A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired" they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any Turing Machine $\,M\,$

Input of Universal Turing Machine:

Description of transitions of MInput string of M

Description of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition: $\delta(q_1, a) = (q_2, b, L)$ Encoding: 10101101101 separator

Turing Machine Encoding

Transitions: $\delta(q_1, a) = (q_2, b, L)$ $\delta(q_2, b) = (q_3, c, R)$ Encoding: ator

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine $\,M\,$

Tape 1

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of this language is the binary encoding of a Turing Machine Language of Turing Machines

 $L = \{ 1010110101,$

.....}

(Turing Machine 1)

101011101011,

(Turing Machine 2)

11101011110101111,

••••

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

There is a one to one correspondence (injection) of elements of the set to Positive integers (1,2,3,...)

Every element of the set is mapped to a positive number such that no two elements are mapped to same number

Example: The set of even integers is countable

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, K$$

Better Approach

We proved:

the set of rational numbers is countable by describing an enumeration procedure (enumerator)

for the correspondence to natural numbers

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one

and

each string is generated in finite time

strings $s_1, s_2, s_3, K \in S$

Enumerator Machine

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of ${\cal S}$ to natural numbers

Example: The set of strings $S = \{a, b, c\}^+$ is countable

Approach: We will describe an enumerator for ${\cal S}$

Naive enumerator:

Produce the strings in lexicographic order:

$$s_1 = a$$

 $s_2 = aa$
N aaa
aaaa

Doesn't work: strings starting with b will never be produced

Better procedure: Proper Order (Canonical Order)

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

Produce strings in Proper Order:

$$\begin{array}{c}
s_{1} = \alpha \\
s_{2} = b \\
N \\
\end{array}$$

$$\begin{array}{c}
aa \\
ab \\
ac \\
ba \\
ac \\
ba \\
ba \\
bc \\
ca \\
cb \\
cc \\
aaa \\
aab \\
aac \\
\end{array}$$

$$\begin{array}{c}
length 1 \\
length 2 \\
bc \\
ca \\
cb \\
cc \\
aaa \\
aab \\
aac \\
\end{array}$$

$$\begin{array}{c}
length 3 \\
length$$

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumerator:

Repeat

 Generate the next binary string of O's and 1's in proper order

2. Check if the string describes a Turing Machine if YES: print string on output tape if NO: ignore string

Turing Machines Binary strings ignore \mathbf{O} ignore 1 00 ignore 01 Ν 10101101100 **S**₁ 10101101101 10101101101

Costas Busch - LSU

End of Proof

Simpler Proof:

Each Turing machine binary string is mapped to the number representing its value

Uncountable Sets

We will prove that there is a language L which is not accepted by any Turing machine

Technique: Turing machines are countable Languages are uncountable

(there are more languages than Turing Machines)

If S is an infinite countable set, then

the powerset
$$2^S$$
 of S is uncountable.

The powerset
$$2^{S}$$
 contains all possible subsets of S
Example: $S = \{a, b\}$ $2^{S} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Since S is countable, we can list its elements in some order

Elements of the powerset 2^S have the form:

 $\{s_1, s_3\}$

 $\{s_5, s_7, s_9, s_{10}\}$

They are subsets of S

We encode each subset of S with a binary string of 0's and 1's

Every infinite binary string corresponds to a subset of S:

Example: 1001110 ^ Corresponds to: $\{s_1, s_4, s_5, s_6, K\} \in 2^S$ Let's assume (for contradiction) that the powerset 2^S is countable

Then: we can list the elements of the powerset in some order

$$2^{S} = \{t_{1}, t_{2}, t_{3}, K\}$$

$$\uparrow / / /$$
Subsets of S

Powerset element	Binary encoding example					
t_1	1	0	0	0	0	/ \
t_2	1	1	0	0	0	/
t_3	1	1	0	1	0	/ \
t_4	1	1	0	0	1	/ \
/ \	/ N Costos Pusch I SU					

The binary string

 $t = \{0011K \\ t = \{s_3, s_4, K\} \in 2^{s}$

corresponds to a subset of S:

t = the binary string whose bits are the complement of the diagonal 0 () l_1 () / \ () () $l\gamma$ / \ tζ / \ t_4 () / \ t 1Λ Question: $t = t_2$? NO: differ in 2nd bit

t = the binary string whose bits are the complement of the diagonal 0 l_1 () / \ () \mathbf{O} $l\gamma$ / \ tζ 1 / \ t_4 ()/ \ t = 0 1Λ Question: $t = t_3$? NO: differ in 3rd bit

Thus:
$$t \neq t_i$$
 for every *i*
since they differ in the *i*th bit

However,
$$t \in 2^S \Longrightarrow t = t_i$$
 for some *i*
Contradiction!!!

Therefore the powerset 2^S is uncountable

Costas Busch - LSU

End of proof

An Application: Languages

- Consider Alphabet : $A = \{a, b\}$
- The set of all strings:

$$S = \{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, K\}$$

infinite and countable

because we can enumerate the strings in proper order

- Consider Alphabet : $A = \{a, b\}$
- The set of all strings:

$$S = \{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, K\}$$

infinite and countable

Any language is a subset of S:

$$L = \{aa, ab, aab\}$$

- Consider Alphabet : $A = \{a, b\}$
- The set of all Strings:

$$S = A^* = \{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, K\}$$

infinite and countable

The powerset of S contains all languages: $2^{S} = \{\emptyset, \{\varepsilon\}, \{a\}, \{a, b\}, \{aa, b\}, ..., \{aa, ab, aab\}, K\}$ uncountable Consider Alphabet : $A = \{a, b\}$

 $(\mathcal{S} = \{a, b\}^*)$

Languages accepted by Turing machines: X countable

All possible languages: 2^S uncountable

Therefore: $X \neq 2^S$

(since $X \subseteq 2^S$, we get $X \subset 2^S$)

Conclusion:

There is a language L not accepted by any Turing Machine:

$X \subset 2^S \square \Rightarrow \exists L \in 2^S \text{ and } L \notin X$

Note that: $X = \{L_1, L_2, L_3, K\}$

is a *multi-set* (elements may repeat) since a language may be accepted by more than one Turing machine

However, if we remove the repeated elements, the resulting set is again countable since every element still corresponds to a positive integer