

Covariance between relatives

Prof. Roberto Fritsche-Neto
roberto.neto@usp.br

Piracicaba, March 23 ${ }^{\text {rd }}$, 2018

Definitions

- Coefficient of kinship (f)
- Probability that two gametes taken at random from two individuals are identical by descent (IBD, \equiv)
- Expresses the degree of relatedness between individuals - coefficient of parentage
- Coefficient of relationship (r)
- It is the additive genetic relationship between individuals
- This is the twice the coefficient of kinship
- $r=2 f$
- It is also equal the inbreeding coefficient of their progeny
- Aditive covariance between relatives
- The covariance between the breeding values
- $\operatorname{COV}_{\mathrm{a}(\mathrm{x}, \mathrm{y})}=\mathrm{r}_{\mathrm{xy}} \mathrm{Va}$
- It can actually be due to additive genetic effects, as well as dominance and epistatic effects
- In general the contribution of dominance and epistatic effects to the genetic covariance is low

Calculating the inbreeding coefficient of \mathbf{X}

- Lets consider one bi-allelic locus with two alleles A_{1} and A_{2}
- We assume that A , the common ancestor of P and Q , is not inbred, thus its genotype is $\mathrm{A}_{1} \mathrm{~A}_{2}$
- The probability that X receives A_{1} from A via P, is the probability that A passes A_{1} to P multiplied by the probability that P passes A_{1} to X
- This probability is $1 / 2 \cdot 1 / 2=1 / 4$
- Now we need to know the probability that X receives A_{1} from both P and Q
- $1 / 4 \cdot 1 / 4=1 / 16$
- We now know the probability that A_{1} is IBD in X
- X could also be IBD by receiving two copies of A_{2}
- Probability IBD in X via either A_{1} or A_{2} is $1 / 16+1 / 16=2 / 16=1 / 8$

- $\mathrm{P}(\mathrm{IBD})=1 / 2^{3}=1 / 2^{\mathrm{n}}$, where n is the number of common ancestral individuals
- However, if the parent A is inbred, the IBD increases and should be considered
- $(1 / 2)^{n} \mathrm{~F}_{\mathrm{A}}$, where F_{A} is the inbreeding coefficient of the common ancestor
- Thus, IBD is the sum the two probabilities:
- $\mathrm{F}_{\mathrm{X}}=(1 / 2)^{\mathrm{n}}+(1 / 2)^{\mathrm{n}} \mathrm{F}_{\mathrm{A}}$
- $F_{X}=(1 / 2)^{n}\left(1+F_{A}\right)$

Calculating the inbreeding coefficient of \mathbf{X}

- In more complex pedigrees, parents may be related to each other through more than one common ancestor, or from the same common ancestor, but through different paths
- The general formula is
- $\mathrm{F}_{\mathrm{X}}=(1 / 2)^{\mathrm{n}}\left(1+\mathrm{F}_{\mathrm{A}}\right)$
- where \boldsymbol{n} is the number of individuals in any path of relationship counting the parents of \boldsymbol{X} and all individuals in the path which connects the parents to the common ancestor
- The summation is over all paths

There are 2 common ancestors, A and E There are 2 possible paths

Paths	n	F of common ancestor	Contribution of F_{X}
KHDBACFJL	9	0	$(1 / 2)^{9}=0.002$
KHEIL	5	0	$(1 / 2)^{5}=0.031$
			Total $=0.033$

The coefficient of kinship

- Probability that two gametes taken at random (one from each individual carry alleles that are IBD
- The kinship (f) between two individuals is equal to the inbreeding coefficient of their progeny
- $F_{X}=f_{p 1 p 2}$
- where X is the progeny and p_{1} and p_{2} are the parents
- Basic rules to estimate \boldsymbol{f}
- First: the \boldsymbol{f} between P and Q is the mean of the four co-ancestries

$$
f_{P Q}=\frac{1}{4} f A C+\frac{1}{4} f A D+\frac{1}{4} f B C+\frac{1}{4} f B D
$$

- Second: the coefficient of kinship of an individual with itself f_{AA} is the inbreeding coefficient of progeny that would be produced by self-mating
- $f_{\mathrm{AA}}=1 / 2\left(1+\mathrm{F}_{\mathrm{A}}\right)$
- Third: the coefficient of kinship between parent and offspring f_{PA} is the mean coefficient of kinship between A and both the parents of P , (A and B)
- $f_{\mathrm{PA}}=1 / 2\left(\mathrm{f}_{\mathrm{AB}}+\mathrm{f}_{\mathrm{AA}}\right)$

Covariance between relatives

- $f_{x y}=1 / 4\left[P\left(x_{i} \equiv y_{i}\right)+P\left(x_{j} \equiv y_{j}\right)+P\left(x_{i} \equiv y_{j}\right)+P\left(x_{j} \equiv y_{i}\right)\right]$
- $u_{x y}=\left[P\left(x_{i} \equiv y_{i} ; x_{j} \equiv y_{j}\right)+P\left(x_{i} \equiv y_{j} ; x_{j} \equiv y_{i}\right)\right]$ - simultaneous events (the same genotype - dominance)
- NON-INBRED RELATIVES
- Half-sibs
- $\mathrm{F}=0$, thus, $\mathrm{F}_{\mathrm{A}}=0$
- $\mathrm{F}_{\mathrm{xy}}=1 / 4\left[\mathrm{P}\left(\mathrm{x} \equiv \mathrm{y} \equiv \mathrm{A}_{\mathrm{i}}\right)+\mathrm{P}\left(\mathrm{x} \equiv \mathrm{y} \equiv \mathrm{A}_{\mathrm{j}}\right)+\mathrm{P}\left(\mathrm{x} \equiv \mathrm{A}_{\mathrm{i}} \equiv \mathrm{y} \equiv \mathrm{A}_{\mathrm{j}}\right)+\mathrm{P}\left(\mathrm{x} \equiv \mathrm{A}_{\mathrm{j}} \equiv \mathrm{y} \equiv \mathrm{A}_{\mathrm{i}}\right)\right]$
- If x and y are non-inbred, thus the last two parts are zero, because their parents are not inbred either
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1 / 4+1 / 4+0+0]$
- $\mathrm{f}_{\mathrm{xy}}=1 / 8$
- Since $r=2 f$
- $r=1 / 4$
- $\mathrm{u}_{\mathrm{xy}}=0$

- Probability of transmit the genotype - dominance effect

Covariance between relatives

- Full-sibs
- $\mathrm{F}=0$, thus, $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}}=0$
- $f_{x y}=1 / 4\left[P\left(x \equiv y \equiv A_{i}\right)+P\left(x \equiv y \equiv A_{j}\right)+P\left(x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{L}\right)+\right.$
- $\left.P\left(x \equiv A_{i} \equiv y \equiv A_{j}\right)+P\left(x \equiv A_{j} \equiv y \equiv A_{i}\right)+P\left(x \equiv A_{k} \equiv y \equiv A_{L}\right)+P\left(x \equiv A_{L} \equiv y \equiv A_{k}\right)\right]$
- Since A and B are non-inbred, $P\left(A_{i} \equiv A_{j}\right)=0$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1 / 4+1 / 4+1 / 4+1 / 4+0+0+0+0]$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4$
- Since $r=2 f$
- $r=1 / 2$
- $\quad(1 / 2 \cdot 1 / 2) \cdot(1 / 2 \cdot 1 / 2)$

- $u_{x y}=\left[P\left(x \equiv y \equiv A_{i} ; x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{i} ; x \equiv y \equiv A_{L}\right)+\right.$
- $\left.\quad P\left(x \equiv y \equiv A_{j} ; x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{j} ; x \equiv y \equiv A_{k}\right)\right]$
- $\mathrm{u}_{\mathrm{xy}}=[(0.25 \times 0.25)+(0.25 \times 0.25)+(0.25 \times 0.25)+(0.25 \times 0.25)]$
- $\mathrm{u}_{\mathrm{xy}}=1 / 16+1 / 16+1 / 16+1 / 16$
- $\mathrm{u}_{\mathrm{xy}}=1 / 4$

Covariance between relatives

- INBRED RELATIVES
- Half-sibs
- $\mathrm{F}_{\mathrm{p}} \neq 0 ; \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \equiv \mathrm{A}_{\mathrm{j}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{k}} \equiv \mathrm{A}_{\mathrm{L}}\right) \neq 0$
- $f_{x y}=1 / 4\left[P\left(x \equiv y \equiv A_{i}\right)+P\left(x \equiv y \equiv A_{j}\right)+P\left(x \equiv A_{i} \equiv y \equiv A_{j}\right)+P\left(x \equiv A_{j} \equiv y \equiv A_{i}\right)\right]$
these cases can be $A_{i} \equiv A_{j}$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1 / 4+1 / 4+\mathrm{F}(1 / 4)+\mathrm{F}(1 / 4)]$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1 / 2+\mathrm{F}(1 / 2)]$
- $\mathrm{f}_{\mathrm{xy}}=1 / 8[1+\mathrm{F}]$

- $\mathrm{u}_{\mathrm{xy}}=0$
- Probability of transmit the genotype - dominance effect

Covariance between relatives

- Full-sibs
- $\mathrm{F} \neq 0$, thus, $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}}=0$
- $f_{x y}=1 / 4\left[P\left(x \equiv y \equiv A_{i}\right)+P\left(x \equiv y \equiv A_{j}\right)+P\left(x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{L}\right)+\right.$
- $\left.P\left(x \equiv A_{i} \equiv y \equiv A_{j}\right)+P\left(x \equiv A_{j} \equiv y \equiv A_{i}\right)+P\left(x \equiv A_{k} \equiv y \equiv A_{L}\right)+P\left(x \equiv A_{L} \equiv y \equiv A_{k}\right)\right]$
- Since A and B are non-inbred, $P\left(A_{i} \equiv A_{j}\right)=0$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1 / 4+1 / 4+1 / 4+1 / 4+\mathrm{F}(1 / 4)+\mathrm{F}(1 / 4)+\mathrm{F}(1 / 4)+\mathrm{F}(1 / 4)]$
- $\mathrm{f}_{\mathrm{xy}}=1 / 4[1+\mathrm{F}]$
- Since $r=2 f$
- $r=1 / 2[1+F]$
- $\quad(1 / 2 \cdot 1 / 2)+(1 / 2.1 / 2) \mathrm{F}$
- $u_{x y}=\left[P\left(x \equiv y \equiv A_{i} ; x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{i} ; x \equiv y \equiv A_{L}\right)+\right.$

- $\left.P\left(x \equiv y \equiv A_{j} ; x \equiv y \equiv A_{k}\right)+P\left(x \equiv y \equiv A_{j} ; x \equiv y \equiv A_{k}\right)\right]$
- $\mathrm{u}_{\mathrm{xy}}=[(0.25 \times 0.25)+(0.25 \times 0.25)+(0.25 \times 0.25)+(0.25 \times 0.25)]$
- $u_{x y}=1 / 16(1+F)^{2}+1 / 16(1+F)^{2}+1 / 16(1+F)^{2}+1 / 16(1+F)^{2}$
- $\mathrm{u}_{\mathrm{xy}}=1 / 4(1+\mathrm{F})^{2}$

Covariance between relatives

- $P\left(x \equiv y \equiv A_{i}\right)=P\left(x \equiv y \equiv A_{k}\right)+P\left(x \equiv A_{i} \equiv y \equiv A_{j}\right)$
- $=1 / 2 \cdot 1 / 2+\mathrm{F}(1 / 2 \cdot 1 / 2)$
- $=1 / 4+1 / 4 \mathrm{~F}$
- $=1 / 4(1+\mathrm{F})$
- $P\left(x \equiv y \equiv A_{k}\right)=P\left(x \equiv y \equiv A_{k}\right)+P\left(x \equiv A_{k} \equiv y \equiv A_{L}\right)$
- $=1 / 2 \cdot 1 / 2+F(1 / 2 \cdot 1 / 2)$
- $=1 / 4+1 / 4 \mathrm{~F}$
- $=1 / 4(1+F)$
- $P\left(x \equiv y \equiv A_{i} ; x \equiv y \equiv A_{k}\right)=P\left(x \equiv y \equiv A_{i}\right) \cdot P\left(x \equiv y \equiv A_{k}\right)$
- $=1 / 4(1+\mathrm{F}) \cdot 1 / 4(1+\mathrm{F})$
- $=1 / 16(1+\mathrm{F})^{2}$

Why $r=2 f$?

- $\mathrm{x}_{\mathrm{ij}}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{ix}}+\boldsymbol{\alpha}_{\mathrm{jx}}+\delta_{\mathrm{ijx}}$
- $\mathrm{y}_{\mathrm{ij}}=\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{iy}}+\boldsymbol{\alpha}_{\mathrm{iy}}+\mathcal{S}_{\mathrm{ijy}}$
- $E\left(x_{i j}\right)=E\left(y_{i j}\right)=u$
- $E\left(\boldsymbol{\alpha}_{i}\right)=\sum_{i} p_{i} \boldsymbol{\alpha}_{i}=0$
- $E\left(\boldsymbol{\alpha}_{\mathrm{j}}\right)=\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \boldsymbol{\alpha}_{\mathrm{j}}=0$
- $\mathrm{E}\left(\mathcal{S}_{\mathrm{ij}}\right)=\sum_{\mathrm{ij}} \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathcal{S}_{\mathrm{ij}}=0$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i}}, \boldsymbol{\alpha}_{\mathrm{j}}\right)=\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i}}\right) \mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j}}\right)=0$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i}}, \mathcal{S}_{\mathrm{ij}}\right)=\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i}}\right) \mathrm{E}\left(\mathcal{S}_{\mathrm{ij}}\right)=0$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j}}, \mathcal{S}_{\mathrm{ij}}\right)=\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i}}\right) \mathrm{E}\left(\mathcal{S}_{\mathrm{ij}}\right)=0$
- $\operatorname{COV}\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)=\mathrm{E}\left[\mathrm{x}_{\mathrm{ij}}-\mathrm{E}\left(\mathrm{x}_{\mathrm{ij}}\right)\right] \cdot \mathrm{E}\left[\mathrm{y}_{\mathrm{ij}}-\mathrm{E}\left(\mathrm{y}_{\mathrm{ij}}\right)\right]$
- $=\left[\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{ix}}+\boldsymbol{\alpha}_{\mathrm{ix}}+\mathcal{S}_{\mathrm{ijx}}-\mathrm{u}\right] .\left[\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{iy}}+\boldsymbol{\alpha}_{\mathrm{iy}}+\mathcal{S}_{\mathrm{ijy}}-\mathrm{u}\right]$
$\cdot=\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix}}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix}}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix},}, \mathcal{S}_{\mathrm{ijy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j} \times}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j} x}, \boldsymbol{\alpha}_{\mathrm{jy}}\right)+\ldots+\mathrm{E}\left(\mathcal{S}_{\mathrm{ij} \times} \mathcal{S}_{\mathrm{ijy}}\right)$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix},}, \mathcal{S}_{\mathrm{ijy}}\right)=0$
- Covariance between allele effect and genotype (all cases)

Why $r=2 f$?

- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix}}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \boldsymbol{\alpha}_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{i}}\right) \boldsymbol{\alpha}_{\mathrm{i}}=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \boldsymbol{\alpha}_{\mathrm{i}}^{2} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{i}}\right)=1 / 2 \operatorname{Va} . \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{i}}\right)$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{i} \times}, \boldsymbol{\alpha}_{\mathrm{j} y}\right)=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \boldsymbol{\alpha}_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}\right) \boldsymbol{\alpha}_{\mathrm{i}}=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \boldsymbol{\alpha}_{\mathrm{i}}^{2} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}\right)=1 / 2 \operatorname{Va} . \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}\right)$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j} \times}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)=\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \boldsymbol{\alpha}_{\mathrm{j}} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right) \boldsymbol{\alpha}_{\mathrm{j}}=\sum \mathrm{j}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \boldsymbol{\alpha}_{\mathrm{j}}^{2} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)=1 / 2 \operatorname{Va} . \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)$
- $\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j} \times}, \boldsymbol{\alpha}_{\mathrm{jy}}\right)=\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \boldsymbol{\alpha}_{\mathrm{j}} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right) \boldsymbol{\alpha}_{\mathrm{j}}=\sum \mathrm{j}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \boldsymbol{\alpha}_{\mathrm{j}}^{2} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)=1 / 2 \operatorname{Va} . \mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)$
- $\mathrm{E}\left(\mathcal{S}_{\mathrm{ij} \times} \mathcal{S}_{\mathrm{ijy}}\right)=\sum_{\mathrm{ij}} \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathcal{S}_{\mathrm{ij}}\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)\right] \mathcal{S}_{\mathrm{ij}}\right.$
- $\quad=\sum_{i j} \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathcal{S}_{\mathrm{ij}}{ }^{2}\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)\right]\right.$
- $\quad=\operatorname{Vd} .\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)\right]\right.$
- $\operatorname{COV}\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)=\mathrm{E}\left[\mathrm{x}_{\mathrm{ij}}-\mathrm{E}\left(\mathrm{x}_{\mathrm{ij}}\right)\right] \cdot \mathrm{E}\left[\mathrm{y}_{\mathrm{ij}}-\mathrm{E}\left(\mathrm{y}_{\mathrm{ij}}\right)\right]$
- $=\left[\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{ix}}+\boldsymbol{\alpha}_{\mathrm{jx}}+\mathcal{S}_{\mathrm{ijx}}-\mathrm{u}\right] .\left[\mathrm{u}+\boldsymbol{\alpha}_{\mathrm{iy}}+\boldsymbol{\alpha}_{\mathrm{iy}}+\mathcal{S}_{\mathrm{ijy}}-\mathrm{u}\right]$
$\cdot=\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix},} \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix},} \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix},} \mathcal{S}_{\mathrm{ijy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{ix}} \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\mathrm{E}\left(\boldsymbol{\alpha}_{\mathrm{j} x}, \boldsymbol{\alpha}_{\mathrm{iy}}\right)+\ldots+\mathrm{E}\left(\mathcal{S}_{\mathrm{ij},} \mathcal{S}_{\mathrm{ijy}}\right)$
- $\operatorname{COV}_{\mathrm{a}}\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)=1 / 2 \mathrm{Va}\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)+\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)\right]=1 / 2 \operatorname{Va}[4 \mathrm{fxy}]=2 \mathrm{fVa}$
- $\operatorname{COV}_{d}\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)=1 / 2 \operatorname{Vd} .\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{j}}\right)+\left[\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \equiv \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)\right]=\operatorname{Vd}\left[\mathrm{u}_{\mathrm{xy}}\right]=\mathrm{u}_{\mathrm{xy}} \operatorname{Vd}\right.$
- $\operatorname{COV}_{\mathrm{g}}\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)=2 \cdot \mathrm{f}_{\mathrm{xy}} \mathrm{Va}+\mathrm{u}_{\mathrm{xy}} \mathrm{Vd}$

