A Universal Turing Machine

A limitation of Turing Machines:
Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine
simulates any Turing Machine M

Input of Universal Turing Machine:
Description of transitions of M
Input string of M

Three tapes
Tape 1

Description of M

Universal
Turing
Machine

\section*{| Tape 1 | | | |
| :---: | :--- | :--- | :--- |
| | | | |
 Description of M}

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

Symbols:
 11

 1111

State Encoding

States:
 q_{1}
 q_{2}
 q_{3}
 q_{4}

 Encoding:
 1
 11
 111
 1111

Head Move Encoding

Move:

Encoding:
L
R

Transition Encoding

Transition:

 Encoding:
 10101101101
 separator

Turing Machine Encoding

Transitions:

10101101101001101101110111011

separator

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine M

Tape 1

1010110110100110110111011101100 K

A Turing Machine is described with a binary string of O's and 1's

Therefore:
The set of Turing machines
forms a language:
each string of this language is
the binary encoding of a Turing Machine

Language of Turing Machines

$L=\{1010110101$,

101011101011,
(Turing Machine 1)
(Turing Machine 2)

11101011110101111, $\}$

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

There is a one to one correspondence (injection) of elements of the set to
Positive integers (1,2,3,...)

Every element of the set is mapped to a positive number such that no two elements are mapped to same number

Example: The set of even integers

 is countableEven integers: (positive)

Correspondence:

$$
\downarrow \downarrow \downarrow \downarrow
$$

Positive integers:

$$
0,2,4,6, \mathrm{~K}
$$

$$
1,2,3,4, \mathrm{~K}
$$

$2 n$ corresponds to $n+1$

Example: The set of rational numbers is countable

Rational numbers: $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \mathrm{~K}$

Naïve Approach

Nominator 1

Rational numbers:

Correspondence:
$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \mathrm{~K}$

Positive integers:
$1,2,3, \mathrm{~K}$

Doesn'† work:

we will never count
 numbers with nominator 2 :
 $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \mathrm{~K}$

Better Approach

Rational Numbers:

Correspondence:

Positive Integers:
 $1,2,3,4,5, \mathrm{~K}$

We proved:
the set of rational numbers is countable by describing an enumeration procedure (enumerator)
for the correspondence to natural numbers

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one and each string is generated in finite time

strings $s_{1}, s_{2}, s_{3}, \mathrm{~K} \in S$

Enumerator Machine for S

$\xrightarrow[\text { (on tape) }]{\text { output }} s_{1}, s_{2}, s_{3}, \mathrm{~K}$

Finite time: $t_{1}, t_{2}, t_{3}, \mathrm{~K}$

Enumerator Machine

Configuration

Time 0

q_{0}
prints s_{1}
Time t_{1}

q_{S}Time t_{2}

$$
q_{s}
$$

$$
\text { prints } s_{3}
$$

$$
\text { Time } t_{3}
$$

$$
q_{S}
$$

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of S to natural numbers

Example: The set of strings $S=\{a, b, c\}^{+}$ is countable

Approach:
We will describe an enumerator for S

Naive enumerator:

Produce the strings in lexicographic order:

$$
\begin{aligned}
& s_{1}=a \\
& s_{2}=a a \\
& \mathrm{~N}=a a a
\end{aligned}
$$

adada

Doesn'† work:
strings starting with b
will never be produced

Better procedure: Proper Order

 (Canonical Order)1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3
4. Produce all strings of length 4

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of O's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumerator:

Repeat

1. Generate the next binary string of O's and 1's in proper order
2. Check if the string describes a Turing Machine
if YES: print string on output tape
if NO: ignore string

Binary strings

 Turing Machines0 ignore ignore
00 ignore 01

$\xrightarrow{S_{1}} 10101101101$
N
$101101010010101101 \xrightarrow{S_{2}} 101101010010101101$,

End of Proof

Simpler Proof:

Each Turing machine binary string is mapped to the number representing its value

Uncountable Sets

We will prove that there is a language L which is not accepted by any Turing machine

Technique:

> Turing machines are countable

Languages are uncountable
(there are more languages than Turing Machines)

Theorem:

If S is an infinite countable set, then

 the powerset 2^{S} of S is uncountable.The powerset 2^{S} contains all possible subsets of S
Example: $S=\{a, b\} \quad 2^{S}=\{\varnothing,\{a\},\{b\},\{a, b\}\}$

Proof:

Since S is countable, we can list its elements in some order

$$
\begin{aligned}
& S=\left\{s_{1}, s_{2}, s_{3}, \mathrm{~K}\right\} \\
& \text { Elements of } S
\end{aligned}
$$

Elements of the powerset 2^{S} have the form:

$$
\begin{aligned}
& \varnothing \\
& \left\{s_{1}, s_{3}\right\} \\
& \left\{s_{5}, s_{7}, s_{9}, s_{10}\right\}
\end{aligned}
$$

They are subsets of S

We encode each subset of S with a binary string of O's and 1's

	Binary encoding				
Subset of S	s_{1}	S_{2}	S_{3}	s_{4}	八
$\left\{s_{1}\right\}$	1	0	0	0	,
$\left\{s_{2}, s_{3}\right\}$	0	1	1	0	,
$\left\{s_{1}, s_{3}, s_{4}\right\}$	1	0	1	1	/

Every infinite binary string corresponds to a subset of S :

Example:
Corresponds to:

Let's assume (for contradiction)

 that the powerset 2^{S} is countableThen: we can list the elements of the powerset in some order

$$
\begin{gathered}
2^{S}=\left\{t_{1}, t_{2}, t_{3}, \mathrm{~K}\right\} \\
\end{gathered}
$$

Subsets of S

Powerset element

Binary encoding example

t_{1}
1
0
0
0
0 ハ
t_{2}
11
0
0
0 ハ
t_{3}
1
1
0
0 ハ
t_{4}
11
0
0
1 ／

11
$\boldsymbol{t}=$ the binary string whose bits are the complement of the diagonal

Binary string: $\quad \boldsymbol{t}=0011 \Lambda$
(birary complement of diagonal)

The binary string

$t=0011 \mathrm{~K}$ $t=\left\{s_{3}, s_{4}, \mathrm{~K}\right\} \in 2^{S}$

corresponds to a subset of S :
$\boldsymbol{t}=$ the binary string whose bits are the complement of the diagonal

Question: $\boldsymbol{t}=\boldsymbol{t}_{1} ?$ NO: differ in $1^{\text {st }}$ bit
$\boldsymbol{t}=$ the binary string whose bits are the complement of the diagonal $\begin{array}{llllll}t_{1} & \ddots V 0 & 0 & 0 & 0 & \prime \\ t_{2} & 1 & 1 & 0 & 0 & 0\end{array}$
Question: $\boldsymbol{t}=\boldsymbol{t}_{2} ? \quad$ NO: differ in $2^{\text {nd }}$ bit bits Bush- Lsu
$\boldsymbol{t}=$ the binary string whose bits are the complement of the diagonal

Question: $\boldsymbol{t}=\boldsymbol{t}_{3} ?$ NO: differ in $3^{\text {rd }}$ bit

Thus: $t \neq t_{i}$ for every i since they differ in the i th bit

However, $\quad t \in 2^{S} \Rightarrow t=t_{i} \quad$ for some i

Contradiction!!!

Therefore the powerset 2^{S} is uncountable

An Application: Languages

Consider Alphabet : $A=\{a, b\}$
The set of all strings:
$S=\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \mathrm{~K}\}$
infinite and countable
because we can enumerate the strings in proper order

Consider Alphabet : $A=\{a, b\}$
The set of all strings:
$S=\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \mathrm{~K}\}$
infinite and countable

Any language is a subset of S :

$$
L=\{a a, a b, a a b\}
$$

Consider Alphabet : $A=\{a, b\}$
The set of all Strings:

$$
\begin{gathered}
S=A^{*}=\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \mathrm{~K}\} \\
\\
\text { infinite and countable }
\end{gathered}
$$

The powerset of S contains all languages:

$$
\begin{gathered}
2^{s}=\{\varnothing,\{\varepsilon\},\{a\},\{a, b\},\{a a, b\}, \ldots,\{a a, a b, a a b\}, \mathrm{K}\} \\
\text { uncountable }
\end{gathered}
$$

Consider Alphabet : $A=\{a, b\}$

Turing machines:

Languages accepted $L_{1} \quad L_{2} \quad L_{3}^{L_{3}}$ By Turing Machines:

Denote: $X=\left\{L_{1}, L_{2}, L_{3}, \mathrm{~K}\right\} \quad$ Note: $X \subseteq 2^{S}$ countable

$$
\left(S=\{a, b\}^{*}\right)
$$

Languages accepted

 by Turing machines:
X countable

All possible languages: 2^{S} uncountable

$$
\text { Therefore: } \quad X \neq 2^{S}
$$

$$
\text { (since } X \subseteq 2^{S}, \text { we get } X \subset 2^{S} \text {) }
$$

Conclusion:

There is a language L not accepted by any Turing Machine:

$$
X \subset 2^{S} \Longleftrightarrow \exists L \in 2^{S} \text { and } L \notin X
$$

Non Turing-Acceptable Languages

L

Turing-Acceptable Languages

Note that: $\quad X=\left\{L_{1}, L_{2}, L_{3}, \mathrm{~K}\right\}$
is a multi-set (elements may repeat)
since a language may be accepted
by more than one Turing machine

However, if we remove the repeated elements, the resulting set is again countable since every element still corresponds to a positive integer

