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Prerequisite: Chapter 2

4 N THIS CHAPTER I discuss in detail a few key models that use the notion of Nash
i equilibrium to study economic, political, and biological phenomena. The dis-
cussion shows how the notion of Nash equilibrium improves our understanding of
a wide variety of phenomena. It also illustrates some of the many forms strategic
games and their Nash equilibria can take. The models in Sections 3.1 and 3.2 are
related to each other, whereas those in each of the other sections are independent
! of each other.

| 3.1 Cournot’s model of oligopoly

! 3.1.1 Introduction

How does the outcome of competition among the firms in an industry depend on
the characteristics of the demand for the firms’ output, the nature of the firms’
cost functions, and the number of firms? Will the benefits of technological im-
provements be passed on to consumers? Will a reduction in the number of firms
generate a less desirable outcome? To answer these questions we need a model
of the interaction between firms competing for the business of consumers. In this
section and the next I analyze two such models. Economists refer to them as mod-
els of “oligopoly” (competition between a small number of sellers), though they
involve no restriction on the number of firms; the label reflects the strategic inter-
action they capture. Both models were studied first in the 19th century, before the
| totion of Nash equilibrium was formalized for a general strategic game. The first
| 15 due to the economist Cournot (1838).

312 General model

& Sing_le good is produced by # firms. The cost to firm i of producing ¢; units of the
good is Ci(g;), where C; is an increasing function (more output is more costly to
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produce). All the output is sold ata single price, determined by the demand for the
firms’ total output. Specifically, if the firms’ total output is Q. then
mand function”. Assume that

good and the

{he market price is P(Q); Pis called the “inverse de
s a decreasing function when it is positive: if the
{hen the price decreases {unless it is already 7ero). I
i, thent the price is Plgy b + qn). 0 that firm i's reve!
Thus firm i's profit, equal loits revenue minus its cost, 18

firms' total output in¢reases,
the output of each fiem i is

nueis qP(qe+ - F qn)-

(g n) = AP gn) — Cilai): (6:1)
Cournot suggested that the industry be modeled as the following strategic
game, which I refer to as Cournot’s oligopoly game.
players The firms.
Actions Each firm's set of actions is the set of its possible outputs (nonnegative
numbers).
nces are represer\ted by its profit, givenin (56.1).

preferences Each firm’s prefere

uopoly with constant unit cost and linear inverse demand function
we can compute a N

(the industry is

3.1.3 Example:d
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o0
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<o market price P(Q) i gre
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the market price never &
we can use the procedure

where « > 0 and ¢
Figure 57.1. (Note that the price
for then it swould be negative for
value of total output Q for which t
common unit cost & (1f ¢ were to excee
at which they could make any profit, because
To find the Nash equilibria in this example,
the firms’ best response functions (Section 2.8.3). First we ne
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go)ise —q1— a2 gy =X and zero if gy -+ iz

@) = (Pl +a2)- €)
{'n(« c—i—q) W rase

y and 4z,
= &, Thus firm 1's profitis
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—ch ifqy +2 > &

n output 42 of firm 2, w
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To find firm 1’
output 'Ry

firm 1’s profit as 2 function of its

2 “duopoly”),
for all q; (“unit cost” is
here it is positive,

a—Q fR=« (562)
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<o that there is some
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The first property of a Nash equilibrium in Cournot’s model discussed in Sec-
tion 3.1.3 applies to this general model: common property is “overused” in a Nash
equilibrium in the sense that every player’s payoff increases when every player re-
duces her use of the property from its equilibrium level. For example, all farmers’
payoffs increase if each farmer reduces her use of the village green from its equi-
librium level: in an equilibrium the green is “overgrazed”. The argument is the
same as the one illustrated in Figure 61,1 in the case of two players, because this
argument depends only on the fact that each player’s payoff function is smooth
and is decreasing in the other player’s action. (In Cournot’s model, the “common
property” that is overused is the demand for the good.)

@ EXERCISE 63.1 (Interaction among resource users) A group of n firms uses a com-
mon resource (a river or a forest, for example) to produce output. As the total
amount of the resource used by all firms increases, any given firm can produce less
output. Denote by x; the amount of the resource used by firmi (= 1,...,n). As-
sume specifically that firm i's outputis x;(1 — (1 + - -+ x,)) if xy + -+ +x, < 1,
and zero otherwise. Each firm i chooses x; to maximize its output. Formulate this
situation as a strategic game. Find the Nash equilibria of the game. Find an ac-
tion profile (x1, ..., x,) at which each firm’s output is higher than it is at any Nash
equilibrium,

3.2 Bertrand’s model of oligopoly
3.2.1 General model

In Cournot’s game, each firm chooses an output; the price is determined by the
demand for the good in relation to the total output produced. In an alternative
model of oligopoly, associated with a review of Cournot’s book by Bertrand (1883),
each firm chooses a price, and produces enough output to meet the demand it
faces, given the prices chosen by all the firms. The model is designed to shed light
on the same questions that Cournot’s game addresses; as we shall see, some of the
answers it gives are different.

The economic setting for the model is similar to that for Cournot’s game. A
single good is produced by n firms; each firm can produce 4; units of the good at
a cost of C;(g;). It is convenient to specify demand by giving a “demand function”
D, rather than an inverse demand function as we did for Cournot’s game. The
interpretation of D is that if the good is available at the price p, then the total
amount demanded is D(p).

f'\sgurm- that if the firms set different prices, then all consumers purchase the
}:o_m! Irom the firm with the lowest price, which produces enough output to meet
this demand. 1f more than one firm sets the lowest price, all the firms doing so
"l"_“ll' the demand at that price equally. A firm whose price is not the lowest price
:::;:’:-“I!Il' dw‘nm\d .Tnd_ produces no output. (Note that a firm does not choose its

strategically; it simply produces enough to satisfy all the demand it faces,
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given the prices, even if its P
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1 Section 3.1.3;
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0
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point of intersection, namely (p}, p3) = (c,c). That is, the game has a single Nash
equilibrium, in which each firm charges the price c.

The method of finding the Nash equilibria of a game by constructing the play-
ers’ best response functions is systematic. As long as these functions may be com-
puted, the method straightforwardly leads to the set of Nash equilibria. However,
in some games we can make a direct argument that avoids the need to construct
the entire best response functions. Using a combination of intuition and trial and
error, we find the action profiles that seem to be equilibria; then we show precisely
that any such profile is an equilibrium and every other profile is not an equilib-
rium. To show that a pair of actions is not a Nash equilibrium we need only find a
better response for one of the players—not necessarily the best response.

In Bertrand’s game we can argue as follows. (i) First we show that (py, p2) =
(c,¢) is a Nash equilibrium. If one firm charges the price ¢, then the other firm
can do no better than charge the price c also, because if it raises its price it sells no
output, and if it lowers its price it posts a loss. (if) Next we show that no other pair
(1, p2) is a Nash equilibrium, as follows.

® If p; < c for either i = 1 or i = 2, then the profit of the firm whose price is
lowest (or the profit of both firms, if the prices are the same) is negative, and
this firm can increase its profit (to zero) by raising its price to c.

e If p; = cand p; > ¢, then firm i is better off increasing its price slightly,
making its profit positive rather than zero.

e If p; > cand pj > ¢, suppose that p; > pj- Then firm i can increase its profit
by lowering p; to slightly below p; if D(p;) > 0 (ie. if p; < &) and to p™ if
D(p;) = 0 (i.e.if p; > a).

In conclusion, both arguments show that when the unit cost of production is a

constant ¢, the same for both firms, and demand is linear, Bertrand’s game has a
unique Nash equilibrium, in which each firm’s price is equal to .

@ EXERCISE 67.1 (Bertrand’s duopoly game with constant unit cost) Consider the
extent to which the analysis depends upon the demand function D taking the spe-
cific form D(p) = « — p. Suppose that D is any function for which D(p) > 0 for
all p and there exists 7 > ¢ such that D(p) > 0 forall p < 7. Ts (c, ¢) still a Nash
equilibrium? s it still the only Nash equilibrium?

? EXERCISE 67.2 (Bertrand’s duopoly game with discrete prices) Consider the vari-
ant of the example of Bertrand’s duopoly game in this section in which each firm is
testricted to choose a price that is an integral number of cents. Take the monetary
unit to be a cent, and assume that ¢ is an integer and @ > ¢+ 1. Is (c,c) a Nash
equilibrium of this game? Is there any other Nash equilibrium?

323 Discussion

Fora duopoly in which both firms have the same constant unit cost and the de-
Mand function is linear, the Nash equilibria of Cournot’s and Bertrand’s games
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Figure 71.1 The payoff of a voter whose favorite position is x*, as a function of the winning position, x.

There is a continuum of voters, each with a favorite position. The distribution
of these favorite positions over the set of all possible positions is arbitrary. In par-
ticular, this distribution may not be uniform: a large fraction of the voters may
have favorite positions close to one point, while few voters have favorite positions
close to some other point. A position that turns out to have special significance is
the median favorite position: the position m with the property that exactly half of
the voters’ favorite positions are at most m, and half of the voters’ favorite posi-
tions are at least m. (I assume that the distribution of favorite positions is such that
there is only one position with this property.)

Each voter’s distaste for any position is given by the distance between that
position and her favorite position. In particular, for any value of k, a voter whose
favorite position is x* is indifferent between the positions x* — k and x* + k. (Refer
to Figure 71.1.)

Under this assumption, each candidate attracts the votes of all citizens whose
favorite positions are closer to her position than to the position of any other can-
didate. An example is shown in Figure 71.2. In this example there are three candi-
dates, with positions x1, x2, and x3. Candidate 1 attracts the votes of every citizen
whose favorite position is in the interval, labeled “Votes for 17, up to the midpoint
%(xl + x2) of the line segment from x; to x;; candidate 2 attracts the votes of ev-
ery citizen whose favorite position is in the interval from 4 (x; + x2) to 3(x2 + x3);
and candidate 3 attracts the remaining votes. I assume that citizens whose favorite
position is }(x1 + x) divide their votes equally between candidates 1 and 2, and
those whose favorite position is %(xz + x3) divide their votes equally between can-
didates 2 and 3. If two or more candidates take the same position, then they share
equally the votes that the position attracts.

In summary, I consider the following strategic game, which, in honor of its
originator, I call Hotelling’s model of electoral competition.

Players The candidates.

Actions  Each candidate’s set of actions is the set of positions (numbers).

X1 %(lexz) X2 %(x2]+xa) X3

| i
«— Votes for 1 —+— Votes for 2 —s+—— Votes for 3 —

Figure 71.2 The allocation of votes between three candidates, with positions x1, xz, and X3
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3.3 Electoral competition 75

‘@ EXERCISE 75.1 (Electoral competition between candidates who care only about the
winning position) Consider the variant of Hotelling’s model in which the can-
didates (like the citizens) care about the winner’s position, and not at all about
winning per se. There are two candidates. Each candidate has a favorite posi-
tion; her dislike for other positions increases with their distance from her favorite
position. Assume that the favorite position of one candidate is less than m and
the favorite position of the other candidate is greater than 7. Assume also that
if the candidates tie when they take the positions ¥; and x,, then the outcome is
the compromise policy §(x; + x2). Find the set of Nash equilibria of the strategic
game that models this situation. (First consider pairs (x1, x7) of positions for which
either x; < mand x; < m, or x; > m and x, > m. Next consider pairs (x1, x2)
for which either x; < m < x9, or X < m < x,, then those for which x; = m and
xp # m, ot x1 # m and x; = m. Finally consider the pair (1, m).)

The set of candidates in Hotelling’s model is given. The next exercise asks

you to analyze a model in which the set of candidates is generated as part of an
equilibrium.

@ EXERCISE 75.2 (Citizen-candidates) Consider a game in which the players are the
citizens. Any citizen may, at some cost ¢ > 0, become a candidate. Assume that
the only position a citizen can espouse is her favorite position, so that a citizen’s
only decision is whether to stand as a candidate. After all citizens have (simulta-
neously) decided whether to become candidates, each citizen votes for her favorite
candidate, as in Hotelling’s model. Citizens care about the position of the winning
candidate; a citizen whose favorite position is x loses |x — x*| if the winning candi-
date’s position is x*. (For any number z, |z| denotes the absolute value of z: |z| = z
ifz > 0and |z| = —zif z < 0.) Winning confers the benefit b. Thus a citizen who
becomes a candidate and ties with k — 1 other candidates for first place obtains
the payoff b/k — c; a citizen with favorite position x who becomes a candidate and
is not one of the candidates tied for first place obtains the payoff —|x — x*| — ¢,
where x* is the winner'’s position; and a citizen with favorite position x who does
not become a candidate obtains the payoff —|x — x*|, where x* is the winner’s po-
sition. Assume that for every position x there is a citizen for whom  is the favorite
position. Show that if b < 2¢, then the game has a Nash equilibrium in which one
citizen becomes a candidate. Is there an equilibrium (for any values of b and c) in
which two citizens, each with favorite position 7, become candidates? Is there an

equilibrium in which two citizens with favorite positions different from m become
candidates?

Hotelling’s model assumes a basic agreement among the voters about the or-
dering of the positions. For example, if one voter prefers ¥ to y to z and another
voler prefers ¥ o z to x, no voter prefers z to x to y. The next exercise asks you to
study o model that does not so restrict the voters’ preferences.

® Exercise 75,3

(Electoral competition for more general preferences) Suppose that
there is a finite

number of positions and a finite, odd, number of voters. For any
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dispute is v; > 0 and the value it attaches to a 50% chance of obtaining the object
ho prefersa to pandb

is v;/2. Each unit of time that passes before the dispute is settled (i.e. one of the
parties concedes) costs each party one unit of payoff. Thus if player i concedes
first, at time ;, her payoff is —t; (she spends f; units of time and does not obtain
the object). If the other player concedes first, at time ¢, player i's payoff is v; — ¢;
(she obtains the object after t; units of time). If both players concede at the same

time, player #'s payoff is 1v; — t;, where #; is the common concession time. The War
of Attrition is the following strategic game.
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