\left(n^{k+1}\right) \subset \operatorname{DTIME}\left(n^{k}\right)$

$\operatorname{DTIME}\left(n^{k+1}\right)$

$\operatorname{DTIME}\left(n^{k}\right)$

Polynomial time algorithms: $\quad \operatorname{DTIME}\left(n^{k}\right)$

Represent tractable algorithms:
For small k we can compute the result fast

The class P

$$
P=\cup D \operatorname{TIME}\left(n^{k}\right) \quad \text { for all } k
$$

- Polynomial time
- All tractable problems

P

CYK-algorithm

$$
\left\{a^{n} b^{n}\right\}
$$

11
$\{w w\}$

Exponential time algorithms: $\operatorname{DTIME}\left(2^{n}\right)$

Represent intractable algorithms:
Some problem instances may take centuries to solve

Example: the Traveling Salesperson Problem

Question: what is the shortest route that connects all cities?

Question: what is the shortest route that connects all cities?

A solution: search exhuastively all hamiltonian paths

$$
\begin{aligned}
& L=\{\text { shortest hamiltonian paths }\} \\
& L \in D \operatorname{TIME}(n!) \approx \operatorname{DTIME}\left(2^{n}\right)
\end{aligned}
$$

Exponential time

Intractable problem

Example: The Satisfiability Problem

Boolean expressions in
Conjunctive Normal Form:

$$
\begin{gathered}
t_{1} \wedge t_{2} \wedge t_{3} \wedge \Lambda \wedge t_{k} \\
t_{i}=x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \Lambda \vee \bar{x}_{p} \\
\text { Variables }
\end{gathered}
$$

Question: is expression satisfiable?

Example:

$\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)$

Satisfiable:

$$
x_{1}=0, x_{2}=1, x_{3}=1
$$

$$
\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)=1
$$

Example: $\quad\left(x_{1} \vee x_{2}\right) \wedge \bar{x}_{1} \wedge \bar{x}_{2}$

Not satisfiable

$L=\{w:$ expression w is satisfiable $\}$

For n variables: $\quad L \in \operatorname{DTIME}\left(2^{n}\right)$ exponential

Algorithm:
search exhaustively all the possible binary values of the variables

Non-Determinism

Language class: \quad NTIME (n)

A Non-Deterministic Turing Machine accepts each string of length n in time $O(n)$

Example: $L=\{w w\}$

Non-Deterministic Algorithm to accept a string ww :

- Use a two-tape Turing machine
-Guess the middle of the string and copy w on the second tape
-Compare the two tapes

$$
L=\{w w\}
$$

Time needed:

- Use a two-tape Turing machine
-Guess the middle of the string and copy w on the second tape
-Compare the two tapes
$O(|w|)$
Total time:
$O(|w|)$

NTIME (n)

$$
L=\{w w\}
$$

In a similar way we define the class

NTIME (T(n))

for any time function: $\quad T(n)$

Examples:
 $\operatorname{NTIME}\left(n^{2}\right), \operatorname{NTIME}\left(n^{3}\right), \ldots$

Non-Deterministic Polynomial time algorithms:

$$
L \in \operatorname{NTIME}\left(n^{k}\right)
$$

The class $N P$

$$
P=\cup \operatorname{NTIME}\left(n^{k}\right) \quad \text { for all } k
$$

Non-Deterministic Polynomial time

Example: The satisfiability problem

$$
L=\{w: \text { expression } w \text { is satisfiable }\}
$$

Non-Deterministic algorithm:
-Guess an assignment of the variables
-Check if this is a satisfying assignment

$L=\{w:$ expression w is satisfiable $\}$

Time for n variables:
-Guess an assignment of the variables $O(n)$
-Check if this is a satisfying assignment $O(n)$

$$
\text { Total time: } \quad O(n)
$$

$L=\{w:$ expression w is satisfiable $\}$

$$
L \in N P
$$

The satisfiability problem is an $N P$ - Problem

Observation:

Open Problem:
 $P=N P ?$

WE DO NOT KNOW THE ANSWER

Open Problem: $P=N P ?$

Example: Does the Satisfiability problem have a polynomial time deterministic algorithm?

WE DO NOT KNOW THE ANSWER

NP-Completeness

A problem is NP-complete if:
-It is in NP

- Every NP problem is reduced to it
(in polynomial time)

Observation:

If we can solve any NP-complete problem in Deterministic Polynomial Time (P time) then we know:

$$
P=N P
$$

Observation:

If we prove that we cannot solve an NP-complete problem in Deterministic Polynomial Time (P time) then we know:

$$
P \neq N P
$$

Cook's Theorem:

The satisfiability problem is NP-complete

Proof:
Convert a Non-Deterministic Turing Machine
to a Boolean expression
in conjunctive normal form

Other NP-Complete Problems:
-The Traveling Salesperson Problem

- Vertex cover
- Hamiltonian Path

All the above are reduced to the satisfiability problem

It is unlikely that NP-complete problems are in P

The NP-complete problems have exponential time algorithms

Approximations of these problems are in P

